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Machine learning approach 
for elucidating and predicting 
the role of synthesis parameters 
on the shape and size of  TiO2 
nanoparticles
Francesco Pellegrino1,2*, Raluca Isopescu3, Letizia Pellutiè1, Fabrizio Sordello1, 
Andrea M. Rossi4, Erik Ortel5, Gianmario Martra1,2,6, Vasile‑Dan Hodoroaba5* & 
Valter Maurino1,2

In the present work a series of design rules are developed in order to tune the morphology of  TiO2 
nanoparticles through hydrothermal process. Through a careful experimental design, the influence of 
relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive 
models by using Machine Learning methods. The models, after the validation and training, are able 
to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and 
aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse 
process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For 
the first time, it is presented a synthesis method that allows continuous and precise control of NPs 
morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated 
bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm.

Titanium dioxide is one of the most studied semiconductor metal oxides, due to its surface and electronic proper-
ties providing multisectorial applications that range from healthcare, photocatalysis, smart materials with self-
cleaning and self-sterilizing properties and solar energy harvesting (photovoltaics and water photosplitting)1–5. 
However, it is difficult to correlate the functional properties of  TiO2 nanomaterials to the properties at single 
nanoparticle (NP) level, due to broad size dispersity, the complex morphology and, consequently, the differ-
ences in surface properties of material used. In the last decades, intensive experimental and theoretical studies 
have been conducted on the reactivity of different metal oxides such as  TiO2 as a function of the crystal surface 
exposed and  morphology1,2,6–14. The request for different particle shapes, and therefore different surface termi-
nations, stems from the different physico-chemical properties associated to different surfaces, including surface 
states, which can confer different reactivity and interfacial properties to the material. The possibility to tune the 
crystal morphology could have a strong impact for several applications, e.g. in photocatalysis the morphology 
can guide the charge carriers’  dynamics15, while in the field of nanocomposites the tribomechanical proper-
ties could be  adjusted16–19. Nonetheless, the availability of NP materials displaying uniformity at the nanoscale 
would be beneficial to tune product performance. Moreover, another aspect that should not be overlooked is 
the possibility to use size and shape-controlled nanoparticles (NPs) with high homogeneity and high stability 
(both of morphology and of the colloidal suspension) as a reference material for dimensional nano-metrology 
of real-world, non-spherical NPs. Currently, there is scarcity of certified reference nanoparticles. The few ones, 
only Au and silica, are rather model nanoparticles, i.e. spherical, monodisperse and generally non-overlapping 
when prepared on a substrate. The real world of industrial nanoparticles implies complex particle shape, a certain 
degree of agglomeration/aggregation state, size polydispersity. The nanoparticles presented in the present work 
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constitute a milestone for the reliable but challenging analysis of size and more complex shape of real-world 
 nanoparticles20–22. The synthesis of well-defined and stable NPs as reference materials offers a solid basis for 
the development of procedures and models to improve the traceability chain, compatibility and comparabil-
ity of nanoparticle size measurements. This is key for further development in the standardisation of accurate 
size measurement for non-spherical  nanoparticles22. The prediction of final shape and size of a nanocrystal 
from the synthesis conditions starting from first principles it is currently unfeasible. Under thermodynamic 
control, the final shape is related to the surface energy of the various crystallographic surfaces. However, these 
are controlled by the presence of adsorbates that can act as shape  controllers23. Concerning anatase synthesis 
under hydrothermal (HT) conditions, there are several experimental and theoretical studies that suggest various 
mechanism of  TiO2 crystal growth for HT  processes24–27. Recently, we proposed a model able to describe the 
evolution of crystal size and shape during alkaline HT processing of triethanolamine-titanium (IV)  complex27. 
However, a quantitative model able to predict the size and morphology from HT synthesis conditions still does 
not exist. In this context Machine Learning (ML) is increasingly used for predicting the relationship between 
determined input parameters and resulting structures or properties from available datasets, without using first 
 principles28–31. Although certain works were already carried out in several fields like synthesis, catalysis, molecu-
lar interactions, biology, engineering, etc.32–38, often ML is used to establish the relationship among a structure 
and a single determined material property only, rather than optimize the conditions to maximize the efficiency 
of a  process39–42. Less frequently, it is used for the material design, i.e. the study of the influence of synthesis 
parameters on the final morphology of the NPs; and where this has been done, only one final morphological 
characteristic is taken into account (size or shape)37,43. This occurs because ML approaches are limited by the 
lack of large pre-existing coherent data sets, especially with regards to material  synthesis32. The problem can 
be partially overcome by using experimental design techniques, which are often employed for building and 
optimizing regression models able to determine efficiently the set of conditions necessary to obtain a product or 
process with desired  characteristics44–48. The combination of experimental design and ML could allow building 
a model able to predict/optimize the process parameters even in the presence of a reduced initial data  set49–54. 
Also failed experiments can be useful for this  task55. Further, there are recent studies demonstrating the use of 
ML for classification of materials (or corresponding data)56. Besides the valuable prediction of advanced mate-
rial properties such as physical, chemical, optical, mechanical, electrical etc., i.e. material discovery, the idea of 
high-throughput computational materials research is another promising application of  ML57.

In the present work we present a quantitative model for the synthesis of  TiO2 NPs with “a priori” established 
shape and size and limited polydispersity. To this aim, we coupled experimental design and ML techniques 
for the material synthesis, starting from a known HT synthesis method, for which the growth mechanism was 
 investigated27,58. The syntheses of truncated bipyramidal (the equilibrium shape for anatase)1 and elongated 
anatase NPs were performed using as precursor a titanatrane [Ti(TeoaH)2] (see characterization in Supple-
mentary Information SI, Sect. 2), and triethanolamine as shape controller exploring a quite wide experimental 
domain, in terms of reaction pH, temperature and reactants concentrations. Then, a mathematical model was 
developed to generalize and predict NP shape and size. Modelling was carried out in an iterative way with 
Artificial Neural Network (ANN) and Genetic Algorithm (GA) for the optimization, in the framework of the 
learning  approach59–63. This enabled the formulation of optimized models, which is able to guide the syntheses 
towards materials constituted of low polydispersity NPs with desired shape and size in an inverse engineering 
approach. This tool allows identifying well-defined parameters of synthetic procedures once certain particle size 
and shape are required for a particular application. Moreover, the procedure could be extended to other oxides 
and  materials64. The choice of ANN for process modeling, despite the small dataset, is due to their capability to 
fit data, without overfitting, which make them reliable, especially for nonlinear dependency between variables, 
which is our case. ANNs gave better results for some extension of the variables’ variation range resulting in a 
higher prediction power than classical polynomial regression, even though large datasets are  required65. The 
work follows step by step the creation of the ANN models using the data obtained by the experimental design 
and their refinement and optimization with the increase of the dataset with further experiments. For each step, 
a comparison with a second degree polynomial regression was carried out in order to estimate the goodness of 
the ANN models.

Chart 1 depicts the rationale of this work. The first part is dedicated to the experimental design (defining 
the desired product characteristics) and the complete morphological characterization of the NPs. The second 
part describes the development of the ML procedures (in particular ANN modelling) that predict the final char-
acteristics of the NPs, together with their optimization (throughout Genetic Algorithm, GA) and the reverse 
engineering processes.

Results
Experimental design and synthesis results. The experimental design technique employed is based 
on the Responses Surface Method, by using Box Wilson central composite design (CCD)47,66. In SI (Sect. 5), we 
report the complete explanation of the Experimental Design construction. The experimental plan considers the 
four independent variables (factors  Z1 to  Z4), which mainly influence the characteristics of the product:

• Z1—[Ti(TeoaH)2] initial concentration;
• Z2—Added  TeoaH3 concentration as shape controller;
• Z3—Initial pH;
• Z4—operating temperature.
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The experimental ranges studied were from 30 to 120 mM [Ti(TeoaH)2], from 0 to 70 mM added  TeoaH3, 
pH between 8.7 and 12 and temperature values from 135 to 220 °C. The orthogonal fractional CCD is shown in 
SI (Table S2). The required values for the products characteristics,  Y1 to  Y3 are:

• Hydrodynamic radius (Y1) → RH, max. 25 nm; the choice of the hydrodynamic radius evaluation was done 
because this parameter allows determining more accurately the polydispersity of NPs. Moreover,  RH can be 
rapidly determined by DLS measurements and then directly compared with the electron microscopy analysis 
through the Perrin equation (details in SI, Sect. 1). Obviously,  RH were determined on stable suspensions and 
following a standard operative procedure for all samples;

• Polydispersity (Y2) → max. 5%, corresponding to 1 nm for Y1 values around 20 nm; the experimental results 
are expressed as standard deviation (in nm) of the DLS hydrodynamic radius distribution for the relevant 
mode; for mathematical analysis Y2 is converted in percentages;

• Aspect Ratio (p) → required value is 1.5 representing the ratio between major and minor axes of the ellipse 
that fits to the particle boundaries (for details see Sect. 1—page 3 in SI). The ellipse model for fitting the 
bipyramids has been chosen due to simplicity (and practicability) reasons.

The experimental program adopted allows the investigation over a large range of operating parameters using 
a limited number of experiments (Table S2). This will give the possibility of process analysis and mathematical 
modelling in order to predict final product characteristics in various operating conditions as well as to identify 
the synthesis conditions for a product with predefined final properties.

The results of the experimental design, i.e. microscopy measurements, XRD and DLS are described in detail 
in SI (Sects. 6–8) and summarized in Fig. 1 (together with HR-SEM micrographs of three materials synthetized), 
where it is possible to gather further insight into the relevance of HT synthesis parameters. The NPs synthetized 
are characterized by a different elongation along the c axis of the anatase crystal (23–108 nm) (Fig. 1g, Table S3 
and Sect. 7 of the SI). The elongation is favored by high pH values in the whole temperature range considered. 
Very low hydrodynamic radii are expected at low pH and low temperature conditions, in a narrow region of 
the experimental ranges explored here, while particles with hydrodynamic radius between 10 and 20 nm can be 
obtained in several working conditions (Fig. 1d, Table S4 and Sect. 8 of the SI). In the whole range of temperatures 
and pH values, for 65 mM Ti(TeoaH)2 and 40 mM added  TeoaH3, the expected  RH would never exceed 20 nm. 
For higher Ti(TeoaH)2 loadings and higher added  TeoaH3 concentrations there is a large region in the pH and 
temperature variation range where particles with  RH larger than 20 nm may be obtained. However, even in this 
case, particle hydrodynamic radius would be limited to 29 nm. As for the hydrodynamic radius, aspect ratios 
between 1 and 2 are expected in a very wide region of working conditions, whereas high max/min values are 
favored at initial pH between 11 and 12. In that pH range, the aspect ratio increases with decreasing temperature. 
Nevertheless, there is a complex interplay among the variables considered that impedes to find other empirical 
relationships. The polydispersity (%) of NPs is almost always larger than the recommended for metrological 
applications (5%) (see Table S4), however it must be taken into account that with such complex morphology, 
polydispersity is even more challenging to be measured accurately, especially for high aspect ratios.

Chart 1.  Flowchart of the work process, from the experimental design to the validated and optimized ANN 
models.
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Artificial neural networks (ANN) modelling. ANN modelling was carried out for the factors’ screen-
ing and the analysis of their relative influence upon  TiO2 NPs synthesis by HT method. Details about the ANN 
formulation are presented in Supplementary Information (see Sect. 10).

Three distinct modelling ANN were built to reflect the influence of working parameters upon the character-
istics of the bipyramidal anatase synthetized. All three networks have the same architecture: four input neurons, 
for the four independent variables (Ti(TeoaH)2 concentration (mM), added  TeoaH3 concentration (mM), pH 
and temperature), three neurons in the hidden layer to ensure learning capability, without increasing the number 
of ANN weights too much, and one output neuron, for the output variable to forecast (the hydrodynamic radius 
(Y1), the polydispersity (Y2) and the Aspect Ratio (Y3), respectively, Fig. 2). The ANN has 15 total interconnec-
tions, avoiding overfitting problems. In this study, the activation function is the sigmoid, and learning algorithm 
is back-propagating. For each of the three ANNs, from the 20 experimental data, 16 data sets were used for 
training and 4 data sets for validation and testing. The ANNs were built in the frame of Matlab R2015a software 
(Math Works, Natick, MA, USA).

ANN modelling of hydrodynamic radius, polydispersity and aspect ratio were compared at each step with sec-
ond degree polynomial regression models developed by using the same dataset (see Sect. 9 of the SI for details). 
In Table 1, we reported the mean relative error of the developed models for hydrodynamic radius, polydispersity 

Figure 1.  High-resolution SEM micrographs of selected synthetized materials: HT06 (a), HT08 (b), and HT16 
(c). 3D-plots of Hydrodynamic Radius (d), Polydispersity (e), Aspect ratio (f) and NP length along the c-axis 
(g) experimentally obtained as functions of pH, Temperature and  [TeoaH3]/[Ti] relative concentration. The data 
reported represent the 20 materials obtained following the experimental design.
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and aspect ratio. Table 1 highlights that for the three parameters taken into account, ANN models have always 
a better prediction ability.

Based on the trained ANNs, the influence of process parameters upon the characteristics of particle size 
distribution (mean hydrodynamic radius, polydispersity) and aspect ratio was investigated. Each network was 
used to predict the behavior of the system for the experimental range of the operating parameters. The simula-
tions (reported in Figs. S88-S95, SI) revealed that the factors mostly influencing the characteristics of the final 
product are the pH and the temperature (in this order). These results are in good agreement with the empirical 
experimental observations.

The validation of the mathematical model was realized by performing 6 new experiments in the range of 
interest for the operating parameters (Table S5). The experimental outcomes for the obtained  TiO2 NPs were 
compared with predicted ones. The data in Table S6 show a relatively good model prediction capability. In par-
ticular, the ANN models mean relative error is better compared with the polynomial models for the prediction 
of polydispersity.

Refining of the ANN models with the addition of validation experiments. In order to improve 
the prediction ability of the neural networks, the six validation synthesis were added to the initial 20 experimen-
tal points. The neural networks defined for Y1, Y2 and Y3 calculations presented in the previous paragraph were 
tested for the new set of experimental data (HT-MODEL 01-06). Maintaining the same structure, the ANNs 
were further trained by using the whole new data set of 26 experiments. Once again, the match of the Polydisper-
sity is the Y parameter suffering from largest deviations. This could be explained by the challenge in measuring 
accurately the polydispersity index for such non-ideal samples. Table 2 reports the mean relative errors of the 
developed models (ANN vs Polynomial) for hydrodynamic radius, polydispersity and aspect ratio.

Figure 2.  Architecture of the used ANN models, with Z1 to Z4 selected as input neurons and Y1 to Y3 defined 
as output neurons.

Table 1.  Comparison between the relative mean errors for second degree polynomial models and ANN 
models.

ANN (20 experiments) Polynomial (20 experiments)

Rh Polydispersity Aspect ratio Rh Polydispersity Aspect ratio

2.4% 9.9% 2.6% 12.0% 18.0% 2.9%

Table 2.  Comparison between the relative mean errors for second degree polynomial models and ANN 
refined models.

ANN (26 experiments) Polynomial (26 experiments)

Rh Polydispersity Aspect ratio Rh Polydispersity Aspect ratio

3.0% 12.7% 2.9% 11.4% 22.5% 4.0%
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Table 2 highlights that the ANN models have a significantly higher prediction ability compared to the poly-
nomial regression models.

Reverse engineering ANN models. Reverse engineering is defined as a technique that starts from the 
product and works through the design/synthesis process in the opposite direction to arrive at product defini-
tion statements. Extending this concept to the synthesis of titania NPs, the aim of reverse engineering approach 
is to find out the particular synthesis conditions enabling to obtain a product with defined  RH, polydispersity 
and aspect ratio. This goal may be realized using mathematical modelling tools and optimization procedures. 
Therefore, ANN capability to capture the relation between operating condition and final product characteristics 
was used:

(a) to directly find the corresponding working conditions knowing the product characteristics;
(b) to define a functional dependence on working conditions (X) for each product characteristic (Y).

The optimization tool used is the Genetic Algorithm (GA). This algorithm is inspired from natural evolution 
and provides a heuristic search of the response surface, identifying the regions where optimum values may be 
located. Due to their working principle, GA is more robust in the localization of global optima than hill-climbing 
methods and it is expected to give good results in the case of multimodal objective functions, as it is the case 
in the present study. The search for best operating conditions for given product characteristics was achieved by 
formulation of an optimization problems. The definition of the goal was realized in several ways and is reported 
in SI (Sect. 10). The objective functions were selected based on the cumulated product requirements: minimum 
mean hydrodynamic radius (Y1), polydispersity (Y2) lower than 5% and Aspect Ratio (Y3) very close to 1.5 
corresponding to low truncated anatase NPs. The optimized models were used to estimate the influence of 
operating parameters on the product characteristics and to propose optimal operating condition for predefined 
final product characteristics. Based on these predictions five additional validation experiments for the reverse 
engineering models were carried out together with three imposed aspect ratio experiments, in order to increase 
also the model potential to indicate the process parameters for elongating the NPs. The new experimental data 
will contribute to yield more reliable ANN models, capable of covering all the desired ranges of the operating 
conditions for the HT synthesis of anatase NPs.

The data shown in Table S8 highlight that there is a certain discrepancy between the experimental and the 
predicted results, especially for the materials with imposed aspect ratio. Therefore, a further implementation of 
the models for reverse engineering problem was mandatory and an ANN analysis exploiting as input also the 8 
new experimental results was carried out. ANN and GA provide together a modelling tool for reverse engineer-
ing approach of the crystallization process.

The validation experiments proved that the model can estimate very well product characteristics in the range 
of the experimental data used in defining the ANN model and less accurate outside this region (for example the 
conditions for aspect ratio 4.2, see Table S8). The new experiments cover almost completely the whole experi-
mental region and they are all used in the next iteration step to build new ANN models that would better predict 
the product characteristics starting from operating conditions. The validated optimized reverse-engineering 
models were built using all the experimental data. New ANN models were built for  Y1,  Y2, and  Y3 using all the 
data obtained from the synthesis of the experimental design and of the validation experiments. The optimal 
architecture identified for the new ANNs was similar to the initial ones: 4 neurons in the input layer (Ti(TeoaH)2 
initial concentration,  TeoaH3 initial concentration, pH and Temperature), 3 neurons in the hidden layer and 
1 neuron in the output layer  (Y1,  Y2 and  Y3 respectively). The way in which the optimized models reflect the 
experimental variation is expressed as relative mean errors percentage in Table 3.

Table 3 confirms that final ANN models built with all the 34 experiments present a higher capacity to predict 
the results of the synthesis compared with the polynomial models.

Again, these new models can be further employed in solving the inverse problem: find out the operating con-
ditions corresponding to given product characteristics. The higher errors with respect to the previous ones (see 
Tables 1 and 2) is due to expansion of the ranges of the model with the high imposed aspect ratio experiments, 
leading to a possible distortion of the model. As already commented earlier, the polydispersity of NPs with such 
complex morphology is even more challenging to be measured accurately for high aspect ratios. However, the 
models are able to predict reasonably well the aspect ratio (from 1.4 to 6) and the hydrodynamic radius of the 
NPs. The comparison of all the data of the final refined models are shown in Tables S9 and S13 of the SI.

ANN model for NPs length along the c‑axis direction. Once having seen good results in the ANNs 
modelling for hydrodynamic radius, polydispersity and aspect ratio, all experimental data were employed for 
new ANN models, built to reflect the length of the nanoparticles along the c-axis direction dependence on oper-

Table 3.  Comparison between the relative mean errors for second degree polynomial models and ANN final 
models.

ANN (26 experiments) Polynomial (26 experiments)

Rh Polydispersity Aspect ratio Rh Polydispersity Aspect ratio

9.1% 13.9% 5.6% 11.9% 19.5% 10.1%
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ating parameters (Table S3 column “Major” for the values) and its polydispersity (see SI, Table S10). These new 
results, unlike  RH and polydispersity index, are completely independent on the colloid stability (although the 
DLS measurements were performed on stable colloids) because in this case the measurands are geometric values 
obtained from the TSEM micrographs.

Table 4 displays smaller error between experimental and computed values for the ANN models. The new 
ANNs can be employed for performing simulations as reported in Fig. 3, where the variation of the length of 
the nanoparticles along the direction of the c-axis of the crystal is reported as a function of pH and temperature 
(with precursor and shape controller concentration fixed to 30 mM and 70 mM respectively), the parameters 
that mainly influence the NPs morphology.

It must be underlined, that the length oS3f the NP does not necessarily correspond to the measure of the 
c-axis intended as average size of crystal domain  (D004) as obtained from XRD measurement (Table  and in detail 
in the Sect. 7 of the SI). In particular, the length of the NP seems to be comparable to  D004 only for aspect ratios 
up to 2 (Table S3).

To test the final reliability of all the ANNs model, they were used for predicting the NPs characteristics of a 
last synthesis, obtaining very good results for almost all the ANN models (Table S12) and each time they per-
formed better compared with the polynomial models. Obviously, each ANN model can be validated with new 
experiments that consequently can be used to the refine model improving its prediction ability, resulting in an 
iterative process that can gradually lead to improved reliability.

Discussion
The  TiO2 NPs obtained in the experimental design used in the present study have an aspect ratio ranging from 1.4 
to 5.5 with sizes from 20 to 110 nm. The hydrodynamic radius values measured with the DLS  (RH 7–20 nm) are 
in fair agreement with the  RH values derived from the Perrin formula  (RH 9–29 nm), which takes into account the 
TSEM analysis. Moreover, the comparison of the average size of the crystal domains  (D004) obtained by Scherrer 
Analysis of the 004 XRD peak (c-axis) with the actual length of the nanoparticles obtained by electron micros-
copy (see Table S3 of the SI) confirms the low defectivity of the nanoparticles along the c-axis for almost all the 
materials synthetized. The lower  D004 values obtained for the more elongated nanoparticles (aspect ratio higher 

Table 4.  Comparison between the relative mean errors for second degree polynomial models and ANN 
refined models obtained for the length of the NPs along the c-axis and its standard deviation.

c-axis length Standard deviation

ANN Polynomial ANN Polynomial

8.5% 13.5% 8.9% 18.1%

Figure 3.  Variation of the length of the nanoparticles along the direction of the c-axis of the crystal as a 
function of pH and temperature (image created with Matlab R2015a software (Math Works, Natick, MA, USA), 
https ://it.mathw orks.com/produ cts/matla b.html).

https://it.mathworks.com/products/matlab.html
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than 2) compared with the nanoparticle length obtained from the microscopy, indicates a higher defectivity of 
the crystal lattice of these NPs and the possibility to have poly-crystallinity. These new findings further highlight 
the difficulty to obtain a real strong elongation of the crystal along the c-axis with the exposition of high-energy 
surface and pay attention to the importance of characterizing nanoparticles in the best possible way before draw-
ing hasty conclusions relying solely on morphology. The final results represented in Fig. 1 highlight some general 
rules for these kinds of synthesis, in particular: lower pH and temperature conditions lead to lower  RH. Alkaline 
pH (> 11) and low temperature favor the formation of brookite phase and a stronger elongation of the NPs.

The results of the experimental design were used as training set for ANN models to predict the  TiO2 NPs size 
and shape as a function of four HT synthesis process parameters: pH, temperature, precursor and shape controller 
concentrations. The models were validated with a dataset constituted of 6 validation experiments. The result-
ing ANN models were used (together with GA) to formulate optimizing problem and propose best operating 
conditions for given product characteristics. The ANN models were then reverse engineered, to directly find the 
corresponding working conditions given the NPs characteristics. The models were tested with other experiments 
that allow the ranges extension, in particular driving the synthesis of NPs with high aspect ratio. This last mod-
els lead to a lower prediction accuracy compared with the previous optimized models, but it allows tuning the 
elongation of the NPs along the c-axis starting from defined synthesis conditions with good predictive capability, 
especially for aspect ratio > 3. At each step, the ANN models were compared with a second degree polynomial 
models employed as benchmark for these kind of analysis. Every time, the performances of the ANN models 
after refinement exceed (in a more or less marked way) the polynomial ones, confirming the good prediction 
ability of the ANN models (see Tables S9, S12, S13 and S14).

The ANNs built can be further trained with other experiments, in an iterative process that could lead to 
closer match between the a priori given and experimentally obtained NPs characteristics. In fact, the neurons 
are usually trained with thousands of input data in its common applications such as data mining, etc. In this 
work we have seen how ANN can be successfully exploited to predict the morphology of the NPs even starting 
from a relatively small data set, but obtained through experimental design. The final test confirms the reliability 
of the model (always better than polynomial models), with the possibility to continuously control the aspect 
ratio of the anatase NPs from 1.4 to 6. Finally, new ANN models were built in order to reflect the dependence 
of the length of the nanoparticles along the c-axis and its standard deviation from the synthesis parameters. The 
new ANNs can be successfully used to modelling and predict (together with GA) the length of the NPs in wide 
range from 20 to 140 nm.

Conclusions
In conclusion, the statistical analysis of data, model building and refining can help to control the product char-
acteristics. By statistical modelling both polynomial and ANN models are good candidates, but with a slight 
increase of data the prognosis capacity of ANN is better especially when the process has strong nonlinearities.

The design rules obtained in this study thanks to ANN models are valuable per se, because the NP materials 
of this kind can find large-scale application in catalysis and energy harvesting, but, more importantly, because 
these results can be extended to different synthesis procedures or to other materials, e.g. α-Fe2O3 ZnO,  WO3, 
etc., thus, widening the experimental ranges and adding new relevant process parameters. In all these cases, the 
possibility to rely on materials composed of NPs with low polydispersity in shape and size, enables the more 
reliable correlation between macroscopic properties and morphology at the nanoscale, with significant benefits 
for both fundamental and applied research.

Methods
Nanoparticles synthesis. The NPs were synthetized using a known procedure. The required mass of pre-
cursor, a complex of Ti with triethanolamine (details in SI), was dissolved in ultrapure water together with the 
right amount of triethanolamine as capping agent. The pH was adjusted with 1 M carbonate-free NaOH or 1 M 
HCl, as required. The final solution was then filtered and heated in a Teflon lined stainless steel high pressure 
autoclave at the set temperature after a  N2 sparging of 5 min. Details of the precursor and NPs synthesis and 
characterization in the Sects. 1–4 of the SI.

Experimental design. The experimental design technique used is a Box Wilson central composite designs 
(CCD) with 4 factors (n), 8 star points and 4 center points (N0). The experimental plan considered the four 
independent variables (factors) that mainly influence the product characteristics: Ti (TeoaH)2 initial concentra-
tion  (Z1),  TeoaH3 concentration added as shape controller  (Z2), initial pH  (Z3), operating temperature  (Z4). The 
output variables are hydrodynamic radius (Y1), polydispersity index (Y2) and the aspect ratio (Y3). Details of 
the experimental design building in Sect. 5 of the SI.

Mathematical modelling. The best architecture identified for all the ANNs is: 4 neurons in the input layer 
corresponding to the operating parameters, 3 neurons in the hidden layer and 1 neuron in the output layer. The 
ANNs were trained in the frame of Matlab R2015a software using backpropagation algorithm as detailed in SI. 
The hyper-parameters in ANN are the “by default parameters” given in Matlab for the optimization function 
chosen. The errors (total errors) are explicitly presented by parity plots and detailed in SI. The criterion for 
adjusting the weights (optimization of the network structure) was the minimization of sum of squared error in 
the training step. The data sets were used 70–80% for training, and 30–20% for validation and testing to prevent 
overfitting and test the prediction capability. The ANN were trained and tested in the frame of Matlab R2015a 
software. The implemented training algorithm, trainlm is used. It is the fastest backpropagation algorithm in 
the Matlab toolbox and it updates the weight and bias values according to Levenberg–Marquardt optimization. 



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18910  | https://doi.org/10.1038/s41598-020-75967-w

www.nature.com/scientificreports/

The other hyperparameters are: Number of epach: max 1000, Maximum validation failures 6; Minimum perfor-
mance gradient 1e-7, Initial Mu 0.001, Mu increasing factor 10, Mu decreasing factor 0.1, maximum Mu 1e10. 
For the details of the ANN theory and on all the developed ANNs see the Sect. 10 of the SI.

Received: 4 August 2020; Accepted: 19 October 2020
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