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Abstract: Counting 28Si atoms plays a fundamental role in the realisation of the unit of mass in terms of 
stipulated values of fundamental physical constants. In this realisation, the measurement of the volume of 28Si 
sphere is a fundamental step. This paper reports about a finite element analysis of the self-weight effect on the 
volume determination, taking the crystal anisotropy into account. The sphere volume might be overestimated 
from 0.3×10-9 to 5.1×10-9 (relative terms), depending on the crystal orientation and measurement procedure. 
 
Keywords: kilogram realisation, self-weight, finite element analysis, anisotropy. 
 

1. Introduction 

The 26th General Conference on Weights and Measures (16th November 2018) adopted a revision of the In-
ternational System of Units (SI). It is effective since May 2019 [1] and is based on stipulated values of sev-
eral fundamental physical constants. From now on, the mass unit, the kilogram, is realised – with fractional 
uncertainties of few parts in 108 – by two methods [2]: the so-called Kibble balance [3] and X-Ray-Crystal-
Density (XRCD) [4]. The XRCD experiment relies on counting the atoms in a perfect-crystal 28Si sphere 
having known volume, lattice parameter, surface properties, isotopic composition, and chemical purity [5-7]. 
A significant contribution to the counting uncertainty is the volume measurement [8-10]. 

The sphere diameter is about 93.7 mm, corresponding to a mass close to 1 kg. Since the form error is 
less than 100 nm, the volume is determined as πD3/6, where D is the mean diameter. In previous work, we 
reported about a finite element analysis [11, 12] of the self-weight effect on the volume determination at the 
National Metrology Institute of Japan (NMIJ), where an isotropic model was used. In this paper, we build on 
this analysis, take the silicon anisotropy into account and extend the study to the measurement set-up of the 
Physikalisch Technische Bundesanstalt (PTB). 
 

2. Volume determination 

The interferometric measurement of the sphere volume requires two steps. The first is the measurement of 
the distance, l, between the end surfaces of a stable optical etalon. The second is the measurement of the 
gaps, l1 and l2, between the sphere and the etalon end-surfaces [5]. The diameter, D = l – (l1+ l2), is obtained 
by difference and averaged over many measurement directions. 

As shown in Fig. 1, the NMIJ uses a fused-quartz Fabry–Perot etalon enclosed in a vacuum chamber 
equipped with active temperature control. The three aluminium pins (4 mm diameter, 2 mm tip radius, and 
PEEK-coated) support the sphere. They are placed at 120° azimuthal distances and 128.8° polar angle (38.8° 
latitude south). The interferometer senses the sphere diameter in the horizontal (equatorial) plane. The azi-
muth difference between the beam axes and the nearest pins is set to 30° to minimise the deformation of the 
measured diameter. A two-axis rotation mechanism repositions the sphere to measure the diameters in direc-
tions distributed as uniformly as possible; more than 103 diameter values are collected and averaged. When 
measured, each diameter always locates in the same way relative to the supports. The uncertainty of the 
mean diameter (not corrected for the phase shift due to the surface oxide layer) is 0.62 nm, to which a frac-
tional uncertainty of 6.6 nm/m will correspond [6]. 
 



2 
 

 

Figure 1. Schematic of NMIJ set-up; BS: beam splitter, D1, D2, and D3: CCD detectors, M: mirror, E1 and E2: etalon flats. The 
sphere rests on three supporting pins (grey dots).  
 

 
Figure 2. Schematic of PTB set-up; F: fibre, PBS: polarising beam splitter, A: aperture, CCD: camera (512 ⨉ 512 pixels), IL: imag-
ing lens, C: Collimator, FL: Fizeau lens. 
 

 
As shown in Fig. 2, the PTB uses spherical interferometers [9]: the etalon end-surfaces form a spher-

ical cavity surrounding the sphere. The etalon is placed in a vacuum chamber equipped with active tempera-
ture control. The sphere is supported by three peek flats placed at 120° azimuthal distance and 130° (inter-
ferometer 1) or 140° (interferometer 2) polar angle (40° or 50° latitude south). Lenses expand and match the 
incoming beams to the cavity and sphere, focusing them to the cavity centre. Therefore, the relationship D = 
l – (l1+ l2) holds over the full 60° (interferometer 1) or 45° (interferometer 2) field of view. The beam axes 
are in the horizontal (equatorial) plane, have the same azimuth of one of the supports and bisect the opposite 
two. Figure 3 shows the geometries of the PTB’s measurements. 
 

  
Figure 3.  Measurement geometries of the PTB’s interferometers 1 (left) and 2 (right). The supporting pins (blue circles) are at 
40° (left) and 50° south (right) latitude and spaced by 120° azimuth. The zero meridian (grey) goes through the first pin and beam 
axis. The azimuths are positive in the counterclockwise direction. The measured diameters are inside the red cones having 60° 
(left) 45° (right) apertures. The green cones are the diameters at 20° north latitude whose deformation is shown in Figs. 6 and 8. 
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An orientation device rotates the sphere about two axes; the surface is thus covered with about 30 
patches. For each orientation, the gaps l1 and l2 are simultaneously measured in about 104 (interferometer 1) 
or 106 (interferometer 2) directions. The equal thickness interference patterns (deviations are less than λ/10 
within the full field of view) allow high-resolution measurements of small differences of l, l1, and l2 from 
their nominal values. This iterated process enables a high-resolution topography of the whole sphere. The 
fractional uncertainty of the mean diameter (not corrected for the phase shift due to the surface oxide layer) 
is 0.2 nm, to which a fractional uncertainty of 2.3 nm/m will correspond. 
 

3. Finite element analysis 

3.1 Isotropic model 
Gravity deforms the Si sphere and impacts on the volume determination. Since silicon is anisotropic, the val-
ues of Young modulus, E (the stress to strain ratio), and the Poisson ratio, ij (the negative ratio between the 
strains in the direction j and that in an orthogonal direction i of uniform stress), depend on the sphere orienta-
tion, see Figs. 4 and 5. A previous study of the NMIJ set-up [12], simplified the analysis of the self-weight 
deformation by assuming isotropy. Since  =  E, where and are the vertical and horizontal 
strains, the /E ratio was set to the ratio average over all the crystallographic directions, 1.42⨉10-3 GPa-1, 
with E = 160 GPa and  = 0.228. We also checked that, with the isotropy assumption and azimuthally invari-
ant constraints, the self-weight deformation is axially symmetric, and the deviations from a constant of the 
diameters having the same polar angle are less than 1 pm [12]. 
 

 
Figure 4. Map of the Young modulus, the ratio between uniform stress in different crystallographic directions and the strain in the 
same direction. The arrows are 〈100〉 directions. The colour scale is from 1.3 GPa pm (violet, 〈100〉 directions) to 1.9 GPa (red, 
〈111〉 directions). The (spherical) triangle tiling highlights the underlying octahedral symmetry. 
 

  
Figure 5. Maps of the Poisson ratio vs the stress direction, where the transverse-strain directions are on the same meridians (left) 
and the equator (right). The colour scale is from 0.06 (violet, the stress and strain are both in 〈110〉 orthogonal directions) to 0.36 
(red, the stress is in a 〈110〉 direction, the strain is in a 〈001〉 one). The arrows are 〈100〉 directions. The Poisson ratio is shown as a 
scalar field over the Hopf fibration of a 3-sphere, where great circles on the 3-sphere (the loci of the transverse-strain directions) 
map into the points of the imaged 2-sphere (the loci of the stress directions). 
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Before facing the anisotropic problem, we applied the isotropic model also to the PTB interferometers. 
The peek flats were modelled 4 mm thick and having 3.6 GPa Young modulus and 0.38 Poisson ratio. The 
silicon density was set to 2329 kg m-3, the gravity acceleration to 9.807 m s-2, and the sphere diameter to 
0.093720266 m. About 5⨉105 tetrahedral elements formed the mesh. Since fixed translational and rotational 
degrees of freedom (Dirichlet boundary conditions on the surface elements) result in non-physical effects, we 
merged the sphere into the peek flats by generating a composite object, formed by connected domains of dif-
ferent materials (silicon and peek), sharing the boundaries between the neighbours, and prescribed Dirichlet 
conditions on the backside support-elements. The total contact area on the three supports, 0.65 mm2 (inter-
ferometer 1) and 0.73 mm2 (interferometer 2), were estimated through the Hertz theory of spherical indenta-
tion [13]. Namely, the depth of the indentation and radius of each single contact area are ℎ = 𝑎 /(2𝑅) and 
𝑎 = 3𝐹𝑅/(4𝐸∗) , where 1 𝐸∗⁄   = (1 − 𝜈 ) 𝐸⁄ + (1 − 𝜈 ) 𝐸⁄  , R is the sphere radius, F is the load com-
ponent orthogonal to the support, and E1, E2 and 1, 2 are the Young moduli and Poisson ratios of silicon 
and peek.  

Figure 6 shows the results of the finite element analysis. The azimuths of the beam axes are 0° and 180°. 
The three supports induce a three-fold rotational symmetry, which is more evident at higher elevation angles. 
Since the elevation angles refer to the northern extreme of the diameters, the indentations manifest them-
selves at the 60°, 180°, and 300° azimuths, where the south extreme of the diameter approaches the supports, 
see Fig. 3.  

To investigate the numerical accuracy, we checked the 3-fold rotational symmetry of the sphere defor-
mation. Figure 7 shows the standard deviations of the triple of diameters spaced by 120° for different polar 
angles of their northern extremes. Accordingly, the uncertainty of the calculated strains is about 1%. 

 

  
Figure 6. PTB interferometers, isotropic model. Deformation of the sphere diameter due to gravity, as a function of azimuth and at 
different elevation angles, for the interferometer 1 (left) and 2 (right). Positive deformations indicate larger diameters. The support 
azimuths are 0°, 120°, and 240°; the beam-axis azimuths are 0° and 180°. The elevation angles (top labels) refer to the latitude of the 
northern extreme of the diameters, see Fig. 3. Hence, the indentations manifest themselves at the 60°, 180°, and 300° azimuths, 
where the south extreme approaches the supports. The yellow regions indicate the diameters in the interferometer field-of-view. 

 
Figure 7. PTB interferometer 2, isotropic model. Standard deviations of the triple of diameters spaced by 120° at different elevation 
angles (top labels), from 0° to 22.5°. The support azimuths are 0°, 120°, and 240°. The elevation angles refer to the latitude of the 
northern extreme of the diameters, see Fig. 3. Similar results hold for the interferometer 1. 
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3.2 Anisotropic model 
We extended the analysis by taking the asymmetry into account for both the NMIJ and PTB set-ups and 
measurement procedures. The not-null elements of the stiffness matrix are given in table 1 for the [100], 
[010], [001] crystal orientation. 

To make the analysis as simple as possible, we considered only four crystal orientations; they are 
listed in table 2. The relevant stiffness matrices were obtained and implemented into the model according to 
[14, 15]. Figure 8 shows the radial deformation of the sphere for the PTB interferometers and Si(311) orien-
tation of the sphere. The support indentations, which are made asymmetric by the anisotropy and amount to 
more than 1 nm, were excluded from the map. Equatorial ridges are visible midway the indentations. In the 
field of view, deformations range from –0.84 nm to 0.11 nm (interferometer 1) and from –1.01 nm to 0.14 
nm (interferometer 2). Figure 9 shows the results for PTB interferometers. The sphere-diameter deformations 
for the NMIJ set-up are very similar to the ones of the PTB’s interferometer 1. As expected, the Si(100) and 
Si(111) orientations are the most stretchy and stiffest ones. 

Table 3 summarises the self-weight effects on the diameter and volume measurements. For the PTB 
measurements, we considered the mean elongation of the diameters in opposite spherical sectors having 60° 
(interferometer 1) and 45° (interferometer 2) apex angles and axis lying in the equatorial plane with azimuths 
equal to 0° and 180° (see fig. 3). We also considered spherical sectors having axis azimuths equal to 30° and 
210°, which minimises the mean squared distance from the support azimuths. For the NMIJ measurements, 
we considered a single equatorial diameter having 30° azimuth, which is the diameter measured in each of 
the NMIJ repositionings. 

The fractional errors of the sphere volume range from 0.3×10-9 (PTB interferometer 1, orientation 
Si(111)) to 5.1×10-9 (PTB interferometer 2, orientation Si(100)). The mean fractional errors are 1.2×10-9 (in-
terferometer 1) to 3.9×10-9 (interferometer 2). Nearly identical values are obtained for the azimuth of the la-
ser beam equal to 30° and the isotropic case. In the NMIJ case, the mean fractional error is 2.610-9, con-
firming the value obtained in the previous isotropic study [12]. 
 

Table 1. Not-null elements of the stiffness matrix for Si crystals. The measurement unit is GPa. 
 

c11, c22, c33 c12, c13, c23 c44, c55, c66 
165.7 63.9 79.6 

 
Table 2. Crystal orientations. 

 
orientation x-axis (first pin axis)  y-axis  z-axis (vertical) 

Si(100) 010   001 100 
Si(110) 001 110 110 
Si(311) 011 233 311 
Si(111) 011 211 111 

 

  
Figure 8.  Maps of the radial deformation of the sphere. PTB interferometers 1 (left) and 2 (right), crystal orientation Si(311), see 
table 2. The colour scale is from –1.01 nm (violet) to 0.14 nm (red). Due to the large deformation, the contact areas are excluded 
from the map. The blue circle defines the measurement area, see Fig. 3. 
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Figure 9. PTB interferometers, anisotropic model. Self-weight deformation of the sphere diameters, as a function of azimuth and at 
different elevation angles, for the PTB interferometers 1 (top four plots) and 2 (bottom four plots). The Miller indexes are the direc-
tions along the vertical; the crystal orientations in the horizontal plane are according to table 2. Positive deformations indicate larger 
diameters. The support azimuths are 0°, 120°, and 240°; the beam-axis azimuths are 0° and 180°. The elevation angles (top labels) 
refer to the latitude of the northern extreme of the diameters, see Fig. 3. Hence, the indentations manifest themselves at the 60°, 180°, 
and 300° azimuths, where the south extreme approaches the supports. The yellow regions indicate the diameters in the interferometer 
field-of-view. 
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Table 3. Summary of the finite element analysis 
 

 
 

PTB interferometer 2, contact area 0.73 mm2 PTB interferometer 1, contact area 0.65 mm2 

  

laser beam azimuth 0° 
 

 ΔD45/D ΔV45/V ΔD60/D ΔV60/V 
Si(100) 1.710-9 5.110-9 6.910-10 2.110-9 
Si(110) 1.310-9 3.910-9 4.210-10 1.310-9 
Si(311) 1.310-9 3.910-9 3.810-10 1.110-9 
Si(111) 0.810-9 2.410-9 1.110-10 0.310-9 
mean 1.310-9 3.910-9 4.010-10 1.210-9 

isotropic case 1.110-9 3.310-9 3.310-10 1.010-9 
  

laser beam azimuth 30° 
 

 ΔD45/D ΔV45/V ΔD60/D ΔV60/V 
Si(100) 1.410-9 2.210-9 7.110-10 2.110-9 
Si(110) 1.310-9 3.910-9 5.110-10 1.510-9 
Si(311) 1.210-9 3.610-9 4.210-10 1.310-9 
Si(111) 0.810-9 2.410-9 2.210-10 0.710-9 
mean 1.210-9 3.610-9 4.710-10 1.410-9 

isotropic case 1.210-9 3.610-9 4.510-10 1.410-9 
 

NMIJ interferometer, laser beam azimuth 30°, contact area 0.076 mm2 

 

  ΔD/D ΔV/V  
Si(100)  1.210-9 3.610-9  
Si(110)  0.910-9 2.710-9  
Si(311)  0.810-9 2.410-9  
Si(111)  0.610-9 1.810-9  
mean  0.910-9 2.610-9  

isotropic case  0.910-9 2.610-9  

 
To investigate the uncertainty originated by the contact between the silicon sphere and the support-

ing peek flats, Fig. 10 shows the mean elongation of the diameters in the field of view of the PTB’s interfer-
ometers as a function of the contact area and of the peek Young-modulus. As already observed in the NMIJ 
case [12], the equatorial diameters and the interferometer 2 measurement are not so much affected by the 
contact between the sphere and supports. 

A fractional volume uncertainty of 4.510-9 seems possible [10]. Therefore, experimental verifica-
tions of the finite-element analysis are necessary. Figure 11 shows the maximum diameter difference when 
the measurement of the same diameter is repeated after rotating the sphere by 180° rotation about the axis of 
the laser beam. The maximum difference occurs for the diameters having 30° north latitude and 0° and 180° 
azimuths, see Figs. 3, 6, and 8 (left). These differences range from 0.6 nm to 0.7 nm, depending on the as-
sumed contact area, and might be experimentally detected in future experiments. 

 

  
Figure 10.  PTB interferometers, isotropic model. Log-log plot of the mean elongation of the diameters in the interferometer field of 
view as a function of the contact area (left, the peek Young modulus is fixed to 3.6 GPa) and of the peek Young modulus (right, the 
Hertz theory determines the contact area). The vertical lines indicate the contact areas and Young modulus used in the analysis. 
Dashed lines are the best power-law fits to the data. 
  



8 
 

 
Figure 11. PTB interferometer 1, isotropic model. Log-log plot of the maximum diameter difference when measurements are repeat-
ed with the upside-down sphere (180° rotation about the axis of the laser beam). Left: the peek Young modulus is fixed to 3.6 GPa. 
Right: the Hertz theory determines the contact area. The maximum difference occurs for the diameters having  30° north latitude and 
0° and 180° azimuths, see Figs. 3, 6, and 8 (left). The vertical lines indicate the contact area and Young modulus used in the analysis. 
Dashed lines are the best power-law fits to the data. 
 

3. Conclusions 

We studied the effect of the self-weight and anisotropy on the volume determination of silicon spheres, 
which is an input datum for the kilogram and mole realisations by counting atoms. 

The finite element model used took both the NMIJ and PTB set-ups and procedures into account. To 
reduce the computational load, we considered only four different crystal orientations. In the NMIJ case, we 
averaged repeated measurements (after reorientation) of the same equatorial diameter [8]. Differently, in the 
PTB case, we averaged (after reorientation) all the diameters in opposite spherical sectors having 60° (inter-
ferometer 1) and 45° (interferometer 2) apex angles [9]. 

Our results show fractional volume-overestimations equal to 2.6×10-9 (NMIJ interferometer),  
1.2×10-9 (PTB interferometer 1), and 3.9×10-9 (PTB interferometer 2). These values are comparable with 
those obtained using isotropic models. The greatest correction required by the PTB interferometer 2 is due to 
the high south latitude of the sphere supports and the reduced interferometer field of view. This measurement 
geometry moves the field of view away from the indentations, but the increased equatorial bulge due to the 
load on the lower support and the removal of the shrank diameters near the indentations bias the average di-
ameter positively. By moving the support toward the equator, the equatorial deformation changes from bulg-
ing to shrinking. There exists an optimal support latitude, about at 29° south, where equatorial strain is null 
[12]. 
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