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Loss prediction in DC-biased magnetic sheets.   
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Power losses in soft magnetic materials can be solidly assessed by the Statistical Theory of Losses (STL), which provides physical 
foundation to the concept of loss separation. The theory is however limited to the conventional case of symmetric hysteresis loops and 
cannot be straightforwardly applied for a magnetic core operating under a DC bias. We show in this paper that such constraint can be 
released by combining the STL with a simplified approach to the Dynamic Preisach Model. This approach leads to the more affordable 
Static Preisach Model, with largely reduced computation time. In this way the hysteresis and excess loss components, with and without 
DC bias, are identified and calculated starting from a minimum set of experimental data. We provide a wide-ranging experimental 
validation of the theory, which is applied to the behavior of the energy loss versus frequency, measured up to f = 1 kHz, in non-oriented 
and grain-oriented iron-silicon sheets and in iron-cobalt alloys, subject to different polarization bias levels.  

 
 

Index Terms—Magnetic losses, magnetic steel sheets, Preisach model, DC-biased induction. 
 

 
 

1. Introduction 

The electromagnetic models of electrical machines and 
their optimization pass through modeling of iron losses and the 
related numerical implementation, a complex task, where the 
physical problem compounds with the efficiency of the 
computational approach. Different loss models are today 
available, by which a different compromise between 
computation complexity and predicting accuracy is attained. 
Such models, however, are typically developed for the 
standard case of sinusoidal induction and symmetric 
magnetization cycles. But a variety of excitation regimes take 
place in actual cores. Non-sinusoidal induction waveforms 
ubiquitously arise or are imposed (e.g. Pulse Width 
Modulation) in inductors and electrical machines, two-
dimensional flux loci are always created in motors and 
generators, and DC-biased magnetization regimes occur in a 
relevant number of applications. The latter working condition 
is typical of inductive components used in power electronics 
(e.g., switch-mode power supplies [1], [2], dc-dc buck 
converters [3], [4],  pulse transformers, etc.), power 
transformers in high-voltage DC transmission lines [5], stator 
and rotor of permanent magnet machines [6], [7], stator core 
of switched reluctance motors (SRM) [8], [9]. Fig. 1 provides 
a cross-sectional view of a three-phase SRM. The 
electronically driven energizing currents have here unipolar 
character and the radial induction in the salient stator poles has 
a strong DC bias, because the induction waveform evolves 
from zero to its positive maximum value. The whole stator of 

this machine is actually excited by similar DC bias waveforms. 
The case of the Pulse Width Modulation (PWM) [10], [11] can 
also be seen as a problem of polarized induction waveform, 
being possible to equate the minor loops associated to PWM 
with DC-biased cycles. The example in Fig. 2 shows how an 
imposed polarization bias Jb = 0.75 T modifies shape and area 
of a quasi-static symmetric hysteresis loop of peak amplitude 

Jp =  0.50 T taken in a non-oriented Fe-Si sheet. The physical 
reason for the observed large increase of the loop area (i.e. the 
loss) brought about by the bias is understood by looking at the 
mechanism of the magnetization process. The J(H) behavior 
can in fact be regarded as the macroscopic outcome of a 
sequence of microscopic magnetic transitions between 
metastable states, the Barkhausen jumps, and their statistical 
properties. Such properties can be lumped into a distribution 

function p(F, E) for the free energy variation F and the 

dissipated energy E characterizing the jumps [12]. The 

existence of a distribution p(F, E) implies that a distribution 
p(hu, hc) exists for the effective local field hu and the extra field 
hc triggering the transition (local coercive field). The higher 
the peak polarization level Jp attained during symmetric 
cycling, the wider is the covered p(hu, hc) region and the higher 
is the measured macroscopic coercive field Hc. This implies, 
as actually observed, that the hysteresis loss Whyst will increase 

more than linearly with Jp. The power law Whyst  Jp
m, with m 

> 1.5 is generally found, which justifies the shown increase of 
Whyst when the hysteresis loop is made to drift towards higher 
hu values by DC biasing.  

The scenery of the magnetization process as a train of 
Barkhausen discontinuities finds a natural mathematical 
counterpart in the Preisach model of hysteresis and the related 
statistics of the irreversible transitions. These are represented 
as elementary rectangular hysteresis loops (hysterons) 
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switching between the saturated states Js when the changing 

effective field passes through the values hu  hc. In the 
customary approach to hysteresis loop prediction, which 

provides for easy graphical representation, the fields  = hu + 

hc and  = hu - hc are introduced. The asymmetric hysteresis 
loop is then calculated by determining the distribution function 

p(,) and integrating it over the appropriate region in the 

(,) plane. Finding the Preisach Distribution Function (PDF) 

p(,) (identification problem) is the key step in modeling 
[12], [13]. The factorization property  

 

Js pirr(,) = ()(-)  (1)  
 

is generally assumed in steels sheets for the distribution of the  
hysteron switching fields. The whole PDF, taking into account 

also the reversible processes is expressed as p(, )= pirr(, ) 

+ prev()(-), with (-) the Dirac delta function. 
Typically, the PDF is reconstructed by measuring either a 
number of centered minor loops or first-order recoil curves 
[13], but appropriate analytic functions are often shown to 
apply [12]. The dashed lines in Fig. 2 provide an example of 
symmetric and asymmetric quasi-static hysteresis loop fitting 
in NO steel sheets using a so found PDF. It is stressed that the 
biased loop is the outcome a well-defined history in the (J, H) 
domain, and is calculated following a defined trajectory in the 

(,) Preisach plane. But by this procedure we cover only part 

of the problem, because we are interested in the overall 
response, static and dynamic, of the material. We wish, in 
particular, to predict the energy loss dependence on frequency 
and the way it is modified by a DC bias. In doing so, we will 
make reference to a defined physical framework, the one 
jointly offered by the Static Preisach Modeling (SPM) and the 
Statistical Theory of Losses [12].  

Efforts have been devoted in the literature to the 
assessment of the magnetic losses in soft magnetic materials 
subjected to DC bias. Most investigations are based on the use 

of the Steinmetz equation, generally assumed as a simple 
analytical expression for the power loss versus frequency and 
peak induction Bp 

  b
p

a
p ),( BfkfBP  ,  (2) 

where k, a, and b are material dependent parameters. It is a 
fully empirical formulation, commonly used in problems of 
electrical engineering under conventional supply conditions 
[14]. As such, it lacks flexibility and suitable modifications of 
(2) and/or dependence of k, a, and b on the measuring 
parameters (particularly DC-field HDC and Bp) are generally 
introduced [4], [14]-[18]. Consequently, a large number of pre-
emptive measurements in the presence of HDC are required, 
leading more to an ad hoc description of specific behaviours 
of the material than to a predictive formulation. The 
Steinmetz’s approach may also call for further experiments 
and additional fitting parameters when non-sinusoidal 
induction (e.g., triangular, trapezoidal) is treated [19], [20].  

Loss separation [21] has also been invoked for modelling 
the effect of DC bias, either disregarding the excess loss 
component and fitting the results by a number of arbitrary 
constants [22], [23] or by lumping it in the Jiles-Atherton 
model of magnetic hysteresis [24]. Again, the fitting 
parameters are empirically expressed and adjusted in order to 
provide the best representation of the measured asymmetric 

. 

 Fig. 1. Cross-sectional view of a three-phase switched reluctance 
motor. The radial component Br of the induction in the salient stator 
poles has unipolar character and is associated with an asymmetric 
hysteresis loop.  

Fig. 2.   The unbiased quasi-static hysteresis loop (f = 2 Hz) of amplitude Jp 
=  0.50 T, measured in a non-oriented Fe-(3.5 wt%)Si sheet, modifies into 
asymmetric and wider loop upon DC biasing (Jb = 0.75 T). This evolution is 
predicted by Preisach modeling (dashed lines). The outer symmetric loop 
(green curve) with Jp =  0.50 T is measured at f = 100 Hz. 
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loops. The specific hysteretic history in the (J, H) plane leading 

to the minor loop with polarization swing  Jp under biasing 
by the DC field Hbias is generally ignored. We actually know 
that the base formulation of the Preisach model, with a stable, 

material dependent only, distribution p(,), predicts 
congruence of the minor loops, that is, a unique solution for 

any (Hbias, Jp) [13]. The experiments show, however, that this 
is only approximately true, a fact related to the evolving role 
of the internal magnetostatic fields. Refined results are 

consequently obtained by adopting a moving distribution p( 

+ kJ,  + kJ), with k a constant and kJ  the “moving field” [25].  
The Preisach model, far from being a mere mathematical 

tool, can be associated with real processes at the scale of 
domain walls (dws) and their motion across a stochastic energy 
landscape [26]. It occurs then that under dynamic conditions 
the elementary dw transitions, subjected to a rate-dependent 
frictional (e.g. eddy-current related) counterfield, take place in 
a finite time interval and its mathematical embodiment, the 
hysteron, is accordingly modified [27]. This is the starting idea 
of the Dynamic Preisach Model (DPM), the physically based 
dynamic extension of the Static Preisach Model (SPM) 
developed by Bertotti [28]. The DPM has a broad domain of 
application and permits one to predict energy loss and 
hysteresis loop in steel sheets under sinusoidal and non-
sinusoidal induction. It can also be adapted to the loss 
calculation in the presence of skin effect [29]. However, it 
requires heavy numerical implementation, because one must 
compute at each instant of time the state of each switching 
Preisach hysteron. An example of DPM application by use of 
Finite Element Method (FEM) analysis in DC-biased 
nonoriented Fe-Si sheets up to a few kHz is discussed in [30].  
The case of PWM waveforms with 2n minor loops of peak-to-
peak amplitude 2Jp nested into a major loop was treated in [31] 
by combination of the SPM and the Statistical Theory of 
Losses (STL). The hysteresis loss component Whyst, the sum of 
the areas of the major loop and the 2n biased minor loops, is in 
this case calculated by the SPM. The classical energy loss 
Wclass(f) is at the same time expressed, by assuming 
uniform reversal of the magnetization across the sheet cross-
section at the macroscopic scale, by the equation 

 

  ������(�) = �
��

��
∫ �

d�

d�
�

��/�

�
d� ,  (3) 

  

where  is the material conductivity and d is the sheet 
thickness. It is noted that Wclass(f) is expressed in (3)  in terms 
of J, because we assume here that, to any practical extent, 
polarization and induction coincide. According to (3), Wclass(f) 
is independent of the DC bias. But this is not the case for the 
whole dynamic loss Wdyn(f) = W(f) – Whyst, which is always 
observed to increase with Hbias. This finding is then justified in 
terms of increase of the excess loss Wexc(f) = Wdyn(f) – Wclass(f). 
We write, according to the STL,  
  

     ����(�) = ������(�p, �b) ∫ �
d�

d�
�

�/��/�

�
d�, (4) 

 
where G = 0.1356, S is the cross-sectional area of the sheet 

sample, and the statistical parameter V0(Jp, Jb), related to the 

distribution of the local coercive fields [21], is a function of 
both peak Jp and bias Jb polarization values.  

We will show in the following that the problem of dealing 
with the dynamic losses under bias can be treated and 
analytically formulated by bringing the description of the 
dynamic magnetization back to the SPM, thereby reducing to 
dramatic extent the computational burden required by the 
DPM. In particular, a connection is worked out between the 
SPM and the statistical parameter V0(Jp,Jb), whose dependence 
on the DC bias is eventually obtained, together with that of 
Wexc. Little pre-emptive material data are required, namely the 
quasi-static return magnetization curve from technical 
saturation for implementing the SPM and a couple of power 
loss values at two different frequencies under unbiased 
sinusoidal flux for the STL. The theory, applied to a number 
of measurements performed with and without Hbias up to 1 kHz 
on non-oriented Fe-Si and Fe-Co and grain-oriented Fe-Si 
sheets, shows good predicting ability.   

2.   The theoretical model 

The physical scheme of the magnetization process as a 
sequence of local magnetization reversals associated with a 
distribution of switching fields is shared by the Preisach model 
and the STL. One can assimilate, in particular, the Preisach 
hysterons with the Magnetic Objects of the STL and the 
dynamics of their reversal behavior, where the time dependent 
applied field is balanced by the local threshold field and the 
eddy current field. For any macroscopic magnetization value, 
a correlation exists between static and dynamic fields, a 
property we shall make explicit in the following by 
formulating a solution for the prediction of the loss under bias 
in terms of quasi-static hysteresis loop and SPM. The overall 
scheme of this approach is sketched in Fig. 3. Starting from the 
DPM and making appropriate simplifications, a differential 
equation describing the dynamic effects of the material is 
worked out, permitting one to calculate Wexc in the presence of 
a DC bias. Since a semi-analytical expression for the quasi-
static loss Whyst can be derived and Wclass is known from (3), 
the total loss W(f) = Whyst + Wclass(f) + Wexc(f)  is obtained. 

 

 

- 
 + 

Fig. 3. The operator F permits one to retrieve the quasi-static field 
Hstat providing, under quasi-static excitation, the same irreversible 
polarization level Jirr achieved at a generic working frequency f under 
the dynamic field H, as defined in (5). By adding the reversible 
contribution Jrev, the dynamic polarization J(f) is calculated using the 
Static Preisach Model (SPM) of hysteresis. 
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2.1   Dynamic versus Static Preisach Model.   

A simplified dynamic hysteresis model, neglecting the 
moving field, is here derived, limited to the frequency domain 
where the skin effect is irrelevant. It is partly based on previous 
calculations developed in [32], [33]. We start by defining the 
effective dynamic field 

 
   H(t) = Ha(t) – Hdem(t) - Hclass(t),  (5)  
  

the difference between the applied field Ha, the demagnetizing 
field Hdem, and the counterfield Hclass (classical field) generated 
by the macroscopic eddy currents. The latter is proportional to 
the measured induction derivative, according to  
 

   ������(�) = �
��

��
∙

d�

d�
 .  (6) 

 
Let us then consider the magnetization process by hysteron 
transitions in the Preisach plane, as sketched in Fig. 4. The 
coordinates  and  in this plane are the threshold (coercive) 
local fields, including the interaction fields, for the hysteron 
transition under ascending and descending applied field, 
respectively. For any (, ) we calculate, at each instant of 
time, the state function , which is defined according to the 
following equation 
 

�(�,�;�)

��
 = �

 ��(�(�) − α)       if   � ≥   α       
 

��(�(�) − β)      if   � ≤   β     
      0                   if   β < � < α 

,  (7) 

 
where kd is the so-called DPM constant [28] and the 
normalized flux  varies between [-1; +1]. Equation (7) brings 
forth the fact that the hysteron transition occurs at a finite rate 
of change, proportional to the difference between the dynamic 
field H(t) and the threshold field. With dH/dt = const., (t) 
increases with time according to a quadratic law Y(�; �) ∝
(�(�) −  �)�  within the transition region (H - H, H), the 
faster H(t) the wider H. This region shrinks into a line under 
quasi-static magnetization, the total polarization value J(t) 
remaining unchanged, because the transition occurs in a step-
like fashion at the effective static field Hstat. By making explicit 
the relationship between H(t) and Hstat(t), the SPM becomes 
available for calculating dynamic loops and losses. The total 
polarization J(t), the sum of the irreversible Jirr(t) and 
reversible Jrev(t) contributions, can be expressed, under very 
general terms as [13]  
 

���(�)� = �� ∬ �(�, �)
���

�a, b ; �(�)�da db    . (8) 

If we refer to the ascending major branch of the loop taken 
between -lim and H(t) in Fig. 4, we can then  write, introducing 
the reversible permeability rev(H) = dJrev/dH,  
 

���(�)� = �irr(�) + �rev(�) = 

= Js ∫ d�
�lim

��lim
∫ (�, �; �)�irr(�, �)d� + 

�

��lim
     

 +(∫ m
rev

(�)da 
�(�)

��lim
− ∆�rev),                     (9)   

where ∆�rev is the reversible contribution to J at saturation. We 
note here that the experimental knowledge of the reversible 
permeability rev(H) provides a shortcut to the use of the 
distribution function prev()(-) in the calculation of Jrev(t) 
in (9). Implementation of (8) requires a burdensome 
computational process, in contrast with the manageable 
calculations required by the SPM and its solidly assessed 
applications, which take advantage of the Everett function 
formalism [13]. As previously stressed and sketched in Fig. 4, 
the dynamic field value H(t) is related to the value of the static 
field Hstat(t).  By connecting these two fields, we will be able 
to calculate J(t) under dynamic conditions using the SPM, 
according to the scheme shown in Fig. 3.     
 

2.2    The relationship between H(t) and Hstat(t)  
The hysteron transition strip of width ΔH in the Preisach 

plane (, ) lies along either the  or the  axis, according to 
whether H(t) is decreasing or increasing. In the latter case, 
shown in Fig. 4, the transition strip moves towards  H = lim,  
leaving on its trail the fully reversed (+) hysterons. We wish to 
quantitatively describe this process, to find, in particular, the 
differential operator F connecting the dynamic and static fields 
H(t) and Hstat(t). This objective is achieved through the 
procedure described in Appendix A, where simple analytical 
formulations are worked out. The starting point consists in 
equating the static and dynamic polarization values attained 
with Hstat(t) and H(t), respectively, through the corresponding 
integrals in the Preisach plane. With some simplifications (i.e., 
by assuming dH/dt and the differential permeability uniform 
across the transition strip), we obtain that the width H 

 
 
Fig. 4. Dynamic evolution of the magnetization process under a time 
increasing effective field H(t) and its representation in the Preisach 
plane. The transition region of width H identifies the ensemble of 
hysterons smoothly switching at a given instant of time t between the 
normalized flux states  = [-1, +1]. The width H of the dynamic 
transition strip increases with increasing the field rate of change 

d�/d�, according to  ∆� = ����(d�stat/d�) ∙ 2�
�

�d
�
��stat

d�
�, with 

kd a constant. It shrinks into a line of coordinate  = Hstat under quasi-
static excitation, with the parabolic behavior of the flux () 
changing into a step-like transition. 
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increases with the rate of change dH/dt, that is with dHstat/dt, 
according to  

 

     ∆� = ����(d�stat/d�) ∙ 2�
�

�d
�

��stat

d�
�                 (10) 

 
and that Hstat(t) takes the value  
       

�stat(�) = �(�) − (2/3)∆�.      (11) 
 
It is then concluded that Hstat(t) and H(t) are related by the 
differential equation 
 

 d�stat/d� = ����[�(�) − �����(�)]
�

��
��[�(�) − �����(�)]� 

          (12) 
 
where sign = +1 (-1) for  d�stat/d� > 0 (d�stat/d� <  0). For 
the ascending branch of the cycle, we obtain 
 

  �(�) =  �����(�) +
�

�
�

�

�d
�

��stat

d�
� ,    (13) 

 
where the second term on the right hand side represents the 
excess field Hexc. We recognize here the role of the DC bias on 
the excess loss through its effect on d�stat/dt. The bias brings 
in fact the system towards higher switching fields, that is, 
larger swing of Hstat across the loop for any given Jp value. 
d�stat/d� is correspondingly increased and, according to (13), 
the same is for Hexc and, consequently, for the dynamic loss 
Wdyn(f) = W(f) – Whyst.  

This conclusion is at odds with the general notion of energy 
loss depending on the DC bias only through the change of the 
quasi-static component [17], [22], [23]. Such assumption 
amounts to state that, with defined flux waveform and Jp value, 
the dynamic loss solely depends on the induction 
(polarization) derivative. There is experimental evidence that 
this is not the case [4] [33]. The physically based STL has the 
property of bringing to light the connection between the static 
and dynamic magnetization processes, that is, the fields H(t) 
and Hstat(t). This result is unattainable by purely empirical or 
phenomenological models.  

In the phenomenological Dynamic Hysteresis Model of S.E. 
Zirka, et al. [34], [35], the instantaneous value of the applied 
field H(t) in thin soft steel sheets is postulated to obey either 
the equation  

 

      �(�) = �stat(�) + �clas
d�

d�
+ �exc(�) �

��

��
�

�exc(�p)

     (14) 

  
or the equation  
 

�(�) = �stat(�) + �dyn(�) �
��

��
�

�dyn(�p)

                       (15) 

 
(ascending branch), where Kclas = d2/12 and gexc(B), aexc(Bp), 
gdyn(B), and adyn(Bp) are suitable fitting functions. They are 
identified, for any Bp value, by resorting to a best fitting 
procedure of few hysteresis loops measured at different 
frequencies. In this way, minor asymmetric loops, as imposed 

by induction waveforms with local minima (e.g. two-level 
PWM votage), are described, though the dependence on the 
polarization bias is not explicitly provided.  
 
2.3 The DC-bias and the Statistical Theory of Losses. 

The identification of the hysteron transition with the 
reversal dynamics of the Magnetic Objects (MOs), which can 
be written, in terms of normalized flux derivative, as [27]  

 
�

��
(�; �) = ��(�(�) − α) =

��

����s
 (�(�) −  a)   (16) 

 
where N0 is the total number of MOs contained in the cross-
sectional area of the sheet sample, permits us to quantitatively 
connect the results of the STL with the DPM, by posing �d =
��/����s  in (7). For a polycrystalline material of average 
grain size <s> we can pose <s>  S/N0 and  

kd   
�

������s
.                 (17) 

The STL is easily implemented, because it requires 
minimum pre-emptive measurements under sinusoidal 
induction, while permitting one to treat the magnetic losses 
under distorted and generally non-sinusoidal induction [31], 
[36], [37], very high inductions [38], high frequencies [39], 
[40] and two-dimensional flux [41], [42]. In the absence of 
bias, the procedure, as described in detail in [31], is based on 
the measurement, for any given Jp and sinusoidal induction, of 
W(Jp, f) at two frequencies. This permits one to determine, once 
Wclass(Jp, f) is calculated, Whyst(Jp) and the parameter V0(Jp), 
that is Wexc(Jp, f), and accomplish the loss separation upon the 
whole frequency range.   

Wishing to extend this approach to the loss decomposition 
of W(Jp, f) over a range of bias values Jb, we would need to 
repeat the previous procedure, that is, to determine the 
quantities Whyst(Jp, Jb) and V0(Jp, Jb) upon the whole desired 
set of Jb values. This lengthy approach can be circumvented 
by resorting, thanks to the previously discussed relationship 
between static and dynamic magnetization parameters, to the 
SPM. In the following we will show, in particular, that the 
energy loss versus frequency under bias W(Jp, Jb, f) can be 
predicted using, at the cost of reasonable approximations, 
analytical formulations for Whyst(Jp, Jb) and V0(Jp, Jb).  

   
2.4    The hysteresis loss Whyst(Jp, Jb) 
Let us consider the SPM and the irreversible part of the 

density function pirr(,) = (1/Js)()(-), according to the  
factorization property (1). The identification of pirr(α, β) is the 
key step of the SPM, requiring pre-emptive measurements. A 
simple approach consists in measuring the ascending (or 
descending) branch of the limit cycle (for example, the return 
curve from Jp = - 1.6 T in non-oriented Fe-(3 wt%)Si sheets). 
We express then the magnetization attained under the effective 
quasi-static field H along the major ascending curve by the 
SPM integral  

 
�↑(�) = �(−�s) + 

+2 ∫ �(�)d� ∫ �(−�)d� + ∫ m
rev

(�)da 
�

��s
,

�

��s

�

��s
  (18) 

 
where -Hs = -lim = -lim is the field at technical saturation. An 
analogous equation is obtained for the descending limit 
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branch. With the symbols  and  we denote the ascending and 
descending loop branches, respectively. In Appendix B we 
demonstrate that, starting from (18), the distribution function 
(H) and its primitive (H) can be explicitly related to �↑(�), 
its derivative  d�↑

(�)/dH , and the reversible permeability 

rev(H) pertaining to the limit major loop. Posing for simplicity 
(Hs) = 0, we get from (18) 
 

 d�↑(�)/d� = −2(
d(H)

d�
)(−�) + �rev(�)      (19) 

 
�↑(�) + �↑(−�) = −2 (�) ∙ (−�) ,  (20) 
 
which combine to provide the solution for the primitive 
associated with a given effective quasi-static field Hstat 

Φ(�����) = 

−��↓(� = 0) exp (∫

d�↑
d�

� �rev(�)

�↑(�)��↑(-�)

�����

�
��) , 

 

(21)

where J(H = 0) = - J(H = 0)  is the polarization along the 
descending branch of the major loop. The distribution 
function is then obtained as (Hstat) = d/dHstat. 

 
Let us then discuss how to predict the area of a quasi-

static loop of peak-to-peak amplitude 2Jp with polarization 
oscillating between Jb-Jp and Jb+Jp around the bias Jb (see Fig. 
2). Let Hstat,m and Hstat,M be the static field values corresponding 
to the polarization levels Jb-Jp and Jb+Jp. They are not 
univocally identified, unless the previous magnetic history is 
known. In such a case, a numerical inversion of the SPM is 
required. To simplify the matter, at the cost of a certain degree 
of approximation, we identify Hstat,m and Hstat,M on the easily 
inverted anhysteretic curve, taken as the curve bisecting the 
limit cycle (see Fig. 5).  

The area of the biased quasi-static hysteresis loop is given 
by the integral 

�hyst(�p, ��) =  � �stat��irr  =

�����

 

= ∫ �stat(d�irr↑/d�stat
�stat,M

�stat,m
 - d�irr↓/d�stat) d�stat  .    (22) 

 
From (18), we obtain 

 

  
d����↑

d�stat
= 2 φ(�����)[��stat,m� − (−�stat)] (23) 

 
and similarly for the descending branch 
 

   
d����↓

d�stat
= 2 φ(−�����)���stat,M� − (�stat)�, (24) 

 
to finally achieve by (22) 
 

�hyst��p, ��� = 2 ∫ �����{φ(�����)��−�stat,m�(−�stat)� −
�stat,M

�stat,m
 

− φ(−�����)���stat,M� − (�stat)�} d�stat. (25)  

 
By retrieving from the experimental major loop the primitive 
(Hstat) and the distribution (Hstat) = d/dHstat, we are then 
able to calculate by (25) the area �hyst(�p, ��) of the biased 
quasi-static hysteresis loop. 
  

2.5.    The excess loss Wexc and the parameter �� ��
p

, �
�
� 

We have previously obtained by (13) the excess field  

����(�) =  �(�) − �����(�) = 
 

=
�

�

����(������/��)

���
��

��stat

d�
�  , 

 

(26)

as the difference between the effective dynamic field H(t), as 
given by (5), and the static field at the same magnetization 
value (see Fig. 2). The excess energy loss, expressed in [J/m3], 
is calculated by the time integral   
 

�exc = ∫ �exc
�/�

�

��

d�
=

�

���d
 ∫ �

������

��

�/�

�
 �

��

d�
�

�/�

d�    (27) 

 
But, according to (4), Wexc can also be written as  
     

  ����(�) = ������(�p, �b) ∫ �
��

d�
�

�/��/�

�
d�.          (28) 

 

The parameter �����, ��� is independent of the specific flux 

waveform and we can simplify the matter by assuming �
��

d�
� =

4�p� , constant across the Jp loop (triangular J(t)). By 

equating (27) and (28), we get  

�����, ��� =
16

9

1

σ��

1

��
�� � ��

d�stat

d�
�

TRI

�/�

�

d��

�

 (29) 

where the subscript TRI stands for triangular polarization and 
the integrand contains the dependence of V0 on Jp and Jb. By 
decomposing the hysteresis cycle into its ascending and 
descending branches and posing 
 

 d� =
d�/d�stat

|d�/dt|
∙ d�stat =

d�/d�stat

��p�
∙ d�stat  ,          (30) 

 
we obtain from (29), using (23) and (24) and including the 

contribution of the reversible permeability μrev to �
��

d�
� , 

 

 
Fig. 5. Determination on the anhysteretic curve of the fields Hstat,m 
and Hstat,M corresponding to the biased polarization values Jb-Jp, 
and Jb+Jp. 

Hstat,m Hstat,M 
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�����, ��� =
�

�����d�p
� �∫ Á�(�stat)d

�stat,M

�stat,m
�stat�

�

, (31) 

 
with 

ℑ�(�����) = �2φ(�����)�Φ(−�����) − Φ�−�����,��� + μ���(�����)  

+�2φ(−�����)�Φ(�����) − Φ������,��� + μ���(�����)      . 
(32)

We thus arrive at the functional dependence of the bias-

affected parameter �����, ��� on the SPM parameters , 

Hstat,m, Hstat,M, μrev, kd and we can calculate Wexc(Jp, Jb, f) by 
(27), whatever the flux waveform. It is remarked that in a 
number of cases one can approximate the branch of the quasi-
static major loop by a hyperbolic tangent function. For the 
ascending branch, we write 
 

�(�����)  =  � tanh
�stat���

� ��
+ ∫ m

rev
(�)d�

�stat

−�s
 ,       (33) 

where Hc is the coercive field and A and  are fitting 
parameters.  Use of (33) permits one to derive Φ(�����) and 
(�����) as closed expressions. 

We finally stress that the previous equations have 
general value and always apply, with and without bias.  

 

3. Experimental method and procedure 

In the previous Section 2 we have demonstrated how the 
magnetic energy loss in magnetic steels can be predicted as a 
function of frequency in the presence of a DC bias by 
connecting and implementing the Static Preisach Model and 
the concept of loss separation in the framework of the 
Statistical Theory of Losses. A synthetic view of the procedure 
devised for the calculation of W(Jp, Jb, f) is provided in the flow 
chart shown in Fig. 6. We discuss now the loss measurements 
performed on a variety on non-oriented and grain-oriented 
alloys and their comparison with the model predictions.   

 
3.1 Measurement method 
Magnetic energy losses were measured, with and without 

DC bias, on a grain-oriented and two non-oriented Fe-Si steel 
sheets, and on an Fe-Co sheet. The physical parameters of the 
investigated materials are listed in Table I. The measurements 
were performed, according to the standards, on Epstein strip 
samples, using a 700-turn frame below f = 400 Hz and a 200-
turn frame above such a frequency. A calibrated broadband 
hysteresisgraph/wattmeter, endowed with digital control of the 
sinusoidal induction waveform [43] and making use of a 12-
bit LeCroy HDO 4054A oscilloscope for signal acquisition 
and A/D conversion, was employed. With the frequency 
ranging between 1 Hz and 1 kHz, energy loss measurements 
with zero bias for different Jp values were first performed. For 
each material, the limit quasi-static major cycle (the one 
depleting or nearly depleting at peak value the domain wall 
processes) was also measured. The return curve of this cycle 
was associated with (18) and used to identify the irreversible 
Preisach Distribution Function, according to the procedure 
described in Appendix B.  The loss measurements versus 

ss 
frequency were then repeated, after imposing the polarization 
bias Jb. A fixed value Jp =  0.5 T for the peak polarization of 
the biased loop was chosen, with Jb values ranging between 
0.5 T and 1.5 T. Fig. 7 provides a schematic view of the method 
devised for the reproducible measurement of the energy loss 
under defined polarization bias. This follows from the 
necessity of unambiguously identifying the biased hysteresis 
loop, in compliance with the non-local memory property of 
magnetic hysteresis. After low-frequency demagnetization, a 
major loop with symmetrically nested minor loops having the 
desired amplitude  Jp and bias polarization  Jb are obtained 
by imposing via feedback the polarization waveform shown in 
Fig. 7a. A sequence of n nested biased loops are made at the 
frequency f for any given pair (Jp, Jb), in order to reach the 
steady state. It is n = 5 in the example provided in Fig. 7a, 
corresponding to a major loop run at the frequency f0 = f / 2n. 
The case of a measurement made at f = 50 Hz (f0 = 5 Hz) in the 
0.345 mm thick non-oriented Fe-Si sheet is shown in Fig. 7b, 
where Jp = 0.5 T and Jp = 0.75 T. It is outlined in the same 
figure that the measured DC-biased cycle is the one occurring 
at the end of each half-period of the main cycle.  
 
 
 

Fig. 6.   Flow-chart describing the calculation of the energy loss 
components at the frequency f in a steel sheet subjected to DC-bias. , 
d, and S are conductivity, thickness, and cross-sectional area of the 
sheet sample, respectively. Jb is the bias polarization value. The peak-
to-peak polarization swing is 2Jp.  
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3.2  Unbiased (Jb = 0) hysteresis loops. 
The previously formulated expressions for Whyst(Jp, Jb) and 

Wexc(Jp, Jb, f), besides the obvious contribution (3) of the 
classical loss Wclass(Jp, f), apply in a simplified way to the 
limiting case of unbiased polarization, where we shall find 
Whyst(Jp) by (25) and the quantity V0(Jp) (and eventually 
Wexc(Jp, f) by (31) and (32). But, as previously stressed, the 
unbiased condition can be simply and alternatively treated 
according to the standard loss separation, directly providing at 
all frequencies Wclass(Jp, f) (by (3)), Whyst(Jp) (by extrapolating 
the loss W(Jp, f) measured at two different frequencies to f = 
0), and Wexc(Jp, f) (by subtracting Wclass(Jp, f) and Whyst(Jp) from 
the measured loss W(Jp, f). A comparison can then be made 
between the results provided by the two different approaches, 

so as to attain a preliminary validation of the model. Our final 
aim is one of predicting the energy loss W(Jp, Jb, f), under 
whatever polarization bias Jp, making use of the simple STL 
analysis of the unbiased one W(Jp, f ).  

   
  In order to calculate Whyst(Jp) by (25) and Wexc(Jp) by 
(31) and (32), we need to determine the Preisach distribution 
function (Hstat), its primitive (Hstat), and the dynamic 
constant kd. Such a constant, related to the average range of the 
mesoscopic regions reversing in a correlated fashion 
(Barkhausen reversals), is approximated by (17). However, we 
determine it here, for the sake of comparison, using the 
standard DPM approach [44], where we calculate a few 
symmetric dynamic cycles under imposed sinusoidal induction 
up to 400 Hz and we adjust the value of kd for best fitting.  For 
the calculation of the integrals (25) and (31), taken between 
symmetric limits, we make use, at the cost of a certain 
approximation, of the analytical expression (33), fitting the 
ascending branch of the limit experimental cycle. This is 
measured between  1.5 T in NO Fe-Si,   1.75 T in GO Fe-
Si, and  2.1 T in the Fe-Co sheets. We write (33) as  

�(�����) = � ∙ tanh
����� − ��

ζ ��

+ ���������, (34) 

by substituting ∫ m
rev

(�)d�
�stat

��s
 with ���������  and taking an 

appropriate value for rev (see Table II). This approximation is 
justified considering the minor played by the reversible 
processes along the required limit cycle. By using the 
simplifying notation =1/, we obtain  

 

Φ(�����) = − 
� A sinh � cosh �

cosh �ξ
����� − ��

��
�

exp �−ξ
�����

��
coth 2ξ� (35) 

  φ(�����) =
�

�� ���� �� 

������(�����/����)�

������(�����/����)�
Φ(�����), (36) 

with the parameters A, , and Hc in (34) obtained by best fitting 
of the major loop. These parameters are listed in Table II. We 
then calculate Whyst(Jp) by (25) and Wexc(Jp) by (28) – (32), 
applying these equations to the limiting case of unbiased loops 
of peak value Jp. The so-obtained Whyst(Jp) behaviors are 
compared in all the investigated materials with the same 
quantity resulting from the standard loss separation procedure. 
Two examples of such comparisons are given in Fig. 8 

 
 
 

TABLE II 
FITTING PARAMETERS OF THE LIMIT HYSTERESIS CYCLE (34) 

 

 

STEEL SHEET 
d 

(mm) 
 

(kg/m3) 
 

(-1m-1) 

Js 
(T) 

<s> 
m 

NO   Fe-(3.5%)Si 0.345 7600 1.77106 1.98   200 
NO   Fe-(3.2%)Si 0.194 7650 1.92106  2.0   122  
GO   Fe-(3   %)Si 0.280 7650 2.08106 2.02 8500 
         Fe49Co49V2 0.201 8120 2.27106 2.33     56 

STEEL SHEET 
A 

(T) 
Hc 

(A/m) 
 rev /0 kd 

(m/As) 
NO   Fe-(3.5%)Si 1.34   28.0  1.2 120    350 
NO   Fe-(3.2%)Si 1.33   39.4  1.1 150  1200 
GO   Fe-(3   %)Si 1.87     6.8  0.5 200      57 
         Fe49Co49V2 2.29   31  0.324 400  1100 

TABLE I 
PHYSICAL PROPERTIES OF THE INVESTIGATED STEEL SHEETS 

 

  
 
Fig. 7.   a) The hysteresis loops of peak amplitude  Jp are measured 
around the polarization bias Jb as minor loops symmetrically nested 
into a major loop, as shown for a non-oriented Fe-Si 0.345 mm 
thick sheet sample in b). The biased loops are obtained in this case 
at the frequency f = 50 Hz, with Jb = 0.75 T and Jp = 0.5 T. The 
frequency of the major loop is f /10 = 5 Hz. 
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The expression for the excess loss under sinusoidal 
unbiased polarization is obtained from (4) as  

 )(76.8)( 2/3
p

2/1
0pexc JVGSfJW       ,     (37) 

which accurately fits, within the upper frequency limit 
imposed by the skin effect, the experimental excess loss 
behavior [31]. This equation shows that the dependence of 
Wexc on the material microstructure identifies with that of the 
parameter V0(Jp). We show then in Fig. 9 the evolution of the 
quantity V0

1/2Jp
3/2 versus Jp obtained by (37) upon loss 

separation in the investigated steel sheets (solid symbols). The 
same quantity, calculated with (31) via the Preisach function 
(36) and its primitive (35) and the dynamic constant kd 
obtained by the previously described DPM approach, is shown 
to satisfactorily compare with the results of (37).       
 
 3.3  Biased (Jb > 0) hysteresis loops. 

Having verified and validated the outcome of the model 
under the unbiased exciting regimes, we proceed to its full 
application to the DC-biased hysteresis loops and the 
frequency dependence of the energy loss W(Jp, Jb, f) in the 
investigated NO and GO steel sheets and the Fe-Co alloy. We 
start by making the previously described comparison between 
the behaviors of the V0

1/2Jp
3/2 predicted in the absence of bias 

and shown in Fig. 9. We now avoid, however, the 
complications of the DPM and we determine the dynamic 
constant kd in (31) by adjusting its value for closest 

 
Fig. 10.  Non-oriented Fe-(3.5%)Si 0.345 mm thick sheet and its energy 
loss behavior with Jp =  0.5 T up to 400 Hz under unbiased and biased (Jb 
= 0.75 T) sinusoidal polarization Symbols: measurements. Lines: model 
prediction. a) Excess loss component Wexc(Jp, Jb, f). b) Total loss W(Jp, Jb, f).  

 

Fig. 8. Example of hysteresis loss component Whyst(Jp), obtained 
in Fe-Si and Fe-Co non-oriented steel sheets by extrapolating the 
energy loss W(f), measured in the absence of polarization bias, to 
f  0 (solid symbols). The dashed lines are obtained by 
predicting Whyst(Jp) by (25), where the Preisach distribution 
function (Hstat) and its primitive are (Hstat) are analytically 
derived, according to (35) and (36). 

 

Fig. 9.  The quantity V0
1/2Jp

3/2, which identifies the excess loss 
component, independent of its frequency behavior, is obtained, 
for unbiased sinusoidal polarization, applying (37), according 
to the standard loss separation procedure (solid symbols), and 
(31) (open symbols and line),through use of (35) and (36).  
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comparison between the results provided by the conventional 
loss decomposition (unbiased polarization) using the STL 
(solid symbols in Fig. 9) and the outcome of (31). Table II 
provides the so-calculated kd values for all the investigated 
materials. It is remarked that kd is around one order of 
magnitude lower in the GO sheets than in the NO ones. This 
is consistent with the idea that broader domain structures 
imply larger contribution of any single magnetic object to the 
global flux rate of change and ensuing larger associated 
dynamic field, according to the approximate expression 
provided by (17).  
    With (Hstat), (Hstat), and kd determined following the 
previous procedure, we calculate Whyst(Jp, Jb) and Wexc(Jp, Jb, 
f) by (25) and (28) and add these quantities to the bias-
independent classical component Wclass(Jp), given by (3), to  

 
 
 
 

 
 
 

 

TABLE III 
MEASURED AND PREDICTED HYSTERESIS LOSS 

COMPONENT Whyst(Jp,  Jb)  AT   Jp = 0.5 T 
 

STEEL SHEET 
d 

(mm) 
Jb 

(T) 
Whyst (mJ/kg) 

Measured Predicted 

NO   Fe-(3.5%)Si 0.345 
0    3.64    4.15 
0.75    4.88    4.59 

 
NO   Fe-(3.2%)Si 
 

 
0.194 

0    4.67    4.87 
0.5    5.49    5.16 
0.75    6.57    6.28 

 
GO   Fe-(3   %)Si 

 
0.280 

0    0.395    0.454 
0.75    0.418    0.515 
1.2    1.215    1.311 

         Fe49Co49V2 0.201 
0    4.39     4.62 
1.5    4.47     5.09  

 

Fig.13. Non-oriented Fe49Co49V2 0.201 mm thick sheet and 
its energy loss behavior with Jp = 0.5 T up to 500 Hz under 
unbiased and biased (Jb = 1.5 T) sinusoidal polarization 
Symbols: measurements. Lines: model prediction. a) Excess 
loss component Wexc( Jp, Jb, f). b) Total loss W( Jp, Jb, f). 

 

 

Fig. 11.  Non-oriented Fe-(3.%)Si 0.194 mm thick sheet and its 
energy loss behavior with Jp = 0.5 T up to 1 kHz under unbiased 
and biased (Jb = 0.5 T, 0.75 T) sinusoidal polarization Symbols: 
measurements. Lines: model prediction. a) Excess loss 
component Wexc( Jp, Jb, f).  b) Total loss W( Jp, Jb, f).   

 

Fig.12. Grain-oriented Fe-(3%)Si 0.280 mm thick sheet and its 
energy loss behavior with Jp = 0.5 T up to 500 Hz under 
unbiased and biased (Jb = 0.75 T, 1.2 T) sinusoidal polarization 
Symbols: measurements. Lines: model prediction. a) Excess 
loss component Wexc(Jp, Jb, f). b) Total loss W(Jp, Jb, f). 
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finally obtain the frequency dependence of the total energy 
loss W(Jp, Jb, f). Figs. 10 – 13 show measured and predicted 
W(Jp, Jb, f) behaviors in the investigated materials for a defined 
polarization swing 2Jp = 1.0 T and bias values Jb ranging 
between 0.5 T and 1.5 T. The predicted hysteresis losses 
Whyst(Jp, Jb) are compared with the calculated ones in Table III. 
Some discrepancies occurring between measurement and 
prediction descend from certain limits of the analytical 
approach, namely the description of the reverse branch of the 
limit cycle by (34). We see, however, in Figs. 11-13 and in 
Table IV that the eventually predicted total losses W(Jp, Jb, f) 
at power frequencies and beyond become, with and without 
bias, close to the experimental values.  We observe, in 
particular, that the model brings to light the role of the excess 
losses in the increase of the measured loss W(Jp, Jb, f) with 
increasing Jb. Physically, this is interpreted in terms of a 
corresponding evolution of V0(Jp, Jb), the parameter directly 
related to the distribution of the local coercive fields, which 
inevitably increases when the material is brought towards 
higher induction values, that is, increasingly harder 
magnetization processes. 

 5. Conclusion 

The frequency dependence of the magnetic energy losses 
in steel sheets subjected to a DC field bias is theoretically 
assessed by analytical formulations and experimentally 
verified in a number of non-oriented and grain-oriented alloys. 
The here discussed model overcomes the limitations of the 
nowadays prevalent empirical approaches, like the popular 
models based on the Steinmetz’s law, whose feeble connection 
with the physical properties of the magnetization process is a 
main limiting factor in applications. In these models, in 
particular, the quasi-static loss is generally credited with the 
whole increase of the loss under DC field bias. However, even 
a qualitative analysis of the magnetization process makes clear 
that coercivity and dynamics of the domain walls are 
correlated. This conclusion is quantitatively assessed by the 
Statistical Theory of Losses and the Dynamic Preisach Model. 
We show in this paper that, starting from the conceptual 
framework of the Dynamic Preisach Model, we can arrive at a 
theoretical formulation of the energy loss and its dependence 
on frequency, which is valid with and without DC-bias. An 

analytical relationship between the dynamic and quasi-static 
effective fields is obtained, by which the Dynamic Preisach 
Model can be connected to the easily afforded Static Preisach 
Model. This brings to light, in particular, the role of the bias 
field on the excess loss component, which can be accounted 
for by making general the formula of the excess loss 
component provided by the Statistical Theory of Losses. 
Implementation of the model requires a minimum set of pre-
emptive experimental data, namely a major (limit) DC 
hysteresis loop and a couple of energy loss values at two 
different frequencies under unbiased conditions, over a 
reasonable range of peak polarization values. The increase of 
the measured loss with the bias is justified and ultimately 
related to the distribution of the local coercive fields and the 
portion of it associated with higher fields, widening under 
increasing bias.  

The experiments performed for different values of the bias 
polarization on different types of steel sheets demonstrate the 
increase of the dynamic loss with biasing and the ability of the 
model to quantitatively account for such an effect.   
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Appendix A 
 We derive here the differential operator F connecting 
H(t), the dynamic field defined in (5), and Hstat(t), the field that 
under quasi-static excitation provides the same irreversible 
polarization value Jirr. We do this by operating on the Preisach 
plane, where we consider, following the scheme of Fig. 4, the 
evolution of the irreversible magnetization �irr��(�)� along the 
ascending limit branch under the monotonically increasing 
field H(t). Hstat(t) travels in the wake of H(t), inside the 
dynamic strip of width H. The state function (�, �; �) 
associated with the major ascending branch is independent of 
 and we write, according to (9),  
 
    

�irr��(�)� =  Js ∫ (�; �)d�
�lim

��lim
∫ ∙ �irr(�, �)d�

�

��lim
.    (A.1) 

 
By defining the quantity  
 

�irr
∗ (�) = �s ∫ �irr(�, �)d� = m

irr
(�)/2

�

��lim
 , (A.2) 

 
where m

irr
(�) is the slope of the magnetization curve under 

quasi-static conditions, we express the irreversible polarization 
along the ascending branch at time t as 

 

                       �irr��(�)� = ∫ �irr
∗ (α)(�; �)d�

�lim

��lim
          (A.3) 

 
The scheme in Fig. 4 compares the step-like and the smooth 
transitions of  between the values  1 occurring under static 
and dynamic excitation, respectively. We equate the 
magnetization variations ∆�dyn = ∆�stat pertaining to the (H(t)-

H, H) strip under these two conditions. By taking into 
account that for the static case (�stat) =  +1 and (�) =  −1, 
we write  

� μ���(α)
�

����

(; t)dα =  

=  ∫ μ���(α)
�����

����
dα − ∫ μ���(α)

�

�����
dα  (A.4)

and the time derivatives of the left and hand right sides as   
 

d(∆����)

d�
= �irr(�)(�)

d�

d�
− �irr(� − �)(� − �)

d�

d�
+ 

 

+ ∫ �irr(�)∙(
d

d�

�

��∆�
)dα  (A.5) 

 
 
d(∆�stat)

d�
= 2�irr(�stat)

d�stat

d�
− �irr(� − �)

d�stat

d�
 −�irr(�)� ̇ .

 (A.6) 
 
Since, and the normalized flux rate of the hysteron is, 
according to (7),   
 

 
�(�;�)

��
 = �d[�(t)-],            (H(t)  )  (A.7) 

 
we obtain from (A.5) and (A.6) 

 
 
 

      
��stat

��
=

�d

��irr(�stat)
∫ �irr(�)[�(�) − �]dα

�

��∆�
     (A.8) 

  
In order to make explicit the relationship (A.8) between H(t) 
and Hstat(t), we make two simplifying assumptions: 

1) µirr(a) is uniform across the dynamic strip [H-H, H]. 
Consequently, (A.4) and (A.8) become  

 

∫ [1 + 
�

��∆�
(�;  �)]d� =  2[�stat(�) − �(�) + ∆�]

       

 (A.9) 

 

                
��stat

��
=

�d

�
∙ ∆�� ,                              (A.10) 

respectively.  

 

2) The time derivative 
��

d�
of the magnetic field is locally 

uniform. We can then pose �(�) = �(��) +
��

d�
∙ (� − ��), 

with H(t0) =  in (A.7), to obtain  
 
�(�;�)

��
 = �d

d�

��
∙ (� − ��),         (A.11) 

and by integration  
 

(α; �) = (α; ��) + �d
d�

��
∫ (�� − ��)d�� =

�

��

                          =  −1 +
�d

��d�
d�� �

[�(�) − ]�   ,   (A.12)           

being (; t0) = -1. The dynamic transition of the hysteron, 
having threshold field , follows a parabolic law and 
saturates at the time t1 ((; t1) = 1), where H(t) attains the 
right boundary of the dynamic strip and H(t1) -  = H . The 
strip width is then found to depend on the time derivative of 
the field as  

∆� = ����(d�stat/d�) ∙ 2�
�

�d
�

��stat

d�
�       (A.13)    

and we can express (A.12) as  
 

              (; t) = −1 +
�

∆�� ∙ [�(�) − �]�. (A.14) 

 
By introducing (A.14) in (A.9), we get 
 

                      ∆� =
�

�
[�(�) − �stat(�)],  (A.15) 

 
and from (A.10) we finally obtain the differential equation (12) 
relating Hstat(t) and H(t) via the constant kd 

 
��stat

��
= ������(�) − �stat(�)�

�

��
�d[�(�) − �stat(�)]� (A.16)   

   
It is noted that at very high frequencies the dynamic strip may 
become too large for satisfying the approximation of uniform 
µirr().  
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Appendix B 
 
We proceed to the identification of the Preisach 

distribution function for the irreversible magnetization process 
Jspirr(,) = ()(-) through knowledge of the 
ascending/descending branches of the major quasi-static 
hysteresis loop, following the approach discussed in [45].  We 
start by describing the ascending major curve through the 
appropriate integral on the Preisach plane   

 
�↑(�) =  �(−�s) + 

+2 ∫ �(�)d� ∫ �(−�)d� + ∫ m
rev

(�)da  
�

��s
=

�

��s

�

��s
   

�(−�s) + 2 ∫ �(�)[(��) − (−�)]d� + ∫ mrev
(�)da 

�

��s

�

��s
(B.1) 

  

where  Hs is the field at technical saturation and rev(H) is the 
reversible permeability, assumed to depend on H only. We 
make the derivative of �↑(�)  
 

d�↑(�)

d�
= 2 

d

d�
� j(�)(��)d�

�

��s

− 2 
d

d�
� j(�)(−a)d�

�

��s

+ 

+mrev
(�) = 2j(�)[(��) − (−�)] + m

rev
(�)         (B.2)       

 

where we indicate with  the primitive of . To simplify, we 
pose the value of the primitive at saturation (��) = 0. We 
thus obtain  
 

                     
d�↑(�)

d�
− m

rev
(�) = −2j(�)(−�)         (B.3) 

 
We write, in analogy with (B.1) the descending curve    

 
�↓(�) = �(�s) − 

 

−2 ∫ �(−�)[(��) − (�)]d(−β) − ∫ mrev
(�)da 

�s

�

��

��s
. (B.4)  

 
 We immediately obtain the difference �↑(�) − �↓(�)  by 
comparing ascending and descending major curves at the field 
H, through calculation of the areas correspondingly covered on 
the Preisach plane by the moving fronts of the switching 
hysterons. We have, in fact, that �↑(�) − �↓(�) is obtained by 
integrating across the shaded area in Fig. B1 

 

 �↑(�) − �↓(�) = −2 ∫ j(�)d�
�s

�
∫ j(−�)d�

�

��s
=  

 
= 2[(��) − (�)][(−�) − (�s)]. (B.5) 

 
By recalling the condition (��) = 0 and taking into account 
that, by virtue of the symmetry of the problem, 
 
                               �(�) = −�↑(−�) ,                                    (B.6) 
we obtain 
           �↑(�) + �↑(−�) = −2 (�) ∙ (−�)   ,             (B.7) 

 
which, in combination with (B.3), leads to the differential 
equation 

  

        
�(�)/��

(�)
=

d�↑(�)/���mrev(�)

�↑(�)��↑(��)
    ,                    (B.8) 

 

where we have written j (�)  as 
�(�)

��
.  We integrate (B.8) 

between the limits H = 0 and H = Hstat  
 

            ln
(�)

(�)
= ∫

d�↑(�)/���mrev(�)

�↑(�)��↑(��)

�stat

�
 , (B.9) 

 

where, according to (B.7) and (B.6), Φ(0) = −��↓(� = 0), 
the negative value of Φ(0) descending from the previously 
assumed value (��) = 0. We consequently obtain 
 

Φ(�����) = −��↓(� = 0) exp �∫
d�↑

d�
 � �rev(�)

�↑(�)��↑(-�)

�����

�
���  (B.10) 

 
and the Preisach distribution function as 
                                

                         j (�stat) =
�(�stat)

��stat
  .                          (B.11) 

 

 

Fig. B.1. The difference �↑(�) − �↓(�) between the polarization 

values attained along the ascending and descending branches of 
the limit hysteresis loop at the generic field H is obtained by 
integrating on the shaded area.  




