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Three-dimensional disordered networks are receiving increasing attention
as versatile architectures for highly scattering materials. However, due to
their complex morphology, little is still known about the interplay between
their structural and optical properties. Here, we describe a simple algorithm
that allows to generate photonic network structures inspired by that of the
Cyphochilus beetle, famous for the bright white reflectance of its thin cuticular
scales. The model allows to vary the degree of structural anisotropy and
filling fraction of the network independently, revealing the key contribution of
these two parameters to the overall scattering efficiency. Rigorous numerical
simulations show that the obtained structures can exceed the broadband
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reflectance of the beetle while using less material, providing new insights for
the design of advanced scattering materials.

Bright white materials owe their diffuse reflectance to the presence of multiple light
scattering over a broad wavelength range [1]. Typically, ensuring that all visible frequen-
cies undergo a large number of scattering events requires a combination of high refractive
index materials and thick scattering layers. In fact, there is a limit up to which scattering
elements can be efficiently packed into a thin layer, above which the permittivity contrast
drops due to effective medium considerations, and structural coloration effects can arise
due to spatial correlations. How these effects come into play when increasing the number
of scattering elements is a complex topic which is under active investigation even for
simple spherical scatterers [2, 3, 4], with little results available for more realistic three
dimensional disordered material distributions.

In particular, fibrous and network-like diffusers have recently raised considerable
interest because of their outstanding scattering efficiency [5, 6, 7, 8, 9]. Depending on
their orientation, elongated elements can exhibit very different scattering cross sections,
and their collective alignment offers an additional degree of freedom to tune light transport
properties in these media. Indeed, shapes such as prolate ellipsoids or cylinders can be
packed up to higher densities delaying the onset of spatial correlations at the cost of
increased angular correlations [10, 11, 12]. Interestingly, both these aspects – namely
the high density and prevalent orientation exhibited by packed rods – can contribute to
increase the overall turbidity, which makes cylinders particularly suited to realize highly
turbid materials with a flat response over a broadband wavelength range [13]. Indeed,
arguably the shortest transport mean free path reported to date in the visible range
has been obtained in samples made of GaP nanocylinders [14] and, for low refractive
index materials, in the chitinous network structure of the Cyphochilus beetles [5, 13].
In recent years, the latter has inspired an array of bio-mimicking materials attempting
to reproduce its outstanding efficiency in terms of strong light scattering and limited
material usage, taking advantage of a wide range of fabrication techniques including
electro-spinning, super critical CO2 foaming, polymer phase separation and direct laser
writing [6, 7, 9, 15, 16, 17], to name a few.

However, as opposed to nanoparticle systems, network materials are characterized by
several additional aspects other than number density and spatial correlations, which
makes it difficult to understand what key parameters should be optimized to design highly
scattering network structures. Few notable examples include phase percolation, angular
correlation and network valence, all of which concur in determining their scattering
properties [13, 18, 19, 20]. In this respect, simple generative models for photonic
structures allowing to investigate the effects of these parameters separately are much
needed to gain insight on their role and relevance.

In this work, we describe a simple branching random walk (BRW) algorithm to generate
random network structures inspired by that of the Cyphochilus beetle. Notably, the
model allows to control and vary independently the volume fraction and degree of angular
correlations without altering structural parameters such as the slab thickness, the shape
and aspect ratio of the constituent elements. The optical and transport properties of
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Figure 1: Description of the BRW algorithm. a) At each iteration, two new rods are
added on top of the previous endpoints. b) The polar angle θ is sampled from a
normal distribution around π/2 with a standard deviation σθ, allowing to tune
the degree of structural anisotropy (panel b). Two typical structures are shown
in c)-d), obtained with a uniform and a narrow (σθ = 0.2 rad) θ distribution,
respectively. Tomographic sections show the prevalent in-plane alignment of the
rods in the anisotropic structure. Both samples exhibit a broadband reflectance
over the visible spectrum.

the generated structures have been investigated through finite difference time domain
(FDTD) calculations and an inverse Monte Carlo (MC) approach, showing that the bright
reflectance of the Cyphochilus beetle can be easily matched and surpassed by acting solely
on the degree of anisotropy and the volume fraction of the network. To the best of our
knowledge, this is the first rigorous demonstration of the key role played by structural
anisotropy in highly reflective disordered samples.

In our algorithm, a network structure is iteratively grown in a 7×7×7 µm3 cubic cell
with periodic boundary conditions (PBC) by adding rod-like scatterers corresponding
to the steps of a three dimensional bifurcating random walk. At each iteration, two
new rods (steps) are attached to any loose end of the current network (walk), with
length l and direction (θ, ψ) drawn from predefined distributions (Figures 1a and S1 in
SI). A starting condition of ∼1 rod/50 µm3 is set to obtain a more uniform material
distribution. Network isotropy in the xy plane is obtained by drawing the azimuthal
angle ψ uniformly between [0, π], while the the polar angle θ is drawn from a gaussian
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distribution centered around π/2. The degree of network anisotropy is tuned by changing
the standard deviation σθ for the polar distribution, with smaller values corresponding to
more layered/anisotropic arrangements. Finally, an isotropic network is also generated
for reference. All rods have a fixed diameter of d = 250 nm and length l ∈ (0, 2l̄)
sampled from a truncated gaussian distribution with mean l̄ = 1 µm and σl = 0.7 µm in
accordance with tomographic reconstruction of the beetle’s structure [8, 21] (see also SI).
The refractive index of the rods is set to 1.56, as in the case of chitin [22, 23].

Since our main focus is on the role of volume fraction and structural anisotropy,
we purposely minimize the presence of spatial correlations by allowing each new rod
to intersect previously placed elements. This is not necessarily in contrast with the
beetle structure, whose electron microscopy sections also show the occurrence of dense
regions with touching or merged rods [21, 24]. To obtain more homogeneous material
distributions, loose ends of newly placed rods falling closer than 2d to the extremity of
any previously placed rod are set to coincide, and the growth of that branch is stopped.
The overall growth process stops when the target volume fraction ϕ is reached. Figure
1c-d shows the 3D rendering of two illustrative portions of dense (ϕ = 0.6) structures
with isotropic or highly anisotropic alignment distributions, along with exemplary cross
sections and their reflectance obtained by FDTD calculations.

Structures with different volume fractions of chitin and different degrees of structural
anisotropy have been generated for each combination of ϕ ∈ [0.1, 0.15, 0.2, 0.25, 0.3,
0.4, 0.5, 0.6, 0.7] and σθ ∈ [0.2, 0.5, 0.9, 1.2] rad, plus the isotropic case. For the sake of
simplicity, data corresponding to isotropic configurations are plotted at σθ = π/2. The
optical properties of the network are investigated using the FDTD software package
MEEP [25] on 3D cells with PBC along x and y and 1.5 µm-thick perfectly matched layer
(PML) along z (see SI). A plane-wave source emits a Gaussian pulse propagating along z
with central frequency νc = 1/0.6 in MEEP units (corresponding to λc = 0.6 µm) and
full width ∆ν = 1.

All simulated structures within the explored parameter space exhibit a flat reflectance
spectrum qualitatively similar to those shown in Figure 1c-d, with varying brightness
depending on the (ϕ, σθ) values. Figure 2a shows an overview of the reflectance values
obtained at λ = 550 nm. A maximum of the reflectance corresponding to optimized
scattering efficiency is visible for highly anisotropic networks (σθ = 0.2 rad) and inter-
mediate volume fraction (0.3 < ϕ < 0.4). Albeit lower, these values are in qualitative
agreement with previous volume fraction measurements [8] and confirm that inducing a
more ‘layered’ orientation of the scattering rods provides a higher scattering efficiency
along the perpendicular direction [13].

To translate our results into a radiative transfer picture, we performed an inverse
Monte Carlo analysis of the total reflectance data to retrieve corresponding transport
mean free path values for each structure using the MCPlusPlus software library [26].
Compared to models based on the diffusion approximation, Monte Carlo inversion
methods represent the gold standard to retrieve scattering parameters with high accuracy
and precision [27, 28, 29, 30]. We built a reflectance look-up table for each value of
the volume fraction ϕ and `t ∈ 0.1, 0.2, . . . , 10 µm using a plane parallel slab geometry.
The effective refractive index n(ϕ) is calculated using the Maxwell Garnett mixing
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Figure 2: Polynomial fitting of a) integrated reflectance at λ = 550 nm and b) retrieved
transport mean free path `t along the perpendicular direction of generated
structures as a function of BRW anisotropy σθ and final volume fraction ϕ. The
isotropic case is displayed at σθ = π/2 for convenience. Insets show crosscuts
at fixed anisotropy σθ = 0.2 rad or volume fraction ϕ = 0.4. Each data point is
averaged over 10 independent disorder realizations.

formula for consistency with previous publications [5]. Due to its symmetry properties,
Bruggeman’s formula represents another common model especially when the different
materials occupy a comparable volume fraction [31]. We note, however, that due to
the low permittivity contrast in our samples, results obtained with either approach are
basically indistinguishable (see SI). Interpolating the look-up table allows to invert it
providing an estimate of `t along z for each configuration, as shown in Figure 2b. A
polynomial fit shows that the shortest transport mean free path is obtained for the
most anisotropic structure tested (σθ = 0.2 rad) and a filling fraction ϕ = 0.39. At a
wavelength of 550 nm, the minimum value is `t = 1.69 µm, in qualitative agreement with
previous experimental measurements [5, 13].

Using the same method, it is possible to estimate the degree of transport anisotropy in
the BRW structure by performing multiple FDTD calculations impinging on the cubic
cell from different directions. Figure 3a shows the results obtained on strongly scattering
configurations (σθ = 0.2 rad, ϕ = 0.4) for light impinging at perpendicular (along z)
and parallel (along x) incidence, which further confirms the higher diffuse reflectance of
anisotropic structures when illuminated from the perpendicular direction to the plane of
preferential alignment of the scattering elements. Retrieved `t values for the two sample
orientations show that the transport mean free path for lateral illumination is on average
1.63± 0.06 times longer than that at perpendicular incidence over the whole frequency
range.

It is interesting to compare our results to those recently obtained by FDTD calculations
on the tomographic 3D reconstruction of an actual Cyphochilus scale [8] (Figure 3b).
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Figure 3: Calculated reflectance of an optimally scattering sample with σθ = 0.2 rad
and ϕ = 0.4 a) illuminated at perpendicular and parallel incidence, with
corresponding `t values retrieved from MC inversion and b) compared to
the reflectance values obtained by FDTD calculations on the tomographic
reconstruction of the Cyphochilus ultrastructure of the same size [8], showing a
consistently higher reflectance in the visible range.

In their work, Wilts et al. have also studied the role of structural anisotropy and
volume fraction by applying, respectively, a uniaxial compression and an erosion/dilation
transformation to the tomographic reconstruction. However, the concurrent modifications
to the slab thickness, its weight, the elementary rod shape and their aspect ratio induced
by both these deformations make it difficult to assign unambiguously a reflectivity change
to just one of these factors.

Conversely, by tuning each parameter separately in our BRW generative algorithm, we
are able to test their role without altering the geometric properties of the elementary
building blocks or the resulting slab assembly. We find that the diffuse reflectance
obtained by an optimized BRW structure can exceed that of the actual Cyphochilus
beetle, resulting in a ∼16 % `t reduction along the perpendicular direction (Figure 3b)
and a lower weight. In regard to previous claims on the optimally scattering performance
of the Cyphochilus structure [5, 8], our results show that either the degree of spatial or
angular correlations (or both) in the elytral scales is sub-optimal, and that it is indeed
possible to obtain significantly brighter structures improving the network morphology
while also reducing its volume fraction. Further optimization of both these aspects should
be possible, given the naive and unrefined approach that we implemented for this simple
algorithm.

It should be kept in mind that the chitinous network of the Cyphochilus scales represents
a trade-off between multiple goals, possibly including lightness, thermoregulation and
mechanical stability. Nonetheless, we note that our compenetrating BRW algorithm is also
designed to form an interconnected phase through the unit cell to generate self-sustaining
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structures. Moreover, we note that previous optimization claims are recently being
further questioned by the demonstration of simple techniques allowing to fabricate similar
network-like polymer structures with scattering properties that significantly outperform
those of the Cyphochilus beetle [9, 17].

In light of our findings, we argue that the superior scattering efficiency exhibited by
these simpler interconnected morphologies might be actually due to their less uniform
filament spacing, in contrast to the commonly invoked ‘optical crowding’ effect. In
this respect, we see no apparent reason to envision the presence of fine-tuned spatial
correlations to explain the optical turbidity of the beetle nor, consequently, to try to
introduce them in the design of low-contrast network-like scattering materials – largely
relaxing fabrication accuracy requirements. Indeed, it has been recently shown that well-
spaced scattering elements result in a lowered turbidity at volume fractions comparable
or higher to that of the beetle [4].

It is worth stressing that the sub-optimal scattering efficiency of the Cyphochilus
structure is still very much consistent with an evolutionary picture, if not altogether
expected. From the evolutionary point of view, natural selection drives the inheritance
of modified traits only up to when they can still provide an appreciable advantage in
terms of reproduction success. Beyond this point, there is no selective pressure to further
maximize optical reflectance (or any other parameter) towards a relative optimum [32, 33].

In this respect, our simple BRW model provides a flexible platform to explore a larger
configuration space, allowing to clarify the key features for efficient light scattering in
network-like materials beyond the particular case of the Cyphochilus beetle. This stands
in contrast with previously proposed models attempting to investigate its efficiency,
which have been mainly limited to 2D projections, or involved ex-post deformations
of the original structures rather than an ab-initio tuning of their growth parameters
[8, 24, 34]. Despite its simplicity, in fact, our BRW model retains a number of desirable
features. Firstly, as can be seen from Figure 1, the final structures are still characterized
by tomographic sections that are strikingly similar to those measured on the beetle [21],
as also confirmed by their associated spectral density (see SI). Secondly, by allowing rod
intersections, we have obtained a model which reduces by construction any significant role
of more elusive parameters such as spatial correlations, valence and local self-uniformity.
This largely simplifies the interpretation of our data, demonstrating that the bright
reflectance from network-like materials is mainly due to the degree of their anisotropy and
volume fraction, guiding towards a more efficient design and fabrication of novel coatings.
Nonetheless, the generative algorithm can be straightforwardly expanded to take also
these additional aspects into consideration, e.g., enforcing a certain network valence at
each node, using smoother rods and junctions, or controlling their degree of overlap
through more refined algorithms[35]. Finally, BRW networks lend themselves naturally
to FDTD calculations due to their periodic growth conditions, and can in principle be
used in commercial direct laser writing fabrication processes by simply following the
random walk growth process step by step.

In conclusion, we have designed a simple algorithm to generate network-like structures
with tunable anisotropy for highly efficient, broadband light scattering. Our algorithm
takes inspiration from the complex network structure of the Cyphochilus beetles scales
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and reduces it to just two basic properties, namely its volume fraction and degree of
anisotropy. To our knowledge, this allowed us to unambiguously demonstrate and quantify
the importance of structural anisotropy in random network materials for the first time.
Numerical calculations show that the obtained structures can match and even surpass the
bright whiteness of an equivalent volume of the beetle’s ultrastructure, demonstrating
that additional factors such as spatial correlations or network valence do not play a
significant role in explaining its high, broadband reflectance.

Our numerical results suggest that the elytral scales of the Cyphochilus beetle do not
represent an optimal structure in terms of weight and scattering efficiency, as similar
morphologies can be easily found that are structurally stable, lighter and more turbid
at the same time. This general observation seems confirmed by the recent development
of polymer-based materials which are clearly not as structurally refined as the beetle’s
chitinous network, and yet exhibit a significantly superior optical performance over the
visible frequency range.

Thanks to its simplicity and flexibility, we believe that our model can help deepen
our understanding of the rich optical properties of interconnected network materials, as
well as streamlining the generation, simulation and fabrication of novel materials with
advanced scattering properties.
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