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Abstract. This paper uses the Bayesian model-selection to find the linear
regression that is most supported by the data. It uses a hierarchical model
to improve and to extend to weighted data a previous investigation. As an
application example, it shows how the results can be used to investigate the
consistency of measurements carried out to determine the central second-moment
of the angular power-spectrum of a laser beam.
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1. Introduction

A problem in linear regression is to test the goodness of fit and to select the model most
supported by the data. If the data explanation is uncertain, for instance, when building
calibration curves, the problem is to chose how many basis functions to include in
the regression. If the data uncertainties are underestimated, different hypotheses are
possible, for instance, in the presence of random or fixed effects [1, 2, 3].

To make meaningful assessments of the odds of competing explanations one must
assign a prior distribution to the regression parameters in such a way that the posterior
probabilities of regressions that differ only by their parametrisation are the same. This
requirement was not considered in previous works [3, 4, 5, 6]. These prior distributions
(named after H. Jeffreys) are proportional to the invariant volume-element of the
model manifold [7, 8], where the regression parameters are the manifold coordinates
and whose metric is the Fisher information [9, 10, 11, 12].

A difficulty impedes to pursue this line of thought: Jeffrey’s distribution of the
regression parameters is improper. To go around this problem, we build on previous
proposals [4, 6] and use a hierarchical model to improve and extend to weighted and
correlated data the results given in [6].

Section 2 frames the study and introduces the representations of the data and
design-matrix that make the algebra the simplest. The Bayesian procedure to compare
competing models is shortly summarised in section 3 and applied to the problem at
hand in section 4. Eventually, a numerical example and an application to experimental
data demonstrate the practical use of model selection in data analysis.
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2. Linear regressions

Let us explain N observations, y = {y1, y2, ... yN}T , by a set of competing (mutually
exclusive) linear models

y = Wlb+ u, (1)

where l is the regression order, u are zero-mean errors having variance-covariance
matrix Σu, Wl = {w1,w2, ...wl} are full rank N × l design matrices, wi are the
model basis-vectors, and b = {b1, b2, ... bl}T are model parameters. The problem is
to find the model most supported by the data. The basis functions, whose discrete
samples wi form the basis vectors, may be polynomials but, in general, they are any
set of linearly independent functions. For the sake of simplicity, we indexed the design
matrices Wl by the regression order, but competing regressions having the same order
are not excluded.

In order to avoid awkward algebra, it is convenient to normalize the data in
such a way that they have unit variance and are uncorrelated. This corresponds
to use an orthonormal basis in the y space and it is done by the transformations
h = U−1y, Vl = U−1Wl, and ε = U−1u, where the lower triangular matrix U is the
Cholesky factor of Σu, that is, Σu = UUT [13]. Hence, we rewrite the data model
(1) as h = Vlb + ε, where ε are zero-mean uncorrelated errors having unit variance-
covariance matrix, Vl = {v1,v2, ...vl}, and vi are the new design matrices and basis
vectors.

Since we are not interested in any specific parametrisation, a further simplification
is obtained by using an orthonormal basis in the subspace spanned by Vlb, which
is done by orthonormalizing the {v1,v2, ...vl} set and by scaling the parameters
according to the decomposition Vl = QlR, where Ql is column-orthonormal, QTl Ql =
1, 1 is the unit matrix, and R is upper triangular [13].

Eventually, the maximum-entropy distribution of the normalized data,
constrained by h = Qla+ ε and Σh = 1 is

L(h|a, l) =

√
1

(2π)N
exp

[
−|h−Qla|

2)

2

]
, (2)

where a = Rb = {a1, a2, ... al}T . Since we are not interested in a specific model-
parametrisation, but only in the rank l of the design matrix, no generality is lost.

3. Bayesian model comparison

Let {Ql} be a complete set of mutually exclusive models – indexed by the regression
order l – that compete to explain the dataset h. Prior the measurement, the joint
distribution of the data, model, and model parameters a can be written in terms of
conditional distributions as

P (h,a, l) = L(h|a, l)π(a|l)Π(l), (3)

where the likelihood L(h|a, l) is the sampling distribution of h, π(a|l) is the pre-data
distribution of the model parameters, and Π(l) is the prior probability of Ql being true.
Accordingly, l – hence, the model – is sampled from Π(l); then, the model parameters
are sampled from π(a|l); eventually, the data are sampled from L(h|a, l). The prior
distribution Π(l) must synthesize information available about the data model. In the
absence of information, the probabilities that maximizes the Π(l) entropy are equal.
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By marginalisation of P (h,a, l) over the model parameters and conditioning on
the data, the posterior probability of the l-th model provided by the data is

P (l|h) =
Z(h|l)Π(l)∑
l Z(h|l)Π(l)

. (4)

Here, the marginal likelihood (or evidence),

Z(h|l) =

∫
A

L(h|a, l)π(a|l)da, (5)

where the integration is carried out on the parameter space, is the sampling
distribution of the data given the model, independently of what the parameter values
may be. It summarises the uncertainty about what is the model explaining the data.

Not unlike the case where the Bayes theorem is applied to determine the posterior
probabilities of the model-parameter values, the distribution (4) embeds all the
statements about the uncertainty after the data have been observed. In parameter
estimation, uncertainty summaries are the posterior standard deviation and credible
intervals. Also, the optimal estimate under quadratic loss of a parameter function
(i.e., a measurand) is its expectation with respect the posterior distribution of the
parameter values. The same is true for the posterior model-distribution. A simple
way to select a model is to chose the mode. When P (l|h) does not allow for a reliable
comparison of posterior probabilities and no single model stands out, we can consider
all the models and average over them. Whether and how to synthesize P (l|h) – e.g.,
by selection or averaging – depends on decision theory considerations.

To investigate how much P (l|h) depends on the assumptions made – that is, on
the priors Π(l) and π(a|l) and likelihood L(h|a, l) – we can apply the Bayesian analysis
to all plausible combinations of priors and likelihood. Then, the P (l|h) variability with
these changes delivers information about how much confidence we can place on the
model Wl. This sensitivity analysis is out of the scope of this manuscript. Besides, the
Π(l) and L(h|a, l) distributions have been uniquely set by the available information
via entropy maximization. Furthermore, sections 4.1 and 4.2, will prove that also
π(a|l) is uniquely imposed to result in equal posterior probabilities of models that
differ only in parametrization.

The marginal likelihood and posterior model-probability are proportional to the
ability of the model to explain the data – the higher the fitness, the higher Z(h|l)
– but inversely proportional to the volume of the parameter space – the higher the
model freedom, the lesser Z(h|l). Therefore, models with fewer parameters, which
have a smaller parameter space, are preferred. This bias is known as the Ockham’s
razor and penalises the models having greater freedom in explaining the data.

4. Application to linear regression

4.1. Prior distribution of the model parameters

In order to find the model probabilities via (4) and (5), we need the pre-data
distribution π(a|l). The probability calculus updates prior distributions into posterior
ones, but it does not tell how to assign the prior probabilities.

In the absence of pre-data information, the posterior model-probabilities P (l|h)
and, consequently, the marginal likelihood Z(h|l) must be independent of the model
parameters, that is, they must be invariant for model reparametrisations and transform
as probability distributions. For instance, if the explaining model is a polynomial, (4)
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and (5) must depend only on the polynomial degree l and not on what basis, orthogonal
or not, is used.

This is ensured by the Jeffreys’ prior πJ(a|l) ∝
√
|F (a|l)|, where F (a|l) is the

Fisher information that the data carry about the parameters and the vertical bars
denote the determinant. To calculate πJ(a|l), let us observe that the log-likelihood
Jacobian of (2) is [14]

J = ∂a
[

ln(L)
]

= −∂a(xTx)/2 = −xT (∂ax) = xTQl (6)

where x = h−Qla. Hence,

F (a|l) = −〈∂aJ〉h|a,l = QTl Ql = 1 (7)

where 〈〉h|a,l indicates the average with respect to the data conditioned to the model
and model parameters. Since (7) does not depend on the model parameters, πJ(a|l) ∝
const. is improper.

The use of an improper prior to calculate the posterior distribution of the model
parameters,

P (a|h, l) =
L(h|a, l)πJ(a|l)

Z(h|l)
, (8)

is justified by showing that P (a|h, l) is the limit of the posteriors obtained from proper
priors defined on increasingly large bounded-supports [15]. However, this argument
encodes that |a| is greater than any positive number. This is irrelevant to the a
posterior, but, it is not so for Z(h|l) and P (l|h). In fact, since Z(h|l) and P (l|h) are
defined only up to model-dependent, but unknown, scale factors, an improper prior
makes their calculation meaningless.

4.2. Hierarchical model

A way to escape from this difficulty is to complement the problem with measurable
prior information, which information makes the Z(h|l) and P (l|h) invariance
irrelevant. Since we know in advance that both the expected value and variance
of the data are bounded [4], we can encode in the parameter prior a prejudice towards
repeated measurements of the same quantity, whose value, α, is unknown. This
prejudice is modelled by setting w1 = {1, 1, ... 1}T in (1), where w1 is the first column
of Wl, and 〈y〉b,u = αw1. The subscript indicates that we take the mean over the
joint (prior) distribution of b and u.

After switching to the normalized data and orthonormal basis, the relationships
|q1| = 1 and QlQ

T
l q1 = q1 hold. It is convenient to ensure that the estimate â1 = qT1 h

is proportional to the weighted mean of the data,

yLS = (wT
1 Σ−1u w1)−1wT

1 Σ−1u y. (9a)

This is achieved by starting the orthonormalisation from v1 = U−1w1; hence,
q1 = v1/|v1|. In fact,

yLS = (vT1 v1)−1vT1 h = â1/|v1|, (9b)

where we used Σ−1u = U−TU−1, U−1y = h, and qT1 q = 1.
That done, the repeated measurements of a constant prejudice is still encoded by

〈h〉a,ε = αq1, where we redefined the hyperparameter α. Hence, Q〈a〉a = 〈h〉a,ε = αq1
and

〈a〉a = αQTl q1 = αp1, (10)
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where p1 = QTl q1 = {1, 0, ... 0}T and we used QTl Ql = 1. Next, we encoded the
bounded data-variance prejudice by

Σa = 〈aaT 〉a = (β2 − 1)1, (11)

where we used 〈hhT 〉a,ε = β2
1 = QlΣaQ

T
l + 1 and β > 1.

The prior distribution of the model parameters constrained by (10) and (11) and
maximizing the relative entropy with respect to the uniform distribution is

π(a|α, β, l) =

√
1

(2π)l(β2 − 1)l
exp

[
−|a− αp1|

2

2(β2 − 1)

]
, (12)

where the hyper-parameters α and β are unknown. It is worth noting that, when
β →∞, π(a|α, β, l) reproduces the uniform prior.

4.3. Sampling distribution of the data

The distribution of the normalized data, given the hyper-parameters α and β and the
orthonormal model Ql,

L(h|α, β, l) =

∫
Rl

L(h|a, l)π(a|α, β, l) da

=

√
1

(2π)nβ2l
exp

(
−

(h− αq1)T
[
1 + (β2 − 1)QlQ

T
l

]−1
(h− αq1)

2

)
, (13)

is obtained by marginalization over the model parameters. The relevant integration
is carried out in the Appendix A.

4.4. Prior distribution of the hyper-parameters

To ensure that P (l|h) is invariant for model reparametrisations, we must compute the
Jeffreys’ prior πJ(α, β|l). As it is shown in the Appendix B, the Fisher information
that h carries about α and β is

F (α, β) =
1

β2

(
1 0
0 2l

)
. (14)

Therefore, the Jeffrey’s distribution of α and β given the Ql model is

πJ(α, β|l) ∝
√
|F (α, β|l)| ∝ 1/β2, (15)

whose support is β > 1, −∞ < α < +∞. Although it is improper, since now the same
normalizing-factor is included in all the marginal likelihoods, (15) does not impede
the Ql comparison. In fact, after the normalization, the model probabilities (4) do
not depend on the πJ(α, β|l) support in the α space.

4.5. Marginal likelihood

The computation of the marginal likelihood (the data sampling-distribution given Wl)
is given in Appendix C. Although it was derived using uncorrelated data having the
same unit variance and an orthonormal basis in the model subspace, the result,

Z(y|l) ∝ e−|û|
2/2 γ(l/2, |ŷ′|2/2)

(
∣∣ŷ′|/√2

)l , (16)
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is independent of the transformations made and it is written terms of the weighted
least-squares estimate of the original data

ŷ′ = Wl(W
T
l Σ−1u Wl)

−1WT
l Σ−1u y

′, (17)

where y′ = y − w1yLS and yLS is the weighted mean (9a), and the residuals û.
Unessential factors independent of the regression order l and data have been left out
and γ(s, z2) is the lower incomplete gamma function [16]. The weighted norms |û|2
and |ŷ′|2 are calculated according to the Σ−1u metric, that is, |û|2 = ûTΣ−1u û and
|ŷ′|2 = ŷ′TΣ−1u ŷ

′.
Eventually, with the assumed uniform Π(l) prior distribution, the posterior

probability of each Wl model is obtained by the normalization to
∑
l Z(y|l) = 1.

When we consider independent and identically distributed data Σu = σ2
01 and

Z(y|l) ∝
e−|û|

2/(2σ2
0)γ
[
l/2, |ŷ′|2/(2σ2

0)
][

|ŷ′|/(
√

2σ0)
]l , (18)

where, now, yLS is the arithmetic mean of the data, ŷ′ = Wl(W
T
l Wl)

−1WT
l y
′ is the

ordinary least-squares estimate, and |û|2 = ûT û and |ŷ′|2 = ŷ′T ŷ′ are the norms
of the residuals and data-estimates calculated according the Euclidean metric. We
observe that (18) is the same as the equation (B.4) in [6]. In fact, since ŷT (y− ŷ) = 0
(because ŷ is the y projection in the Wlb sub-space), yT û = (y − ŷ)T (y − ŷ) = |û|2.

Extending the comparison to non-linear models would require determining the
Jeffreys’ prior of the model parameters, which, in general, is a difficult problem to
solve and devoid of a general solution. However, since it does not depend on the Wl

representation, but only on the regression order, residuals, and central moments of the
data, (16) can be heuristically applied also to non-linear models, provided that their
curvature in the parameter subspace of interest can be neglected – which means that
a linear approximation holds.

4.6. Asymptotic behaviour

For a large data sample, provided |ŷ′|2 � l,

ln
[
Z(y|l)

]
∝ −|û|2/2− l ln(|ŷ′|), (19a)

where we omitted the terms independent of l and used γ(l/2, |ŷ′|2/2) ≈ Γ(l/2) and
Γ(l/2) � |ŷ′|l [17]. Furthermore, for large l � |ŷ′|2, |ŷ′|2 is independent of the
regression order and proportional to the sample size N . Hence,

ln
[
Z(y|l)

]
∝ −|û|2/2− l ln(N)/2, (19b)

always omitting the terms independent of l.
The model having the maximum posterior-probability maximises the log-

likelihood. The asymptotic behaviour (19a) shows that the optimal order minimises
the weighted residuals by keeping the number of free parameters as small as possible,
thus handicapping the overfitting. Among the regressions having the same order, the
most supported is that whose associated sum of the (weighted) squared residuals is
minimum.

To compare (16) with the classical indicators, we compare (19a-b) with the
marginal likelihoods of the asymptotic information criteria due to Akaike [18, 19],

ln
[
ZAIC(y|l)

]
∝ −|û|2/2− l, (20a)
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6

radial coordinate

da
ta

Figure 1. Left: three dimensional scatter plot of the data sampled from (21).
The bars indicate 95% confidence intervals. The best-fit regression to the data is
also shown. Right: radial plot of the same data.

and Schwarz [20, 21, 22],

ln
[
ZBIC(y|l)

]
∝ −|û|2/2− l ln(N)/2, (20b)

where we omitted the terms that are independent of the regression order (which does
not matter, because all the models are Gaussian). The identity of (19b) and (20b)
shows that the model probabilities derived from (16) shed light and encompass these
(approximate) criteria.

5. Numerical example

Figure 1 shows a set of 40 data randomly sampled in the unit disk from the aberrated
wavefront

y = b1Z
0
0 (x1, x2) + b2Z

1
1 (x1, x2) + b3Z

0
2 (x1, x2) + b4Z

−1
3 (x1, x2), (21)

where Zmn (x1, x2) are Zernike polynomials, {Z0
0 , Z

1
1 , Z

0
2 , Z

−3
3 } is the basis set, and the

parameter values are b = {3, 0.5, 1.5, 0.5}. Zero mean uncorrelated Gaussian errors –
having random standard-deviations σ0(i) ranging from 5% to 23% – were added to
the data.

To explain the data, we carried out regressions (having order ranging from l = 1
to l = 11) using the 1024 basis sets corresponding to subsets – containing Z0

0 – of

{Z0
0 , Z

−1
1 , Z1

1 , Z
0
2 , Z

−3
3 , Z3

3 , Z
−1
3 , Z1

3 , Z
0
4}. (22)

We calculated the marginal likelihood and posterior probability of each basis by
application of (16) and (4), where the bases were assumed to have the same prior
probability.

To assess the efficiency of (16) in detecting the right model, we repeated the
regressions 100 times – by using 100 independent datasets – and averaged the posterior
model-probabilities. After sorting the results into decreasing probabilities, Fig. 2 (left)
shows the top eight posterior-probabilities. The most sustained basis is that used to
generate the data.

In a second test, we used exponentially correlated errors. Therefore, the variance-
covariance matrix of the data is

Σu(i, j) = σ0(i)σ0(j)e−5rij , (23)
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Figure 2. Top eight probabilities of the subsets of (22) averaged over 100 Monte
Carlo simulations. Left: uncorrelated data. Right: exponentially correlated data.
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Figure 3. Histogram of the correlations between the data sampled from (21).

where rij is the distance of the datum i from the j one. Figure 3 shows an
example of the data correlations. Also in this case, we repeated the regressions
100 times – by using 100 independent datasets – and averaged the posterior model-
probabilities. Figure 2 (right) shows the result. Though the mean probability of the
{Z0

0 , Z
1
1 , Z

0
2 , Z

−3
3 } basis decreases from 33% to 23%, it is still the most fostered by the

data.

6. Application example

The marginal likelihood given in (16) was used to investigate doubtful measurements
carried out to determine the central second-moment of the angular power-spectrum
of a laser beam, which is a pivotal quantity when correcting for the diffraction effects
the length measurements carried out by optical interferometry. We do not want here
describe these measurements nor draw conclusions about them, but only show how
the results obtained can be used in practice.

The second moment is measured by imaging the power spectrum in the focal
plane of a telescope and by numerically integrating the normalised image by a sum
over the camera pixels [23]. We repeated the measurement by placing the telescope at
137 cm, 394 cm, and 1047 cm distance from the beam source and grabbed defocused
images by putting the camera in the focal plane and at (−15,−10,−5,+5,+10,+15)
mm from it. The results are shown in Fig. 4. The paraxial propagation of a scalar
beam in free space predicts that the focal-plane images do not depend on the telescope
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Figure 4. Central second-moment of the defocused images. Each set of seven
data corresponds to a different telescope distance. The solid lines are the best
parabolas fitting the data.

distance and that the seven central-moments depend quadratically on the defocus.
Figure 4 shows that the best-fit parabolas to the data do not intersect where the

defocus is null, as we would have expected. To quantify how much the data support
this observation and the quadratic dependence on the defocus, we compared three
hypotheses: the data belong to i) non-intersecting parabolas, that is,

y = W9b+ u (24a)

or

yij = bi0 + bi1zj + bi2z
2
j + uij , (24b)

where the data and parameters are assembled in y and b, z is the defocus, i = 1, 2, 3
labels the data series, and j = 1, 2, ... 7 labels the defocus; ii) non-intersecting quartics
functions, that is,

y = W12b+ u (25a)

or

yij = bi0 + bi1zj + bi2z
2
j + bi4z

4
j + uij ; (25b)

and iii) parabolas intersecting at null defocus, that is

y = W7b+ u (26a)

or

yij = b0 + bi1zj + bi2z
2
j + uij . (26b)

The design matrices are given in the Appendix D.
With assumed equal prior probabilities of the models – after removing the

weighted mean from the data and calculating their weighted least-square estimates and
residuals – the marginal likelihood (16) and its normalization to

∑
l Z(y|l) = 1 delivers

the posterior probabilities shown in Fig. 5 (left). It confirms that the second moment
depends quadratically on the defocus and the non-intersecting parabolas hypothesis
overcomes by a 99.99 % probability the other two. We don’t yet have an explanation
for this unexpected behaviour.

For a Gaussian beam, the second moment and its curvature at the vertex are
constrained by the unity value of the quality factor. Since a lens does not change the
unit value of the quality factor, the beams downstream of the telescope lens must be
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Figure 5. Posterior probabilities of the listed explanations of the data shown in
Fig. 4

all Gaussian or all paraxial. Therefore, as an additional application of (16) (this time
heuristically comparing non-linear models), we calculated the probabilities that none,
one, two, or all the downstream beams are Gaussian.

A unit quality factor implies that the second moment propagates as y2 =
a+c(z−z0)2, where k

√
ac = 1 constrains the a and c parameters, k is the wavenumber,

and z0 the vertex position. Hence, the data models are

yij = ai +
(zj − zi0)2

aik2
+ uij , (27)

if the i-th beam is Gaussian, and

yij = ai + ci(zj − zi0)2 + uij , (28)

if the i-th beam is paraxial. Eventually, eight (non-linear) data models were built by
arranging in a eight systems three equations (corresponding to i = 1, 2, 3) drawn from
(27) and/or (28).

Figure 5 (right) shows the posterior probabilities, where all the explanations were
assumed to have the same prior probability. Also in this case (16) identifies a single
explanation, assigns it an 88.4 % probability, and points out a severe inconsistency.
This result was confirmed by calculating the M2 value of the three beams.

7. Conclusions

This paper showed how to select the linear regression most supported by the data and
extended previous works that did not account for weights and correlations [4, 6]. The
selection requires that the marginal likelihood and posterior regression probabilities
be independent of the parametrisation used, which previous investigations did not
consider [3, 5]. To comply with this requirement, we derived Jeffreys priors from the
volume element of each model-manifold equipped with the information metric. Also,
to avoid inconsistencies due to improper priors, we used hierarchical modelling.

Although the computation of the marginal likelihood required complex
integrations, the final formula (16), which can also be heuristically used for non-
linear models, involves only standard least-squares estimates and simple algebra. Our
result makes Bayesian model selection easily accessible and extends this toolbox to
the analysis of arbitrarily correlated and weighted data.
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Appendix A. Data likelihood

To calculate the sampling-distribution L(h|α, β, l) we observe that

|h−Qla|2 = |a− â|2 + |h|2 − |â|2, (A.1)

where â = QTl h = {â1, â2, ..., âl}T are the least squares estimates of the model
parameters. Furthermore,

|a− αp1|2 = |a′|2 + (a1 − α)2. (A.2)

and

|a− â|2 = |a′ − â′|2 + (a1 − â1)2, (A.3)

where â1 = qT1 h, a′ = {a2, a3, ... al}T and â′ = {â2, â3, ... âl}T . Hence, by carrying

out the needed integrations with the aid of Mathematicar [17],

L(h|α, β, l) =

√
1

(2π)n+l(β2 − 1)l

∫ +∞

−∞
da1

∫
Rl−1

exp

(
−|h−Qla|

2

2

)
exp

[
−|a− αp1|

2

2(β2 − 1)

]
da′

=

√
1

(2π)n+l(β2 − 1)l
exp

(
−|h|

2 − |â|2

2

)∫ +∞

−∞
exp

(
− (a1 − â1)2

2

)
exp

(
− (a1 − α)2

2(β2 − 1)

)
da1

×
∫
Rl−1

exp

(
−|a

′ − â′|2

2

)
exp

(
− |a′|2

2(β2 − 1)

)
da′

=

√
1

(2π)(n+1)β2(l−1)(β2 − 1)
exp

(
−|h|

2 − |â|2

2
− |â

′|2

2β2

)
×
∫ +∞

−∞
exp

(
− (a1 − â1)2

2

)
exp

(
− (a1 − α)2

2(β2 − 1)

)
da1

=

√
1

(2π)nβ2l
exp

(
−|h|

2 − |â|2

2
− |â

′|2

2β2
+

(â1 − α)2

2β2

)

=

√
1

(2π)nβ2l
exp

(
−|h|

2 − |â|2

2
− |â− αp1|

2

2β2

)

=

√
1

(2π)nβ2l
exp

(
−h

T (1−QlQTl )h

2
− (h− αq1)TQlQ

T
l (h− αq1)

2β2

)
. (A.4)

It is worth noting that L(h|α, β, l) is a multivariate normal distribution having

〈h〉h|α,β,l = αq1 (A.5)

mean and

Σh = 1 + (β2 − 1)QlQ
T
l (A.6)

variance-covariance matrix. To prove (A.5), it is enough to find the L(h|α, β, l)
maximum by observing that the gradient of the quadratic form hTΣh, where Σ is
symmetric, is ∂h(hTΣh) = 2hTΣ and that qT1 QlQ

T
l = qT1 [14].

Next, we observe that ∂2h(hTΣh) = 2Σ. Hence, the opposite of the Hessian of
the L(h|α, β, l) exponent,

Σ−1h = 1− β2 − 1

β2
QlQ

T
l , (A.7)

is the inverse of (A.6) [24, 25].
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Appendix B. Fisher information matrix

The entries of the Fisher information matrix (14) are

Fαα = − 〈∂αα
[

ln(L)
]
〉h|α,β,l = |p1|2/β2 = 1/β2, (B.1)

Fαβ = − 〈∂αβ
[

ln(L)
]
〉h|α,β,l = 〈â− αp1〉h|α,β,lp1/β3 = 0, (B.2)

Fββ = − 〈∂ββ
[

ln(L)
]
〉h|α,β,l =

1

β2

(
3

β2
〈|â− αp1|2〉h|α,β,l − l

)
=

2l

β2
, (B.3)

where, apart from unessential terms independent of α and β,

ln(L) = −|â− αp1|2/(2β2)− l ln(β). (B.4)

To evaluate 〈â−αp1〉h|α,β,l, we observe that â = QTl h and use (A.5) and QTl q1 = p1.
The evaluation of 〈|â−αp1|2〉h|α,β,l is a bit more tricky. First, we note that â = QTl h
and 〈â〉h|α,β,l = QTl 〈h〉h|α,β,l = αQTl q1 = αp1. Hence,

〈|â− αp1|2〉h|α,β,l = Tr(Σâ), (B.5)

where Σâ is the variance-covariance matrix of â. Next, since â = QTl h, by using
QTl Ql = 1 and (A.6),

Σâ = QTl ΣhQl = β2
1. (B.6)

Eventually, Tr(Σâ) = lβ2.

Appendix C. Marginal likelihhod

By carrying out the needed integrations with the aid of Mathematicar [17], The
marginal likelihood is

Z(h|l) =

∫ +∞

1

∫ +∞

−∞
L(h|α, β, l)πJ(α, β|) dαdβ

∝ exp

(
−|h|

2 − |â|2

2

)∫ +∞

1

[
1

βl+2
exp

(
|â′|2

2β2

)∫ +∞

−∞
exp

(
(â1 − α)2

2β2

)
dα

]
dβ

∝ exp

(
−|ε̂|

2

2

)∫ +∞

1

1

βl+1
exp

(
|â′|2

2β2

)
dβ

=

√
2l−1 exp

(
− |ε̂|2/2

)
γ(l/2, |â′|2/2)

|â′|l
, (C.1)

where γ(s, z2) is the lower incomplete gamma function [16], |ε̂|2 = ε̂T ε̂ is the sum of

the squared residuals, ε̂ = h − ĥ are the residuals, and ĥ = Qlâ is the least-squares
estimate of h. To prove that |h|2 − |â|2 = |ε̂|2, which has been used to obtain (C.1),

we observe that ĥT (h− ĥ) = 0, because ĥ is the projection of h in the Qla sub-space.

Furthermore, |â|2 = hTQlQ
T
l h = hT ĥ. Hence,

|h|2 − |â|2 = hT (h− ĥ) = (h− ĥ)T (h− ĥ) = ε̂T ε̂. (C.2)

Since QTh′ = QTh and QQTq1 = q1, the marginal likelihood (C.1) is invariant
against the h′ = h+ gq1 transformation, where g is any numerical constant. This can
be used to rewrite it in a form that is independent of the data normalization and the
orthonormalization of the design matrix.

To this end, firstly, we shift the y data in such a way that their generalised
mean (9a-b) is null. In such a way â1 = qT1 h shifts to zero. Since |q1| = qT1 q1 = 1,
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this corresponds to shift h to h − (qT1 h)q1 and keeps the Z(h|l) value unchanged.
Now, when â1 = 0, we have |â′|2 = |â|2. In addition, by using QTl Ql = 1, we get

|â|2 = âT (QTl Ql)â = |ĥ|2. Eventually, in (C.1), we have |â′|2 = |ĥ|2.

Secondly, we observe that |ĥ|2 = ŷTΣ−1u ŷ = |ŷ|2 and |ε̂|2 = ûTΣ−1u û = |û|2,
where ŷ are the generalised least-squares estimate of the data (17) after subtracting
their generalised mean and û = y − ŷ.

To conclude, we can rewrite (C.1) by substituting |u| and |ŷ| for |ε̂| and |â′|,
so that (16) gives the marginal likelihood in terms of the original data and variance-
covariance matrix.

Appendix D. Design matrices

The central second moment of a paraxial beam depends quadratically on the
propagation distance, z. Therefore, after assembling the data – three series of seven
measured values – in the vector y = (y11, ... y17, y21, ... y27, y31, ... y37)T and the nine
parameters of three non-intersecting parabolas in b = (a1, b1, c1, a2, b2, c2, a3, b3, c3)T ,
the design matrix is

W9 =



1 z1 z21 0 0 0 0 0 0
· · ·
1 z7 z27 0 0 0 0 0 0
0 0 0 1 z1 z21 0 0 0
· · ·
0 0 0 1 z7 z27 0 0 0
0 0 0 0 0 0 1 z1 z21
· · ·
0 0 0 0 0 0 1 z7 z27


. (D.1)

A quartic polynomial was used as an alternative explanation to test the
measurement quality. The design matrix,

W12 =



1 z1 z21 z41 0 0 0 0 0 0 0 0
· · ·
1 z7 z27 z47 0 0 0 0 0 0 0 0
0 0 0 0 1 z1 z21 z41 0 0 0 0
· · ·
0 0 0 0 1 z7 z27 z47 0 0 0 0
0 0 0 0 0 0 0 0 1 z1 z21 z41
· · ·
0 0 0 0 0 0 0 0 1 z7 z27 z47


, (D.2)

is obtained from (D.1) by adding three columns related to the z4 basis and by
supplementing the parameter vector, b = (a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3)T ,
accordingly.

Eventually, the expectation that the three parabolas intersect in the null-defocus
configuration was modelled by imposing the constraint a1 = a2 = a3 = a0. This was



14

done by using the design matrix

W7 =



1 z1 z21 0 0 0 0
· · ·
1 z7 z27 0 0 0 0
1 0 0 z1 z21 0 0
· · ·
1 0 0 z7 z27 0 0
1 0 0 0 0 z1 z21
· · ·
1 0 0 0 0 z7 z27


, (D.3)

where the seven parameters are b = (a0, b1, c1, b2, c2, b3, c3)T .
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