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1. Introduction

Laser interferometry is widely used in dimensional metrology. 
The ability to deliver high-bandwidth, low-noise, sensitive 
and accurate position and angle information allows interfer-
ometers to be used in precision measurements and feedback 
loops. Exemplar applications include measurements of the 
Planck [1] and Avogadro constants [2], free-fall gravimetry 
[3], γ-ray spectrometry [4], and the detection of gravitational 
waves [5]. All these measurements require state-of-the-art 
investigations of the interferometer operation as regards the 
impact of, among others, diffraction [6–8], wavefront stability 
and errors [9], beam alignment [10, 11], ghost, stray and recy-
cled light [12], and polarization delivery [4, 13].

Combined optical and x-ray interferometry is a unique tool 
to investigate the performance of laser interferometry in high-
resolution and high-accuracy measurements of spatial dimen-
sions. Our experimental set-up is devoted to the measurement 
of the lattice parameter of silicon (Si) monocrystals to within 
a fractional accuracy approaching 1 pm mm−1 [14, 15].

In order to achieve such a small uncertainty, the opera-
tion of the optical interferometer was investigated from 
both experimental and theoretical viewpoints to identify any 

phenomenon which could interfere with the measurement and 
to understand the underlying physics. In 2016, having com-
pleted the lattice parameter measurements and keeping in 
mind reductions of the noise induced by the frequency stabili-
zation, we reassembled the optical interferometer to make the 
arm lengths equal. Doing this, we observed a measurement 
error as large as 25 pm mm−1 at the zero optical-length differ-
ence of the interferometer arms.

In this paper, after outlining the operation of a combined 
x-ray and optical interferometer, we report on the observa-
tions made. Next, we propose a model explaining the data 
in terms of the self-interference of forward-scattered light. 
On this basis, we observed that it is possible to reduce the 
impact of scattered light by reducing the detector aperture. 
Subsequent measurements of the lattice parameter confirmed 
the prediction and the effectiveness of this remedy.

2. X-ray/optical interferometry

As shown in figure  1, a combined x-ray and optical inter-
ferometer consists of three Si crystals (about 5 cm long and 
1 mm thick) cut so that the (2 2 0) diffracting planes are 
orthogonal to the crystal surfaces. X-rays are split by the first 
two crystals and recombined by an analyser crystal. When 
the analyser is moved orthogonally to the (2 2 0) planes, a 
periodic variation of the transmitted and diffracted x-ray 
intensities is observed, the period being the diffracting-plane 
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spacing. The analyser embeds a front mirror so that displace-
ments up to 5 cm are measured by optical interferometry. 
The frequency of the laser source is locked to a transition of 
the 127I2 molecule and the necessary picometer resolution is 
achieved by polarization encoding and phase modulation. To 
eliminate the adverse influence of the refractive index of air 
and temperature, the measurement is carried out in a vacuum 
chamber of about 0.6 m diameter and the temperature is con-
trolled up to millikelvin stability and uniformity. Parasitic 
rotations and transverse motions are sensed via laser interfer-
ometry and a capacitive transducer; feedback loops provide 
picometer positioning, nanoradian alignment, and nanometer 
straightness.

3. Experimental tests

The measurement equation  is d = mλ/(2n), where d  is the 
diffraction-plane spacing, and n is the number of x-ray fringes 
in m  optical fringes of λ/2 period. In practice, the lattice 
spacing is determined by comparing the periods of the x-ray 
and optical fringes. This is done by measuring the x-ray fringe 
fraction at the ends of increasing displacements and updating 
the λ/(2d) ratio at each step. The measurement resolution 
approaches 1 pm mm−1, which means that the experiment is 
sensitive to 10−9λ variations of the beam wavelength.

Figure 2 shows the fractional variations of the measured 
lattice-spacing values along a horizontal line 20 mm long, 
where the origin of the abscissa is the null difference of the 
path lengths of the laser beam through the interferometer. Each 
measurement was carried out over analyser displacements of 
1 mm. In a small neighbourhood of the origin, the measured 
d  values display a 25 pm mm−1 dip. Subsequent tests made 
by sliding the x rays (as shown in figure 1) confirmed that the 
dip is not due to a local strain of the analyser lattice, but it 
stays anchored to the zero-length difference of the interferom-
eter arms. Therefore, the dip indicates a local variation of the 
effective wavelength of about 25 × 10−9λ having a full width 
at half maximum equal to 3.4 mm.

4. Interferometer model

The calibration of the laser frequency achieves relative uncer-
tainties smaller than 10−10 , but it is not possible to calculate 
the effective wavelength, as obtained from the period of the 
integrated interference pattern, from the frequency via the 
plane-wave dispersion equation. Diffraction, wavefront sta-
bility and errors, beam quality, ghost, stray and recycled light, 
and polarization wandering can never be fully eliminated 
and must be reduced to acceptable levels or quantified and 
corrected.

To explain the dip of the measured d  values, after many 
experimental tests and numerical simulations, we focused our 
attention on the scattered light. Within a heuristic approx-
imation, forward-scattered light behaves like an additional 
(collinear and divergent) Gaussian beam feeding the inter-
ferometer and contributing to the effective wavelength pro-
portionally to the scattered-light intensity. In the following, 
we study the period of the integrated signal of a two-beam 
interferometer fed by, firstly, a Gaussian beam, and secondly, 
a coherent superposition of Gaussian beams, one collimated 
and the others scattered from the first.

4.1. Gaussian beam

Let the interferometer be fed by the Gaussian beam

u0(x, y) = e−(x2+y2)/2, (1)

where we factored the exp(−ikz) term of the optical fields, k is 
the plane-wave wave number, z the propagation distance, the 
dimensionless coordinates x and y are measured in w0/

√
2 

units, and w0 is the waist radius—which is equal to 
√

2 when 
expressed in w0/

√
2 units. At a ζ = z/zR distance from the 

waist, the reciprocal space representation of the complex 
amplitude is

ũ0( p, q; ζ) = U( p, q; ζ)ũ0( p, q), (2)

where zR = kw2
0/2 is the Rayleigh distance, the dimensionless 

impulses p and q are the variables conjugate to x and y,

U( p, q; ζ) = ei( p2+q2)ζ/2 (3)

Figure 1. Top view of a combined x-ray and optical interferometer. 
The laser beam wavelength and divergence are 532 nm and 0.25 mrad, 
to which a w0 ≈ 0.7 mm waist radius and zR ≈ 3 m Rayleigh distance 
will correspond. The detector distance from the beam waist is about 
1.5 m. The dotted lines indicate the displaced x-ray path used to check 
which ruler (crystal or optical) the dip is fastened to.

Figure 2. Fractional variations of the measured lattice-spacing 
values along a horizontal line 20 mm long. Each measurement 
averages a 1 mm crystal slice. The solid line is the Lorentzian 
function best fitting the data.

Metrologia 55 (2018) 222



G Mana et al

224

and

ũ0( p, q) = e−( p2+q2)/2 (4)

are the reciprocal space representations—having e−i( px+qy) 
basis functions—of the free-space paraxial propagator and 
(1), respectively.

We assume that the interferometer slides the interfering 
beams, |u0(z)〉 and |u0(z + s)〉, one with respect to the other 
while keeping them coaxial, and that the length difference s 
of the interferometer arms is the sliding distance. The phase 
of the integrated interference pattern in excess or defect with 
respect to the dynamical phase, −ks, is

φ(ς) = arg [Ξ(ς)] = arctan(ς/2), (5)

where, by using the bra-ket notation for the inner product and 
the reciprocal space representations (3) and (4),

Ξ(ς) = 〈u0|U†(ζ)U(ζ + ς)|u0〉

=

∫ +∞

−∞

∫ +∞

−∞
ũ0( p, q)U( p, q; ς)ũ0( p, q) dpdq

=

∫ +∞

−∞

∫ +∞

−∞
ei( p2+q2)ς/2e−( p2+q2) dpdq =

2π
2 − iς

,

 (6)
is the autocorrelation of |u0(z)〉, the † superscript indicates 
the conjugate transpose, and ς = s/zR. It is worth noting that 
U†(ζ)U(ζ + ς) = U(ς); therefore, (6) depends only on the 
length difference of the interferometer arms, not on the detec-
tion-plane distance from the beam waist.

The effective wavelength is

λe(ς) = λ

[
1 +

∂sφ(s)
k

]
= λ

[
1 +

θ2
0

4(1 + ς2/4)

]
, (7)

where λ is the plane-wave wavelength and θ0 =

2/(kw0) =
√

2/(kzR) is the beam divergence. The (positive) 
sign of the derivative in (7) is dictated by the (negative) sign 
chosen for the plane-wave propagation, i.e. in exp(−ikz). The 
fractional difference of the effective wavelength from the 
plane-wave one is

∆λ

λ
=

θ2
0

4(1 + ς2/4)
, (8)

where ∆λ = λe − λ. The θ2
0/4 term is the trace of the second 

central-moment of the angular spectrum, which is the standard 
ingredient to calculate the effective wavelength and takes the 
diffraction of arbitrary paraxial beams into account [6, 8]. An 
effective wavelength greater than the plane-wave wavelength 
means that, when calculating the wavelength from frequency 
by the λ = c/ν dispersion relation, optical interferometry 
underestimates the measurand.

As shown in figure  3, the 1/(1 + ς2/4) factor acts as 
a bandpass filter and restricts the effect of diffraction to an 
interval of about 4zR (full width at half maximum) centred on 
the equal-arm configuration of the interferometer. The typical 
divergence of the beams customarily used for dimensional 
measurements ranges from 0.1 mrad–1 mrad. By observing 
that zR = 2/(kθ2

0), the width of the 1/(1 + ς2/4) Lorentzian 
function ranges from 80 m–0.8 m, respectively.

However, if the divergence is in the [10, 100] mrad interval, 
corresponding to waist radii in the [2, 20] µm interval, the 
Lorentzian’s width is in the [0.08, 8] mm interval. Heuristically, 
if the effects superpose linearly, the light scattered by micro-
metre size imperfections will explain the observed dip.

4.2. Forward scattering

Forward scatter is the diffraction by an absorption of refrac-
tion inhomogeneity having dimensions that are larger than λ, 
but much smaller than the beam diameter. The scattered light 
diverges but propagates in a direction collinear to the laser 
beam. Therefore, let the interferometer be illuminated by the 
superposition

u(x, y) = e−(x2+y2)/2 + ueiαe−[(x−x0)
2+(y−y0)

2]/(2a2) (9)

where the second term is a wave diffracted by a scatterer 
located in (x0, y0), the transverse coordinates are still mea-
sured in w/

√
2 units, w is the beam radius, a � 1 is the frac-

tional radius of the scattering center, a2u2 � 1 is the fractional 
scattered-power, ueiα describes absorption as well refraction 
inhomogeneities, and the amplitude u is not constrained in 
size. In (9), we neglected the curvature of the Gaussian wave-
front; therefore, the detector distance ζ in (2) and (6) must be 
measured from the scatterer.

If (9) feeds the interferometer, by repeating the calcul-
ations in (6), where the Fourier transform of (9) substitutes for 
ũ0( p, q), the |u(z)〉 autocorrelation is

Ξ(ς) =
2π

2 − iς
+

2πa4u2

2a2 − iς
+

4πa2u cos(α)e−
r2
0

2(1+a2−iς)

1 + a2 − iς
,

 (10)
where r2

0 = x2
0 + y2

0. It must be noted that, when u or a tend to 
zero, this equation reproduces (6), as expected. The first term 
describes the self-interference of the Gaussian beam. The 
second describes the self-interference of the scattered wave. 
The last term describes the interferences of a Gaussian beam 
travelling along one interferometer arm with a scattered wave 
travelling along the other.

Figure 3. Gaussian beam. Normalized fractional variation of the 
effective wavelength. The abscissa is the optical path difference 
between the interferometer arms, normalized by the Rayleigh 
distance.
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Figure 4 shows the interference pattern on the detection 
plane. The rings are due to the interference between the scat-
tered and Gaussian waves travelling together along the same 
interferometer arm. Since they are static, they do not con-
tribute to (10) and the fringe phase. The split and recombined 
scattered wave generates the rings shown in figure 5, which 
are superimposed onto those shown in figure  4, and, after 
integration over the detection plane, generate the second term 
in (10). Additional rings, not shown in figures  4 and 5, are 
associated with the last term of (10). They are due to the inter-
ference between the scattered and Gaussian waves travelling 
along different arms of the interferometer.

The effective wavelength can be calculated in the same 
way as in section 4.1. The result is a useless algebraic expres-
sion which is not given here. Figure 6 shows the normalized 
fractional variation of the effective wavelength in the neigh-
bourhood of the null difference of the interferometer arms. It 
confirms that the dip shown in figure 2 originates from scattered 
light. The Rayleigh distance of the Gaussian beam illuminating 
the interferometer is about 3 m. Consequently, by fitting our 

model to the data, we estimated that the effective amplitude of 
the scattered wave and scatterer size are u ≈ 0.7 and a ≈ 0.03, 
respectively. The fractional power of the beam feeding the inter-
ferometer that is scattered into the parasitic beam is 6 × 10−4.

Numerical experiments indicated that the (x0, y0) coor-
dinates, as well as the phase α, are irrelevant; the effective 
wavelength is affected only by the scattered power and the 
size of the scattering centre. The lowest order approximations,

∆λ

λ
≈ θ2

0

4

(
1 +

u2

1 + 3ς2/(4a4)

)
if ς/a2 � 1, (11a)

∆λ

λ
≈ θ2

0

4

(
1

1 + ς2/4

)
if ς/a2 � 1, (11b)

confirm the numerical clues. They have been obtained by 
implementing (5) and (7) into a Mathematica [16] script. It 
is convenient to merge (11a) and (11b) into a single expres-
sion and to write the result in terms of the fractional power 
I1 = a2u2, divergence θ1 = θ0/a, and Rayleigh distance 
zR1 = a2zR of the scattered wave. Hence,

Figure 4. Left: interference pattern of a scatterer in x0 = y0 = 1 (dimensionless units) having fractional radius a = 0.03. The detection 
plane is at ζ = z/zR = 0.1 distance from the scatterer. Right: the Newton rings have been enhanced by subtracting the pattern due to the 
Gaussian beam and rescaling the image.

Figure 5. Interference pattern of a scatterer in x0 = y0 = 1 (dimensionless units) having fractional radius a = 0.03. The detection plane is 
at ζ = z/zR = 0.1 distance from the scatterer. With respect to figure 4, only the (rescaled) contribution due to the scattered wave has been 
shown. The length difference of the interferometer arms are zero (left) and s/zR = 0.01 (right).
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∆λ

λ
≈ θ2

0

4(1 + ς2/4)
+

θ2
1I1

4(1 + ς2
1/4)

, (12)

where ς = s/zR and ς1 =
√

3ς/a2 =
√

3s/zR1. This equa-
tion shows that the scattered light contribution is added lin-
early, but scaled by the power and Rayleigh distance of the 
scattered wave.

The inspection of (10) shows that, for large ς = s/zR values, 
the fringe phase in excess of −ks originates from the Gaussian 
beam, while, for small ς = s/zR values, it originates from the 
scattered waves. The contribution of the last term of (10)—
which describes the interference between the Gaussian and 
scattered waves—is always overpowered by one of the other 
two. The curvature of the Gaussian wavefront would only 
have affected this term, thus justifying our decision to neglect 
it. The factor 

√
3 in the ς1 definition reflects the fact that the 

phase of the sum of the first two terms of (10), which are the 
only ones relevant to (12), is not the sum of their phases.

4.3. Multiple scattering

The results of section 4.2 can be extended to many scatterers. 
In this case, the light feeding the interferometer is

u(x, y) = e−(x2+y2)/2 +
∑

n

uneiαn e−[(x−xn)
2+(y−yn)

2]/(2a2
n),

 (13)
where the subscript n labels the scatterers. By repeating the 
calculations in (6) again, where the Fourier transform of (13) 
substitutes for ũ0( p, q), the |u(z)〉 autocorrelation is

Ξ(ς) =
2π

2 − iς
+

∑
n

2πa4
nu2

n

2a2
n − iς

+
∑

n

4πa2
nun cos(αn)e

− r2
n

2(1+a2−iς)

1 + a2
n − iς

+
∑
m>n

4πa2
ma2

numun cos(αm − αn)e
− r2

mn
2(a2

m+a2
n−iς)

a2
m + a2

n − iς
,

 (14)
where r2

n = x2
n + y2

n and r2
mn = (xm − xn)

2 + (ym − yn)
2. The 

last term of (14) takes the interference between the light 

scattered by different scatterers and travelling along dif-
ferent interferometer arms into account. Unless rmn ≈ 0, in 
which case we have a single scattering centre, it is irrelevant. 
Therefore, remembering the analysis in section 4.2, (14) can 
be approximated by

Ξ(ς) ≈ 2π
2 − iς

+
∑

n

2πa4
nu2

n

2a2
n − iς

. (15)

Also in this case, the lowest order approximation of the frac-
tional variation of the effective wavelength,

∆λ

λ
≈ θ2

0

4(1 + ς2/4)
+

∑
n

θ2
nIn

4(1 + ς2
n/4)

, (16)

was obtained by implementing (5) and (7) into a Mathematica 
[16] script. In (16), In = a2

nu2
n is the nth fractional power, 

θn = θ0/an is the nth divergence, zRn = a2
nzR is the nth 

Rayleigh distance, and ςn =
√

3ς/a2
n =

√
3s/zRn.

4.4. Finite area detector

One way to limit the adverse effect of the scattered light is to 
limit the detection area so that the diffraction rings lie outside 
the detector. Therefore, in this section, we calculate the effec-
tive wavelength when the interference pattern is integrated 
over a finite-area detector.

4.4.1. Gaussian beam. To take the detector area into account, 
the interfering beams are projected in a disk centered on the 
beam axis, having

ρ(ζ1, ζ2) =

√
1 + ζ2

1 +
√

1 + ζ2
2√

2
ρ0 (17)

dimensionless radius, where ζ1 and ζ2 are the detector dis-
tances from the waists of the interfering Gaussian beams. This 
choice ensures that the ratio ρ0 between the detector radius 
and the mean radius of the interfering beams is a constant. 
Hence,

Ξ(ζ1, ζ2) = 〈u0|U†(ζ2)Π(ρ)U(ζ1)|u0〉 =
2π

(
1 − e−

ρ2(2−iς)
2(ζ2+i)(ζ1−i)

)

2 − iς
,

 (18)
where we used the direct-space representation of U(ζ)|u0〉, 
ς = ζ2 − ζ1, and Π(ρ; r) = 1 if r < ρ and Π(ρ; r) = 0 if r > ρ. 
It must be noted that (18), contrary to (6), depends separately 
on the lengths, ζ1 and ζ2, of the interferometer arms. The 
effective wavelength,

λe(ζ1, ς) = λ

[
1 +

∂ς arg[Ξ(ζ1, ζ1 + ς)]

kzR

]
, (19)

where ς = s/zR is the difference in the arm lengths, 
has been numerically calculated according to (7) from 
φ(ζ1, ζ2) = arg Ξ(ζ1, ζ2). Figure 7 shows the normalized frac-
tional variation (∆λ/λ)/(θ2

0/4) when the interference pattern 
is integrated over detectors having dimensionless radius ρ0 
equal to infinity, 1.0, and 0.5.

Figure 6. Forward scattering. Zoom of the normalized 
fractional variation of the effective wavelength when u = 1. The 
dimensionless sizes of the scatterer are above the plot. The abscissa 
is the optical path difference between the interferometer arms, 
normalized to the Rayleigh distance.
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4.4.2. Forward scattering. When the interferometer is illumi-
nated by the superposition (9), in order to carry out a sym-
bolic analysis as far as possible, we considered a scatterer 
located on the beam axis. Recalculating (18) and neglecting 
the contrib ution of the interference between the Gaussian and 
scattered beams, the |u(z)〉 autocorrelation is

Ξ(ζ1, ζ2) ≈
2π

(
1 − e−

ρ2(2−iς)
2(ζ2+i)(ζ1−i)

)

2 − iς

+

2πa4u2
(

1 − e
− ρ2(2a2−iς)

2(a4+ζ1ζ2−ia2ς)

)

2a2 − iς
,

 

(20)

where ς = ζ2 − ζ1. The dependence on the propagation dis-
tances ζ1 and ζ2 along the interferometer arms raises an impor-
tant issue. In the first term, ζ1 and ζ2 are measured from the 
beam waist, while in the second term, they are measured from 
the scatterer.

The effective wavelength was obtained by numerically 
calculating the phase of (20) and its derivative with respect 
to the optical path difference s = ςzR. The result is shown 
in figure  8. As heuristically expected, reducing the detec-
tion size washes out the peak at ς = 0; the oscillations are 

due to the Newton ring crossing the detector edge. When the 
detector radius is about two times the beam size, or less, the 
peak disappears.

5. Conclusions

We have shown that, in optical interferometry applied to 
length metrology, the light scattered from the beam feeding 
the interferometer impacts significantly on the measurement 
accuracy. The proposed model of the interferometer opera-
tion explains the observation of a sharp dip of the measured 
interferometer-displacement centred on an equal-arm configu-
ration by the self-interference of the scattered light travelling 
through the interferometer.

Our model suggests that a limited detector area signifi-
cantly reduces the impact of the scattered-light. This predic-
tion was experimentally confirmed by placing a variable iris in 
front of the detector and by repeating the measurements with 
different apertures. The results shown in figure 9 prove that we 
captured the essential aspects of the phenomenon.

Provided that the interferometer arms have different lengths, 
the forward scattering does not generate any errors. Since 
the measurements of the Si lattice parameter were carried 

Figure 7. Gaussian beam and finite-area detector. Normalized fractional variation of the effective wavelength. The dimensionless detector-
radii ρ0 are infinity (left), 1.0 (center), and 0.5 (right).

Figure 8. Forward scattering. Zoom of the normalized fractional 
variation of the effective wavelength when u = 1. The fractional 
size of the scatterer is a = 0.03, the detector-to-scatterer distance 
is z = 0.2zR, the fractional detector-radii are indicated above 
the plot. The abscissa is the optical path difference between the 
interferometer arms, normalized to the Rayleigh distance.

Figure 9. Fractional variations of the measured lattice-spacing 
value along a horizontal line 20 mm long (the optical path difference 
is two times the interferometer displacement). Blue: 6 mm detector 
radius. Green: 4 mm detector radius. Red: 2 mm detector radius. The 
solid lines are the Lorentzian functions best fitting the data.
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out—although without being aware of the benefit—with inter-
ferometer arms having sufficiently different lengths, the for-
ward scattering did not affect the results given in [14, 15].

Appendix. List of the main symbols

ORCID iDs

G Mana  https://orcid.org/0000-0002-4109-7254
E Massa  https://orcid.org/0000-0002-7764-3106
C P Sasso  https://orcid.org/0000-0002-5715-7688
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w0 waist radius

zR = kw0/2 Rayleigh distance

θ0 = 2/(kw0) beam divergence

ζ = s/zR dimensionless propagation distance

ς = s/zR dimensionless optical-path difference

Ξ(ς) autocorrelation of the beam complex-amplitude, 
equation (6)

λe interference-fringe period, equation (7)
u, un fractional amplitudes of the scattered waves
α,αn relative phases of the scattered waves
a, an dimensionless radii of the scatterers

In = a2
nu2

n
fractional powers of the scattered waves

θn = θ0/an divergence of the nth scattered wave
ρ0 dimensionless detector radius, equation (17)
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