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Abstract: In this paper, a Fourier-Transform Raman spectroscopy method, 

to authenticate the provenience of wine, for food traceability 

applications was developed. In particular, due to the specific chemical 

fingerprint of Raman spectra, it was possible to discriminate different 

wines produced in the Piedmont area (North West Italy) in accordance with 

i) grape varieties, ii) production area and iii) ageing time. In order to 

create a consistent training set, more than 300 samples from tens of 

different producers were analyzed, and a chemometric treatment of raw 

spectra was applied. A discriminant analysis method was employed in the 

classification procedures, providing a classification capability 

(percentage of correct answers) of 90 % for validation of grape analysis 

and geographical area provenance, and a classification capability of 84 % 

for ageing time classification. The present methodology was applied 

successfully to samples without any preliminary treatment of the sample, 

providing a response in a short time. 

 

 

 

 



 Designation of origin of wines can be controlled through Raman spectroscopy; 

 Grape cultivar,  provenience and ageing time of wines is determined through Raman; 

 A rapid, sensitive and non-destructive method for wine analysis is proposed;  

 Discriminant Analysis is applied to spectral data for wine classification. 
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Abstract 14 

In this paper, a Fourier Transform Raman spectroscopy method, to authenticate the provenience of wine, for 15 

food traceability applications was developed. In particular, due to the specific chemical fingerprint of the Raman 16 

spectrum, it was possible to discriminate different wines produced in the Piedmont area (North West Italy) in 17 

accordance with i) grape varieties, ii) production area and iii) ageing time. In order to create a consistent training 18 

set, more than 300 samples from tens of different producers were analyzed, and a chemometric treatment of raw 19 

spectra was applied. A discriminant analysis method was employed in the classification procedures, providing a 20 

classification capability (percentage of correct answers) of 90 % for validation of grape analysis and 21 

geographical area provenance, and a classification capability of 84 % for ageing time classification. The present 22 
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methodology was applied successfully to raw materials without any preliminary treatment of the sample, 23 

providing a response in a very short time. 24 

 25 

Main text   26 

1. Introduction 27 

In order to preserve the quality of food products from particular geographical areas, and to protect consumers 28 

against imitations and false information, the European Commission has defined, via Regulations 1151/2012, the 29 

designations: Traditional Specialty Guaranteed (TSG), Protected Designation of Origin (PDO) and Protected 30 

Geographical Indication (PGI) (Regulation (Eu) No 1151/2012 Of The European Parliament And Of The 31 

Council of 21 November 2012 on quality schemes for agricultural products and foodstuffs). Quality labels have 32 

an important role in consumer behavior and give confidence about the origins and the quality of food. Label 33 

assignment is an important market claim and represents a valuable weapon to attest and justify the economic 34 

value of products. Traceability has become a very relevant concept in association with edible products and 35 

represents an essential tool to enhance traders and consumers’ confidence in the safety, quality, and authenticity 36 

of food.  37 

Unfortunately, most of food traceability procedures involve tedious administrative documents, while scientific 38 

methodologies that identify the authenticity of food objectively are preferable. Accordingly, scientific research is 39 

focusing on the development of analytical methods for traceability to authenticate the geographical origin of 40 

foods (Peres, Barlett, Loiseau and Montet, 2007), with the aim of linking food products with distinctive features, 41 

such as ingredients, physical properties and production methods. Food traceability analysis are usually 42 

performed by means of several analytical techniques, such as mass spectrometry for isotope ratio determination 43 

(Durante, Baschieri, Bertacchini, 2015), DNA based techniques, such as polymerase chain reaction (PCR) 44 

(Pardo, 2014) and nuclear magnetic resonance spectrometry (NMR) (Mazzei, Francesca, Moschetti, Piccolo, 45 

2010). 46 

 In the last two decades, stable isotope methodologies, based on gas chromatography-isotope ratio mass 47 

spectrometry (GC-IRMS) and GC-pyrolysis-IRMS (Fronza, Fuganti, Graselli, Reniero et al 1998; Adam, 48 

Bartels, Christoph, Stempfl 1995; Misselhorn, Grafahrend, 1990), have been applied successfully in quality 49 

control of wine following the establishment of an official wine database for stable isotope parameters (EU 50 
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regulations 2670/90, 2347/91 and 2348/91) (Rossmann, 2001). As reported by Breas et al. (Bréas, Reniero, 51 

Serrini, Martin and Rossmann, 1994), a classification of wines from different European countries can be 52 

achieved with 
 13

C/
12

C analysis of ethanol and 
18

O/
16

O determination of water, underlining the importance of the 53 

photosynthetic pathway as well as the environmental and climatological conditions of the vineyard.
 
 Even if 54 

stable isotope methods provided consistent results, which could be used for routine analysis of wines, it is not 55 

always simple to find a physical, chemical or biochemical explanation for variations of isotope ratios in natural 56 

substances or to establish a relevant database for statistical evaluation.  57 

DNA based technologies have also been exploited in this field due to their specificity in analysis, which is 58 

strictly associated with genotype (the inherited instructions that an organism carries within its genetic code), but 59 

these technologies inevitably miss the stochastic significant epigenetic differences accumulating over time across 60 

cells (Petronis, 2010). Dordevic et al. (2013) highlighted the need for new methods and better geographical 61 

discrimination between samples, demonstrating that multivariate methods are superior to univariate approaches. 62 

The NMR and vibrational spectroscopy techniques represent interesting alternatives or even complementary 63 

methods. Godelmann et al. (2013) analyzed about 600 German wines and demonstrated that 
1
HNMR coupled 64 

with statistical data treatment could provide individual “fingerprints” for wine samples, which include 65 

information about variety, origin, vintage, physiological state, technological treatment, and other factors. The 66 

fusion of NMR profiling and stable isotope data for wine analysis has been reported in literature with good 67 

results (Monakhova et al. 2014). However, the main drawbacks of the cited techniques (i.e. MS, NMR and DNA 68 

based techniques) are related to the cost of instruments, extensive sample pre-treatments, and the duration of 69 

analysis, which often reduce the accuracy and precision of measurements. Since simple and rapid analytical 70 

methods are needed to meet the demands of European labeling legislation, vibrational spectroscopy is emerging 71 

as a new and powerful tool in authenticating food provenance.  72 

Vibrational spectroscopy techniques usually provide non-destructive analysis of samples, rapid collection times 73 

with no or minimal sample pre-treatment, which reduce the total time of analysis and could support the 74 

development of reliable control procedures and screening methods for food traceability. Moreover, new modern, 75 

portable instruments with smart accessories have been developed, making these techniques more suitable for in 76 

line process monitoring and in situ analysis (Gallego, Guesalaga, Bordeu and Gonzàlez, 2011). These methods 77 

encompass absorption spectroscopy in the mid-infrared (MIR) and the near-infrared (NIR) for studying 78 

fundamental molecular vibrations and their harmonics (Bauer et al., 2008; Cozzolino, Dambergs, Janik, Cynkar, 79 
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& Gishen, 2006; Cozzolino, McCarthy, & Bartowsky, 2012,Cozzolino D., 2014), and absorption spectroscopy in 80 

the ultra-violet and visible (UV–vis) regions for probing electronic transitions (Acevedo, Jiménez, Maldonado, 81 

Domínguez, & Narváez, 2007; García-Jares & Médina, 1995; Harbertson & Spayd, 2006; Roig & Thomas, 82 

2003; Urbano, Luque de Castro, Pérez, García-Olmo, & Gómez-Nieto, 2006). Raman spectroscopy, which is 83 

based on the inelastic scattering of a monochromatic light, also provides a characteristic spectroscopic pattern 84 

(i.e. “molecular fingerprint”) of organic compounds based on the vibrational modes of chemical bonds (Li-Chan, 85 

Griffiths and Chalmers, 2010;  Thygesen,. Løkke, Micklander and Engelsen, 2003). Moreover, Raman analysis 86 

can be easily done in aqueous media and through glass containers, because signals from both water and glass are 87 

very weak in the Raman spectrum (Schulz and Baranska, 2007; Yang, Irudayaraj 2001) and do not overlap with 88 

those from food components, such as proteins (Li-Cha, Nakai, Hirotsuka, 1994), lipids (Yang, Irudayaraj and 89 

Paradkar, 2005) and carbohydrates (Mathlouthi, Koenig, 1986), which are sensitive and specific.  90 

Raman spectroscopy has demonstrated its value in food traceability for olive oil provenance and composition 91 

(Bernuy, Meurens, Mignolet and Larondelle, 2008), honey provenance (Özbalcia, Hakkı Boyacia, Topcua, 92 

Kadılarb, Tamerc, 2013; Paradkar and Irudayaray, 2001) and the authenticity of beers (Downey, 2009).  As 93 

regards alcoholic beverages, Raman spectroscopy has been used for the quantification of the alcohol content in 94 

whisky, vodka and other spirituous beverages (Nordon, Mills, Burn, Cusick and Littlejohn 2005). The feasibility 95 

of exploiting Raman scattering to analyze white wines has also been investigated (Meneghini et. al., 2008). In 96 

particular, a recent work by Coralie et al. (2014) demonstrated that resonance condition of some chemical 97 

species present in wine, such as phenolic compounds, hydroxycinnamic acids and sugars, can be analyzed 98 

selectively using lasers at different wavelengths.  99 

In this work, we evaluated the potential to use Raman spectroscopy, coupled with a chemometric data treatment, 100 

to discriminate different wines from the Piedmont area (North West Italy) in accordance with grape varieties, 101 

production area and ageing time. In particular, tests were performed on Nebbiolo, Dolcetto and Barbera wines, 102 

which were chosen for their wide distribution and their productive and economic relevance to the Italian wine 103 

market. The purpose of the work was to provide a statistically substantial classification method, based on a set of 104 

known responses (training set) through the chemometric treatment of data.  The work scheme was structured on 105 

three levels: classification of wines in accordance with the (1) grapes used, (2) production area, and (3) age.  106 

 107 

2. Material and Methods  108 
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2.1 Samples 109 

315 commercial wines were obtained from different winemakers using Nebbiolo, Barbera and Dolcetto grapes. 110 

For each grape variety, wines from the different area and age were selected (Table 1). More than 10 Protected 111 

Designation of Origin (PDO) wines were examined. The number of samples for each PDO wine was different 112 

based on the winemaker and commercial dissemination and, inevitably, limited by the availability of samples. 113 

All the samples were furnished directly by the producers, and stored at +4°C until analysis. 114 

Tab.1 – Distribution of wines examined in accordance with grape, PDO and production area 115 

 116 

2.2 Raman measurements  117 

Raman spectroscopy was performed with a Thermo Scientific NXR FT-Raman Module Nicolet Series
TM

 118 

equipped with an InGaAs detector (ThermoFisher Scientific, Waltham, USA), a CaF2 beamsplitter and a 1064 119 

nm laser line. Raman spectra were collected using a laser (power 0.9 W) in the spectral range 200 to 4000 cm
-1

 120 

with a resolution of 4 cm
-1

. 256 scans were collected to obtain S/N ratio higher than 15. Samples were analyzed 121 

in 4 ml glass vials positioned vertically on a motorized stage.  122 

2.3 Multivariate Analysis.  123 

The raw Raman spectra were subjected to discriminant analysis using TQ Analyst
TM

 8.0 software (ThermoFisher 124 

Scientific, Waltham, USA). Spectra were pre-processed using the Savitzky-Golay smoothing filter (Savitzky, 125 

Golay, 1964) to remove of as much noise as possible without unduly degrading the spectral information. The 126 

spectral range to be analyzed was selected in such a way that interference from random variability of spectra was 127 

minimized and did not generate spurious information in the classification model. Seven restricted spectral 128 

regions around Raman peaks were selected to optimize the classification result. The frequency regions of spectra 129 

that did not contain Raman peaks (e.g. 800-600 cm-1 and 2800-1800 cm-1) were excluded. In this way, 130 

worthless information was ignored and the best class separation was obtained. The number of PCs selected was a 131 

compromise between explained variance for each PC and the predictive capability of the model: when the 132 

cumulative variance reaches the plateau, further components do not provide any useful information and should 133 

be excluded so variables that represent only noise are not considered.  Variables that explain only a small portion 134 

of the variability are not excluded if they improve significantly the classification capability of the model (% of 135 
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samples correctly classified). The chemometric models presented for wine classification were first validated 136 

through a leave-one-out cross-validation procedure during model optimization (mathematical pretreatment 137 

choice, selection of significant PCs, etc.). Finally, the optimized models were validated through a cross 138 

validation procedure using exclusions sets made up of five samples chosen randomly; the number of exclusion 139 

sets was proportional to the total number of calibration samples. This classification technique permits unknown 140 

distance to a class center in terms of Mahalanobis distance (Mahalanobis, 1936) to be calculated and each 141 

unknown samples to be assigned correctly. Md is based on the idea that it contains an auto-scaling process in and 142 

overcomes assumption about the spherical distribution of sample points around the center of mass; thus, non-143 

spherical distributions can be described as well as spherical ones. In the generalized formula for Md, the 144 

observation are represented by x=(x1, x2, …xn) while µ=(µ 1, µ 2, … µ n) represents the observations’ mean. 145 

The apex 
T
 indicates the transposed matrix (x- µ). S

-1
 is the inverse of the covariance matrix of the observations. 146 

Md(x)=√(x-µ)
T
S

 (-1)
 (x-µ) 147 

If an ellipsoidal distribution is considered, we would expect that the probability a test point belongs to the set 148 

depends not only on the distance from the center of mass but also the direction. (De Maesschalck,Jouan-149 

Rimbaud, Massart, 2000). 150 

The statistical reliability of results will be discussed case by case to assess the effective classification capability 151 

of the proposed Raman method, even if an external set dedicated to test set validation was not available. The 152 

work scheme of this study was divided into three consecutive steps: discrimination according to (i) grape, (ii) 153 

production area, and (iii) age. 154 

 155 

3. Results and Discussion 156 

Food systems are dynamic, chemically complex and, generally, heterogeneous matrices containing large 157 

numbers of biological molecules. The chemical specificity, ease of sampling, speed, and non-destructive nature 158 

of FT-Raman spectroscopy makes it an attractive tool for food analysis. Chemical specificity of the Raman 159 

technique relies on the fact that different molecular bonds or groups of chemical bonds are identified by 160 

characteristic frequency-shifts in incident light (Figure1). For this reason, the first step in compositional analysis 161 

of wine using FT-Raman is attribution of characteristic frequency shifts to vibrational modes of molecular bonds 162 

observed in spectra (Table 1S in supplementary information). 163 
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As Figure 1 shows, a large band ascribed to OH stretching at 3350 cm
-1 

was clearly visible in all the spectra 164 

analyzed. In addition, a minor band related to OH bending at 1700-1500 cm
-1

 was observed. The group of peaks 165 

between 3000-2800 cm
-1

 is due to symmetric and asymmetric stretching of CHx bonds. Several other 166 

characteristic peaks of ethanol are present at frequencies less than 1500 cm
-1

. These are associated with several 167 

deformation modes of CHx as reported in Tab 1S (Mammone, Sharma, Nicol, 1980). All peaks in the wine were 168 

shifted slightly in comparison with the pure ethanol peaks; this is due to the simultaneous presence of different 169 

organic species, such as glycerol, acetaldehyde, organic acids, and polyphenols including flavonoids and non-170 

flavonoids. At 1630 cm
-1

 a low intensity band was present in the wine spectra. This band is characteristic of C=O 171 

stretching, a relatively inactive Raman vibration.  The C=O peak observed could be attributed to several species 172 

present in the matrix (e.g. organic acids and flavonoids) the carbonyl groups of which are characterized by 173 

slightly different vibration frequencies. This, a quite broad signal was registered in this spectral region. 174 

The samples analyzed were chosen with the aim of representing a wide selection of the wines, which were 175 

purchased from different producers. Numerous samples were requested to capture the variability in the system 176 

and obtain a representative dataset for multivariate calibration. Raman spectra of the different wines were very 177 

similar to each other, as it can be seen in Figure 1 where the spectra of Dolcetto, Barbera and Nebbiolo are 178 

compared. This explains why a univariate analysis would not be effective. It was decided a multivariate 179 

approach would be employed to ensure a more complete interpretation of characteristic patterns in the spectra. 180 

Fig. 1 181 

From an oenological point of view, the specific features of wine are the result of synergic effects involving 182 

several factors. The wine composition is very complex and the final organoleptic features are produced by the 183 

interaction of many chemicals, such as sugar, alcohol, acids and tannins; e.g. total acidity refers to the sour 184 

attributes of the wine, which are evaluated in relation to how well the acidity balances out sweetness. During the 185 

course of winemaking and in the finished wines, tartaric, malic, citric, acetic and lactic acids can have significant 186 

roles and together define the characteristic acidity of the wine (Bellman et al., 1979). In the same way, from a 187 

spectroscopic point of view, the final wine spectrum is the result of a synergic interaction of many factors and 188 

none can be regarded in isolation. The literature is poor in respect of interpretative analysis of Raman spectra 189 

from wine because of the complexity, and only chemometric analysis permits extraction of the more interesting 190 

information and selective parameters to distinguish and attest to the authenticity of wine products.  191 
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The chemometric approach used for the classification was a supervised classification method, which groups a set 192 

of objects in such a way that objects in the same group (called a class) are more similar to each other than those 193 

belonging to other classes. Training data were given as sets of spectra partitioned as suggested by the supervising 194 

method (Finley and Joachims, 2005). Different distance functions were used to evaluate distances between 195 

objects in the same class or the assignment of an unknown object to the correct class. In this case, Md was used, 196 

as described in detail in Materials and Methods. Applying this concept to the spectral data of wine, several 197 

classification models with good classification capability were obtained. 198 

3.1 Discrimination in accordance with grape 199 

 200 

Three classes of grapes (Nebbiolo, Barbera, Dolcetto) were selected. 185 Nebbiolo, 75 Barbera and 45 Dolcetto 201 

wine samples were subjected to Raman analysis to create a substantial training set. The eigen analysis attested 202 

that the selected 305 calibration standards contain sufficient variability for the method calibration. The spectral 203 

range was optimized as reported in Materials and Methods section. The optimized chemometric model shows a 204 

total variability of 99.34 % explained using 20 principal components (PCs); the number of principal components 205 

was optimized by considering the classification capability (%) (number of correctly classified samples during 206 

cross-validation) as a function of the PCs number. In particular, leave-one-out cross validation was performed 207 

reiteratively raising the number of PCs considered during each run, and the percentage of correctly classified 208 

samples was plotted as a function of PCs number (Figure 1S) as well as the variance explained corresponding to 209 

each PC. The plot reported in Figure 1S was used to determine the ideal number of PCs, which corresponded to 210 

20. In order to avoid the over-fitting of data, components that did not contribute significantly to cumulative 211 

variance, and did not provide useful information for classification, were excluded because they dealt exclusively 212 

with experimental noise. 213 

As Figure 2 shows, the best optimized method misclassified 13.1 % of 305 standards during leave-one-out cross 214 

validation. The clouds of points representing these three classes were dense, suggesting high homogeneity within 215 

each class. The three clouds were also very close to each other and overlapped partially, which was the cause of 216 

a misclassification percentage greater than 10 %. However, it should be taken into account that the discipline of 217 

some wine production allows a small percentage of other wines to be introduced (e.g. Barbera wine can contain 218 

up to 15 % of Nebbiolo grape); this might explain the closeness of sample classes, which also caused 219 
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misclassification. A cross validation test was performed (and repeated five times) to attest the real ability of the 220 

calibrated model to distinguish wines according to grape. 100 spectra (one third of the number of calibration 221 

standards per each class chosen randomly) were used in groups of five for cross validation of the model. During 222 

this leave-five-out validation, 86 ± 2 % of unknown samples provided a correct answer. Among the misclassified 223 

samples, 9 % belong to Barbera, 2 % belong to Dolcetto and 3 % belong to Nebbiolo, on average. It should also 224 

be noted that the percentage of misclassified samples during leave-five-out cross validation method was 225 

comparable with leave-one-out cross validation results (14 % of misclassified with 20 PCs) achieved during 226 

model optimization. Subsequently, 10 unknown Nebbiolo samples were used as a small test set that provided 90 227 

% correct answers. 228 

Fig. 2 229 

The loadings profiles corresponding to PCs 1 to 10, which were the most interesting for a qualitative description, 230 

are shown in Figure 3. From careful analysis of them, it is possible to determine which organoleptic and 231 

compositional features were responsible for classification. However, it must be taken into account that a synergic 232 

interaction of variables led to the class separation and none can be considered separately. For example, the 233 

alcohol content of a wine is a key parameter for its oenological characterization and plays an important role in 234 

the spectroscopic analysis in order to depict a faithful portrait of each sample. The ethanol Raman peaks are the 235 

easiest to be identified in Raman spectra and these can be identified in most calculated PCs as well. This aspect 236 

plays a crucial role in wine classification.  237 

Sugar content is another important feature that can help in classification. Since the sugar content of a wine 238 

depends on the advancement of the alcoholic fermentation, a well-founded hypothesis is the negative correlation 239 

between sugar and the alcohol contents. PC8 and PC9 revealed a significant variability in data observed around 240 

3500-500 cm
-1

,
 
where carbohydrates peaks are typically found. The scores plot, built in accordance with these 241 

PCs, revealed the carbohydrate content varied from sample to sample without any correlation with the Dolcetto, 242 

Barbera or Nebbiolo classes. The difficulty of defining coherent variability in this case lies in the fact that all the 243 

samples considered were dry wines.  244 

Another important parameter in the Raman characterization of a biological matrix is the effect of fluorescence. 245 

The colored substances in wine, such as anthocyanins and polyphenols in general, are directly related to the 246 

fluorescence effect observed during spectra acquisition. Fluorescence is, generally, an undesirable effect in 247 

Raman analysis because of the risk of disguising interesting signals in the spectrum. It can also influence the 248 
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statistical analysis of wine spectra during classification. Indeed, the baseline slope of PC1, and the wide band 249 

around 2000 and 1200 cm
-1

 in PC6 and PC7, attest to the fact that fluorescence represents a significant variable 250 

in the system examined. This behavior is even more evident when looking at the disposition of data clouds as a 251 

function of PCs influenced by fluorescence, where it can be seen clearly that fluorescence is a significant 252 

variable. However, the classification of wines is not impaired by fluorescence, the success of which is not only in 253 

satisfactory modeling of training sets but also by external validation sets.  254 

Fig. 3 255 

Our data revealed that synergic interactions among variables represented the key to solving an apparently 256 

complicated problem. It was not possible to describe the data if the variables were considered independently but 257 

taken together good separation was achieved.  258 

Also, dual class models were optimized and, as it turned out, the most difficult wines to separate were Barbera 259 

and Dolcetto whereas Nebbiolo sets formed a specific well separated class.  260 

3.2 Discrimination in accordance with production area 261 

We also demonstrated the capability of Raman spectroscopy to separate wines according to grape, and developed 262 

a method to attest to geographical provenance within the same grape class. In order to understand the importance 263 

of geographical area of produced, it is good to know that if a technical expression describing particular 264 

combination of elements, such as climate, soil and regional knowhow of winemaker, which defines the 265 

uniqueness and unrepeatability that characterize a labeled wine (Terroir) exists. The study focused on two wines 266 

in particular, Dolcetto and Nebbiolo. Within the Dolcetto class (i) Dolcetto d’Alba Doc and (ii) Dolcetto di 267 

Dogliani Docg were chosen. The production area of Dolcetto di Dogliani is situated in the southernmost part of 268 

Piedmont whereas the Dolcetto d’Alba region is situated in a northern part of the Langhe territory as shown in 269 

Figure 4 a. Dolcetto is highest in the Langhe territory (from 250 to 700 m above sea level) and characterized by a 270 

fresh climate because of its proximity to the Appenino Ligure and Alpi Marittime mountains ranges. This 271 

represents the best climate condition for Dolcetto wine production because it slows the grape maturation process.  272 

 273 

In this geographic area, the soil varies from generous red soil to sandy and dry soil (www.regione.piemonte.it); 274 

the best soil type for the Dolcetto production is white, deep, clayey and calcareous. Dolcetto di Dogliani and 275 
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Dolcetto d’Alba wines are produced according to a strict discipline that declares, in a very precise way, the 276 

mandatory geographical area and the variety of grape permitted. Also, the winemaking procedure and the final 277 

organoleptic features are usually controlled through a qualified panel test. Dolcetto d’Alba and Dolcetto di 278 

Dogliani wines have strong sensory features and even an expert sommelier might find it difficult to distinguish 279 

the geographic origins of the two by taste. The Raman analysis coupled with chemometrics provided a good 280 

identification method for classification of the wines according to the area of production, as shown in the 281 

Cooman’s plot in Figure 4 a. 282 

For Nebbiolo wine, two classes were also set: (i) Langhe (including Nebbiolo d’Alba, Barolo, Barbaresco); (ii) 283 

Novara&Carema (including Colline Novaresi, Coste della Sesia, Ghemme, Gattinara and Carema). The 284 

geographical areas involved are shown in the Piedmont map in the inset of Fig 4 b. Nebbiolo wine is an ancient 285 

red mono-vine wine. Its history in Piedmont region predates the 17
th

 century, and it has thrived because of 286 

adaptation to cold climates (www.langhevini.it). The geographic area designated for production of Nebbiolo is 287 

also clearly specified. The soil should be clayey, calcareous and acidic or a combination of the three; the territory 288 

must by hilly (at least 650 m above sea level) and sunny (www.regione.piemonte.it). The chemometric analysis 289 

of Nebbiolo spectra enables classification of Nebbiolo from Langhe and from Novara & Carema, as shown in the 290 

Cooman’s plot in Figure 4b.  291 

As stated previously, the whole spectra for the different wines are responsible for class separation. The number 292 

of PCs considered (6 for Dolcetto classification and 14 for Nebbiolo classification) represented the best 293 

compromise between explained variance and classification capability, as discussed in Section 3.1 (Figure 1S b 294 

and Figure 1S c, available in supplementary information). Again, the only way to achieve the desired results was 295 

to use multivariate approach. Appreciable classification capability (> 90 %) was obtained for the two 296 

classification models, and the low number of misclassified standards suggests Raman spectroscopy is able to 297 

discriminate wine provenance when a consistent calibration is performed. 298 

Fig. 4 299 

The cross validation test provided satisfactory results for both models. Ten samples were chosen randomly (ca. 300 

30 % of the calibration samples from each class) and used in pairs to validate the Dolcetto model with an error of 301 

8 %; all of the misclassified samples belonged to “Dolcetto d’Alba”. The leave-five-out cross-validation for 302 

Nebbiolo was performed using 65 spectra, five-by-five chosen randomly with respect to the total in each class. In 303 
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this case, 7 % were misclassified. In particular, one of them was from Alba, while five were from the northern 304 

part of Piedmont (Novara&Carema class). The validation procedure was repeated five times for both DA 305 

methods attesting a standard deviation of classification capability of 1 % and 2 % respectively. 306 

 307 

3.3 Discrimination in accordance with age 308 

As a third step, the potential to ‘recognize’ aged from non-aged oenological products was investigated. Many 309 

wines improve in quality during barrel and bottle storage. Left too long, however, such wines begin to 310 

deteriorate. During the ageing period, acidity decreases, and further clarification and stabilization occur as well 311 

as the precipitation of undesirable substances, and complex compounds affecting flavor and aroma are formed. 312 

Wines are usually aged in wooden barrels made of oak, allowing oxygen to enter but preventing water and 313 

alcohol from escaping. Simple phenols are transformed during ageing into complex molecules formed by the 314 

condensation of proanthocyanidins and anthocyanins, which also explains the change of color of aged wines. As 315 

the wine ages, anthocyanins react with other acids and compounds, such as tannins, pyruvic 316 

acid and acetaldehyde, which change the color of the wine to "brick red" hues.  317 

One of the most interesting comparisons that can be performed on Piedmont’s wines concerns Barolo and 318 

Barbaresco wine. They are both produced with the Nebbiolo grape and follow a mono-grape strict production 319 

protocol. What makes a Barolo wine different from a Barbaresco wine is essentially the ageing time: Barbaresco 320 

is aged for at least 26 months whereas Barolo is aged for at least 38 months. In this study, 56 samples of Barolo 321 

and 24 samples of Barbaresco were analyzed using Raman spectroscopy and the data collected were processed 322 

by discriminant analysis, as previously described. The statistical separation of the two wines produced positive 323 

results when 9 PCs were considered, as shown in Figure 5.  324 

Fig. 5 325 

A cross validation of the calibrated model was performed. Spectra from unknown samples (30) were subjected to 326 

analysis in groups of five. The validation procedure was repeated five times and provided 84 ± 4 % correct 327 

answers, on average. Among the 16 % wrongly classified, 80 % were Barolo and 20 % were Barbaresco.  328 

4. Conclusions 329 

In this paper, it was shown that Raman spectroscopy coupled with chemometric analysis can play a role in the 330 

authentication of wine, providing positive results in the recognition of mono-vine wines in terms of grape 331 

http://en.wikipedia.org/wiki/Aging_of_wine
http://en.wikipedia.org/wiki/Aging_of_wine
http://en.wikipedia.org/wiki/Pyruvic_acid
http://en.wikipedia.org/wiki/Pyruvic_acid
http://en.wikipedia.org/wiki/Acetaldehyde
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(validation test provided reliability of 93%), geographical provenance (reliability higher than 90%) and ageing 332 

time (reliability higher than 80%). One of the biggest advantages of the proposed method is the direct analysis of 333 

wine, through the glass container, without any pretreatment and purification process. These advantages, together 334 

with the speed of data collection, make Raman Spectroscopy particularly interesting for the prevention fraud and 335 

control of quality labels. The common drawbacks of Raman spectroscopy in analysis of food matrices, such as 336 

problems with interpretation, were overcome with user-friendly software that allow sophisticated chemometric 337 

methods to be elaborated using large amounts of data. The chemometric identification of variability between the 338 

different classes meant wines could be differentiated in accordance with grape, geographical origin, and ageing 339 

time using Raman spectrometry. A dedicated test set consisting of external samples was subjected to analysis in 340 

order to demonstrate the classification capability of the proposed method; this proof of principle aimed to show 341 

that a multivariate calibration procedure could provide consistent classification results when a substantial 342 

calibration set was subjected to spectroscopic analysis, even in a complex matrix. The more specific and user-343 

friendly Raman analysis is, the more likely it is to be exploited by wine producers for certification. The 344 

application of Raman spectroscopy to distinguish a single producer will be the next challenge, with a higher 345 

impact in commercial field.  346 
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grape) (red spectrum) and Barolo PDO (100% Nebbiolo grape) (black spectrum). 473 
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Figure 2– Cooman’s plot for Nebbiolo, Barbera, Dolcetto classification model calculated using Discriminant 474 

Analysis. 475 

Figure 3– Loadings profiles of the first 10 PCs of the Nebbiolo, Barbera, Dolcetto classification model 476 

calculated through discriminant analysis.    477 

Figure 4– a) Geographical representation of Dolcetto d’Alba and Dolcetto di Dogliani wine production areas. 478 

Cooman’s plot and statistical data of DA calibration. b) Geographical representation of Nebbiolo d’Alba and 479 

Nebbiolo di Novara & Carema wine production areas. Cooman’s plot and statistical data of DA calibration.  480 

Figure 5– Cooman’s plot of Barolo and Barbaresco classification model and statistical results of calibration.  481 

 482 

 483 

 484 



Table 1 

Grape Denomination 
Ampelographic 

origin 

Production 

Area 

Number of 

samples 

Nebbiolo Barbaresco 100% Nebbiolo 

Langhe 

24 

Nebbiolo Barolo 100% Nebbiolo 56 

Nebbiolo Nebbiolo d’Alba 100% Nebbiolo 

27 

Nebbiolo Nebbiolo Langhe 100% Nebbiolo 

Nebbiolo Colline Novaresi Nebbiolo 100% Nebbiolo 

North 

Piedmont 

(Novara) 

33 

Nebbiolo Coste della Sesia Nebbiolo 100% Nebbiolo 2 

Nebbiolo Ghemme 100% Nebbiolo 10 

Nebbiolo Gattinara 100% Nebbiolo 12 

Nebbiolo Carema 100% Nebbiolo 25 

Nebbiolo Lessona 100% Nebbiolo 3 

Nebbiolo Canavese 100% Nebbiolo Canavese 3 

Barbera Barbera d’Alba 
85-100% Barbera 

0-15% Nebbiolo 
Langhe 50 

Barbera Barbera d’Alba Superiore 
85-100% Barbera 

0-15% Nebbiolo 
Langhe 14 

Barbera 
Various (Asti, Pinerolo, 

Novara) 

85-100% Barbera 

0-15% Nebbiolo 

North 

Piedmont 
11 

Dolcetto Dolcetto d’Alba 100% Dolcetto Langhe 16 

Dolcetto Dolcetto di Dogliani 100% Dolcetto Dogliani 11 

Dolcetto Dolcetto di Diano d’Alba 100% Dolcetto Langhe 18 

 

Table(s)
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