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Abstract: The increasing demand for light emitting diodes (LEDs) is driven by a number of application
categories, including display backlighting, communications, signage, and general illumination.
Nowadays, they have also become attractive candidates as new photometric standards. In recent
years, LEDs have started to be applied as wavelength-selective photo-detectors as well. Nevertheless,
manufacturers’ datasheets are limited about LEDs used as sources in terms of degradation with
operating time (aging) or shifting of the emission spectrum as a function of the forward current.
On the contrary, as far as detection is concerned, information about spectral responsivity of LEDs is
missing. We investigated, mainly from a radiometric point of view, more than 50 commercial LEDs of
a wide variety of wavelength bands, ranging from ultraviolet (UV) to near infrared (NIR). Originally,
the final aim was to find which LEDs could better work together as detector-emitter pairs for the
creation of self-calibrating ground-viewing LED radiometers; however, the findings that we are
sharing here following, have a general validity that could be exploited in several sensing applications.

Keywords: LED; light emitting diode; photodetector; radiometer; LED detector

1. Introduction

Light emitting diode (LED) development started in the early 1960s with the observation of
infrared and red radiation emission, reaching blue wavelengths in the early 1990s [1] thanks to
Akasaki, Amano, and Nakamura (Nobel prize winners, 2014), and is continuing deeper into the
ultraviolet (UV). The extended wavelength range and the improved efficiency have allowed LEDs [2]
to become the preferred light sources for many important applications, e.g., light sources in traffic
signals [3], solid-state information and image displays [4], full-color illumination for back-lighting
liquid crystal displays [5], automotive signaling and tail lights [6], instrument cluster displays [7],
food production [8], analytical chemistry [9,10] microfluidics control [11] and, soon, in metrology as
promising new photometric standards [12].

In all of these applications, LEDs are used as sources, but, although this is a more exploited LED
property, it has been demonstrated that LEDs could also be applied as radiation sensors with an intrinsic
bandwidth-limited sensitivity related to the emission spectrum [13–15]. This property is particularly
interesting because it allows them to be selective in bandwidth without any dispersive or absorbing
element, with great advantages from the physical dimension and cost point of view. There are already
applications in radiometry in which LEDs have been used as bandwidth-limited photo-detectors: sun
photometry [15,16], field radiometry [17–19], visible light communications [20], luminescence [21],
and others. Unfortunately, these applications are still very limited and the companies producing LEDs
do not provide any information on their devices’ detection properties. This knowledge is crucial to
open new application fields.
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In this paper we report the static radiometric behavior of more than 50 different models of LED,
with the aim of: (a) starting to fill incomplete data regarding the behavior of LEDs used as sources
(e.g., spectral emission and lambda peak dependence from forward current—IF—and aging reliability);
and (b) providing a considerable set of data regarding the detection spectra of LEDs (that are usually
related to their emission spectra, but never fully overlap [22]).

After some hints about the devices under test (DUTs) and their identification, in Section 2 we
describe the measurement methods. The LED’s source properties are then reported in Section 3 while,
in Section 4, the detection properties are summarized. Moreover, in Section 5 the matching between
the source and detection spectra is considered, with a practical example that refers to the realization of
our LED radiometer [18,19]. Finally, in Section 6, we summarize the main findings. Despite the fact
that we investigated only the aspects of interest for our application, we believe that the knowledge of
the technical details exposed in this article could be of help to the sensors community in the realization
of low-cost detectors or matched source-detector couples in various applications.

2. Devices under Test and Experimental Setups

The LEDs reviewed in this paper range from low to high power devices and cover the
electromagnetic spectrum from 350 nm to 900 nm.

The DUTs were bought in several tranches. Upon delivery, we gave an identification number
to each part number. Therefore, measurement data were labelled with letter “E” for “emission”
measures or “D” for “detection” measures, followed by the identification number. All the measured
parts are listed in Table 1, together with their id number. We also used these identifiers for the most
crowded figure. Emission spectra have been acquired by means of a CAS 120 Array spectrophotometer
(Instrument Systems GmbH, Munich, Germany) connected through an optical fiber bundle to a 25 mm
diameter integrating sphere with a 100 mm2 acceptance aperture in combination with a spacing tube,
so that the emitting device is placed at 316 mm from the reference plane of the optical probe (Figure 1).
This system allows the measurement of the LED averaged radiant intensity, and other radiometric
parameters, in Commission Internationale de l´Eclairage (CIE) condition A [23].
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Table 1. List of LEDs characterized as sources and as detectors. The table is ordered with increasing emitted λPEAK. LED columns legend: “P/N” is the commercial
part number of the device under test; “Id” is the identification number that we gave to the part number in our tests, (in the following, “E” stands for emitting properties
(reported in “AS SOURCE” columns) and “D” stands for detection properties (“AS DETECTOR” columns)). AS SOURCE columns legend: “IF” is the forward test
current; “λPEAK” is the wavelength of maximum emission; “∆λFWHM” is the emission bandwidth at full width at half maximum; “Radiant intensity” is the averaged
LED radiant intensity measured with CIE method A; “∆λPEAK”, “∆λFWHM” and “∆Rad.Int. vs. ∆IF” are the percentage variation of, λPEAK, λFWHM and Radiant
intensity, respectively, measured when IF is changed according to “∆IF”. AS DETECTOR columns legend: λPEAK is the wavelength of maximum sensitivity of the LED,
∆λFWHM is the sensitivity bandwidth at full width at half maximum; “Responsivity index” is calculated by applying Equation (1) and then Equation (4) (see text).

LED AS SOURCE AS DETECTOR

P/N Id IF (mA) λPEAK
(nm)

∆λFWHM
(nm)

Radiant Intensity
(W/sr)

∆IF
(%)

∆λPEAK vs. ∆IF
(%)

∆λFWHM vs. ∆IF
(%)

∆Rad.Int. vs. ∆IF
(%)

λPEAK
(nm)

∆λ FWHM
(nm)

Responsivity Index
(µA nm/W)

UV5TZ-390-15 30 15 387.6 12.4 0.098 −75 −0.16 −5.6 −78.4 / / /
UV3TZ-390-30 33 15 396.6 13.0 0.022 −75 −1.7 × 10-4 −0.05 −70 / / /
UV5TZ-400-30 31 30 399.8 12.0 0.075 −75 −1.7 × 10-4 −0.07 −68 / / /
UV5TZ-405-30 32 30 401.6 13.0 0.170 / / / / / / /
LD-CQDP-2U3U 22 350 437.7 18.4 0.117 / / / / / / /
ASMT-AL31 37 350 450.0 19.5 0.173 −85 −0.45 −20 −83 400.0 51 2.23
ASMT-JL-31-NPQ01 29 350 452.6 24.0 0.059 −85 −0.02 −20 −82.5 370.5 51 2.62
21.00.01B 35 350 454.7 28.0 0.111 −85 −1.66 −17.2 −81.8 440.0 21 0.30
ASMT-JL11-NM 27 350 456.5 25.7 0.056 / / / / / / /
ASMT-JB-31-NMP01 28 350 459.9 24.0 0.065 / / / / 358.3 52 5.69
LB-W5SN-GYHZ-25 21 700 460.0 32.6 / / / / / / / /
LB-T673-L2P1-35 18 700 462.2 20.0 / / / / / / / /
LT-T67C-K1M2-35 14 20 465.0 / / / / / / 420.0 57 0.03
LV-W5AM-JYKY-25 17 350 501.7 28.0 0.065 / / / / / / /
LV CK7P-JYKZ-25 36 350 505.8 30.0 0.012 −85 −0.45 −17.2 −79 480.0 91 3.75
LT G6SP-CBEB-25-1-Z 34 350 516.4 39.8 0.057 −85 −0.06 −24 −71.6 / / /
XQEGRN-SB 38 350 517.6 34.0 0.060 −85 −1 −8.5 −80 439.0 97 2.00
LT G5AP-CZEX-36-1 39 350 518.0 40.4 0.025 −85 −0.05 23.4 −71.6 479.0 120 2.48
ASMT-AG31-NTU00 40 350 519.1 33.6 0.029 −85 −1.45 −10.6 −82.2 421.0 64 2.91
21.00.01G 41 350 519.7 34.0 0.046 −85 −1.3 −11.75 −78.6 423.0 53 1.18
XP-E Q4 42 350 519.7 37.0 0.054 −85 −1.2 −6.6 −65.2 439.0 89 1.06
LT-E6SG-AABB-36 43 30 519.9 34.7 0.004 / / / / / / /
LT-T67C-S2V1-35 1 20 522.3 40.0 0.0007 / / / / 548.0 100 0.31
LT-T673-P1Q2-25 19 10 526.4 43.0 0.0002 / / / / / / /
LT-W5SN-KYLY-25 24 700 530.6 47.8 0.062 −85 −1 −27.3 −70.7 / / /
LXML-PM01-0100 44 350 530.7 39.0 0.045 −85 −0.65 15 −78.7 421.0 40 4.63
LT CP7P-JYKZ-26 45 350 533.9 39.0 0.064 −85 −0.92 −12 −81 418.0 114 0.10
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Table 1. Cont.

LED AS SOURCE AS DETECTOR

P/N Id IF (mA) λPEAK
(nm)

∆λFWHM
(nm)

Radiant Intensity
(W/sr)

∆IF
(%)

∆λPEAK vs. ∆IF
(%)

∆λFWHM vs. ∆IF
(%)

∆Rad.Int. vs. ∆IF
(%)

λPEAK
(nm)

∆λ FWHM
(nm)

Responsivity Index
(µA nm/W)

LP-T67K-E1F2-25 4 2 555.2 16.0 8 × 10−6 / / / / 544.0 35 0.24
LP-E675-P1Q2-25 12 50 563.4 14.0 8 × 10−5 / / / / / / /
LG-T676-P2R1-24 16 20 572.6 17.5 1 × 10−4 / / / / / / /
LY-T67K-J2M1-26 3 2 592.0 16.0 2 × 10−5 / / / / 547.0 53 0.30
21.00.01Y 46 350 595.7 15 0.012 −85 −0.62 −13.3 −80.7 562 44 14.00
LY-W5SM-HZJZ-46 6 400 604 17.3 0.0146 90 1.5 18.7 76.3 575 84 13.70
LO-E67F-BADA-24-1 23 50 611.4 15.1 0.009 / / / / / / /
LO-T67K-K1M2-24 2 200 613.2 17.9 3 × 10−5 / / / / 549.7 99 0.31
LA-G5AP-CZDZ-24-1 20 100 623.4 14.7 0.018 / / / / / / /
LA-W5SM-JYKY-24 11 400 628.6 16.5 0.056 −85 −1 18.6 −86.4 625.2 89 7.82
LR-W5SM-HZJZ-1 9 400 633.7 16.0 0.079 −85 −2 −21.7 −62 580.0 100 3.17
LH-T674-L2P1-1 5 10 654.3 19.0 3 × 10−4 / / / / 629.7 75 1.07
21.00.01RG 47 350 655.1 16.0 0.062 −85 −0.9 −12.5 −85 / / /
LH-W5AM-1T3T-1 10 400 666.0 25.0 0.080 / / / / 639.0 87 3.40
SMB735R-1100 25 800 773.4 35.2 0.025 −87.5 −5.3 −36.6 −83.6 720.0 88 10.16
SMB780R-1100 26 800 798.2 33.8 0.018 −87.5 −4.1 −27.7 −81.2 750.0 105 11.86
LED800-01AU 50 50 800.9 29.0 0.095 −75 −1 −7 −89 / / /
TSHG8200 48 100 830.0 40.0 0.178 / / / / / / /
TSHG8400 49 100 830.0 40.0 0.073
SFH421Z 7 100 880.0 80.0 / / / / / 789.0 48 1.46
SFH4253 13 70 860.0 30.0 / / / / / 827.0 87 0.36
SFH4250S 15 70 860.0 30.0 / / / / / 849.0 84 0.912
SFH 4715S 52 1000 860.0 30.0 / / / / / 840.0 26 8.30
21.00.01IR 53 350 850.0 / / / / / / 740.0 32 0.86



Sensors 2017, 17, 1673 5 of 12

The spectral response of LEDs used as radiation sensors was obtained by placing each LED at the
focal distance of a lens and irradiating through a fiber-optic connected to the exit of a monochromator,
and measuring its correspondent output photocurrent by means of an electrometer (Figure 2). Since the
spot size cannot be easily adjusted, the irradiance and the LED distance from the source are constant,
however, the active area of the semiconductor might be equally-, over-, or under-filled, depending on
its dimension. The photocurrent was compared with the photocurrent of a calibrated photodiode (used
as reference) irradiated with the same flux of about 0.8 µW over the full spectrum with a tolerance of
±7.5%, coming from the same optical system. Finally, the spectral response of the LED detector under
test RLED(λ) was calculated as:

RLED(λ) = RREF(λ)
ILED(λ)− ILED0(λ)

IREF(λ)− IREF0(λ)
(1)

where RREF(λ) is the calibrated spectral responsivity in A/W of the reference photodiode, ILED(λ) is
the LED photocurrent under irradiation, and ILED0(λ) is the photocurrent caused by the stray radiation
and the background noise, respectively; similarly, IREF(λ) and IREF0(λ) are the photocurrent under
irradiation and the photocurrent caused by the stray radiation and the background noise, respectively,
for the reference photodiode.

Sensors 2017, 17, x FOR PEER REVIEW  5 of 12 

 

The spectral response of LEDs used as radiation sensors was obtained by placing each LED at 
the focal distance of a lens and irradiating through a fiber-optic connected to the exit of a 
monochromator, and measuring its correspondent output photocurrent by means of an electrometer 
(Figure 2). Since the spot size cannot be easily adjusted, the irradiance and the LED distance from the 
source are constant, however, the active area of the semiconductor might be equally-, over-, or 
under-filled, depending on its dimension. The photocurrent was compared with the photocurrent of 
a calibrated photodiode (used as reference) irradiated with the same flux of about 0.8 µW over the 
full spectrum with a tolerance of ±7.5%, coming from the same optical system. Finally, the spectral 
response of the LED detector under test RLED(λ) was calculated as: 

       
   λIλI

λIλIλRλR
REFREF

LEDLED
REFLED

0

0




  (1)

where RREF(λ) is the calibrated spectral responsivity in A/W of the reference photodiode, ILED(λ) is the 
LED photocurrent under irradiation, and ILED0(λ) is the photocurrent caused by the stray radiation 
and the background noise, respectively; similarly, IREF(λ) and IREF0(λ) are the photocurrent under 
irradiation and the photocurrent caused by the stray radiation and the background noise, 
respectively, for the reference photodiode. 

 
Figure 2. Experimental setup for the detection parameters measurement. 

Since our application was very low speed, we did not study the dynamic behavior of the DUTs, 
such as the switching properties of the radiation emitters and the response time of the detectors. 
Furthermore, for noise considerations, we were not interested to the increase of the responsivity 
through the application of a reverse bias. However, both these aspects were discussed in [20]. 

3. LEDs as Radiation Sources  

In a radiation sensor, often a matched source of radiation is also needed to excite a physical 
phenomenon (as, for example, in [21]), with reference purpose (as in [18]), or for other use [24,25]. 
For this reason, we examined the emission properties of many LEDs. The measurement results are 
reported in Table 1 in the columns grouped under the “AS SOURCE” label. Several LED sources’ 
emission spectra are reported in Figure 3 and have been divided in four ranges: (a) UV-blue (peak 
wavelength range 350–490 nm), (b,c) blue-green (490–650 nm), (d) yellow-red (600–700 nm), 
concluding with NIR in (e) (700–830 nm). In each plot, the emission spectra are reported normalized 
to the maximum value. 

Figure 2. Experimental setup for the detection parameters measurement.

Since our application was very low speed, we did not study the dynamic behavior of the DUTs,
such as the switching properties of the radiation emitters and the response time of the detectors.
Furthermore, for noise considerations, we were not interested to the increase of the responsivity
through the application of a reverse bias. However, both these aspects were discussed in [20].

3. LEDs as Radiation Sources

In a radiation sensor, often a matched source of radiation is also needed to excite a physical
phenomenon (as, for example, in [21]), with reference purpose (as in [18]), or for other use [24,25].
For this reason, we examined the emission properties of many LEDs. The measurement results are
reported in Table 1 in the columns grouped under the “AS SOURCE” label. Several LED sources’
emission spectra are reported in Figure 3 and have been divided in four ranges: (a) UV-blue (peak
wavelength range 350–490 nm), (b,c) blue-green (490–650 nm), (d) yellow-red (600–700 nm), concluding
with NIR in (e) (700–830 nm). In each plot, the emission spectra are reported normalized to the
maximum value.
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The averaged radiant intensity of LEDs measured in CIE condition A [23], peak wavelength
(λPEAK) and bandwidth at full width at half maximum (∆λFWHM) are reported in Table 1.

Since energy consumption plays a key role in battery-supplied instrumentation, LED sources
have been tested at current levels IF that, in certain cases, could be different from the nominal current
and then, again, at a current I’F changed (reduced) by the percentage ∆IF, where:

∆IF =

(
I′F − IF

IF

)
· 100 (2)
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The resulting changes in terms of whatever quantity, i.e., Radiant intensity (∆Rad.Int. vs. ∆IF),
peak wavelength (∆λPEAK vs. ∆IF), and bandwidth (∆λFWHM vs. ∆IF), are expressed as percentages in
the same table:

(∆quantity vs. ∆IF)=

(
quantity(I′F)− quantity(IF)

quantity(IF)

)
· 100. (3)

Reducing the forward current to a percentage of the initial test value between 75% and 87.5%,
depending on the LED, we observe a considerable reduction of ∆λFWHM and Radiant intensity in the
considered spectrum, while the reduction in λPEAK is very limited. For a further decrease of the current,
the emission spectra become too weak for a meaningful measurement. Due to the limitation of the
spectral range of the spectrophotometer (360–830 nm), only three NIR LEDs were measured while the
other NIR LEDs were tested only as detectors.

4. LEDs as Radiation Detectors

The LED detection spectra in Figure 4 have been divided in four peak wavelength
ranges:(a) 350–450 nm, (b) and (c) 400–600 nm (split in two groups), (d) 550–650 nm and, finally,
(e) 650–850 nm.

Normally, the emission and detection spectra are shifted with respect to each other. The spectral
bandwidth of the detection spectra goes from 20 to 120 nm and the the spectra themselves are generally
asymmetric about the bandwidth center. All data are summarized in the last three columns of Table 1
where the Responsivity index is defined as:

Responsivity index =
∫

FWHM

RLED(λ)dλ. (4)

The highest Responsivity indices are obtainable with power LEDs mainly due to the large collecting
area since, as already mentioned, we could not make the radiation spot so small to under-fill the
active area of the smaller LEDs. Additionally, because of the presence of domes or gel on the top of
certain devices, the Responsivity index mainly contains two elements: the sensitivity of the DUT itself
and the amount of captured energy due to the LED size with respect to the total available energy.
This aspect must be considered when choosing LEDs for sensing, but has a negligible impact in
several applications.
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to 450 nm; (b) 400 nm to 600 nm (first group); (c) 400 nm to 600 nm (second group); (d) 550 nm to
650 nm; and (e) 650 nm to 850 nm.

5. Matching of Source and Detector LEDs

The large amount of collected data, graphically represented in Figure 5, could be used to seek
LEDs emitting in the desired bands with averaged radiant intensities that meet certain specifications, to
find an off-the-shelf wavelength-selective detector, or to match source-detector devices on the required
bands with an acceptable efficiency. Let us assume that we want to match a source and a detector in
the range of blue-violet (that is, around 450 nm). From Figure 5a, we observe that some suitable source
candidates are E37, E21, E35, and E29 while, from Figure 5b, we see that D36, D40, D39, D38, D42, and
D45 are possible matching detectors.

Normally, we would choose E37 and D36 because of their, respectively, high Radiant intensity and
high Responsivity index, however, further considerations might lead to other choices. For example,
smoothness of the spectral responsivity curve might concern, or the possibility of trimming the peak
emission wavelength, reducing the forward current, other energy considerations, reliability over the
long-term, temperature effects, angular and temporal response, etc.

As a practical example, Figure 6 shows four matched source-detector LED couples that
were chosen for our realization of a self-calibrating radiometer based on LEDs used both as
radiation-detecting devices and reference sources for the calibration [18,19].
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Responsivity index of LEDs used as radiation sensors. In both diagrams, the length of the segments
corresponds to the FWHM, while in (b) the numerical value is the integral of the photocurrent over
the FWHM.

Their relevant detection and emission spectra are shown in Figure 6a in the case of one radiometer.
The choice is based of course on wavelength matching, but also on other important requirements:
(i) to maximize the signal to noise ratio, the sources present high radiant intensities and the detectors,
high Responsivity indices; (ii) because of thermal considerations, the forward current of the sources is as
low as possible, and (iii) for long-term stability, the degradation of the emitting LEDs as a function of
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operating time, is acceptably low. In order to meet requirement (ii), the use of sources with λPEAK and
∆λFWHM that are as independent as possible from the forward current is crucial to reducing energy
consumption. In Figure 6b, we report the normalized spectral Responsivity index of the LED detectors
for all of the five radiometers that were built as final release. Each radiometer mounts LEDs of the
same family that show good repeatability in terms of spectrum shape. The narrowing in the third band
is due to the presence of a dome on top of the LED detector mounted in only three of the radiometers.
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The LED sources were aged, firstly for the purpose of stabilization, and secondly to estimate
possible physical change with time. LED Radiant intensity as a function of the operating time,
normalized to the first measurement value (0 h), is shown in Figure 7 for two of the source LEDs.
E37 (ASMT-AL31) of the first band shows an emission reduction about 2% within 100 h and a slight
decrease of 0.5% in the remaining 300 h. LED source E50 (L800-01AU) of fourth band shows an
emission reduction less than 2% over the 500 h; in particular, the reduction remain around 0.5% for the
last 200 h. As shown, LED’s aging is an aspect not to be undervalued when a sensor needs a radiation
exciter or reference.
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6. Conclusions

The increasing applications of LEDs in photometry and radiometry, even as detectors, in addition
to sources, has led to the study of various parameters of LEDs, which are relevant to radiometric
measurements. The behavior of more than 50 LEDs was studied as sources and several of them as
detectors, with the aim to begin filling the lack of data in manufacturers’ datasheets. It was observed
experimentally that emission and detection spectra of the same LED are dissimilar in that the absolute
peak wavelength of the emission spectrum is longer than the highest peak wavelength of the spectral
response. The bandwidth of the two spectra are dissimilar and, in particular, in the case of LEDs used
as detectors, it is asymmetric with respect to the peak wavelength. Moreover, LEDs of the same family
show the same spectral response in terms of peak wavelength and bandwidth, but slight differences in
the responsivity.

When decreasing the forward current of the LED sources, with the aim to limit the general
energy consumption, we observed a slight reduction in the peak wavelength, while a reduction in
the bandwidth, acceptable in most cases, was observed especially for LEDs in NIR spectral range.
In addition, as one could expect, the Radiant intensity decreases proportionally to the reduction of
the forward current. The data presented could be used as a starting point to design inexpensive
wavelength-selective detectors or matching source-detector pairs of LEDs, which will save time;
however, further investigations, especially regarding the reliability over the long-term, are suggested
in the peculiar application to proof the suitability of the chosen LEDs to the sensor it will be used for.
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