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Abstract

Quantum mechanics presents peculiar properties that, on the one hand, have

been the subject of several theoretical and experimental studies about its very foun-

dations and, on the other hand, provide tools for developing new technologies, the

so-called quantum technologies. The nonclassicality pointed out by Leggett-Garg

inequalities has represented, with Bell inequalities, one of the most investigated

subject. In this letter we study the connection of Leggett-Garg inequalities with a

new emerging field of quantum measurement, the weak values. In particular, we

perform an experimental study of the four-time correlators Legget-Garg test, by

exploiting single and sequential weak measurements performed on heralded single

photons. We show violation of a four-parameters Leggett-Garg inequality in dif-
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ferent experimental conditions, demonstrating an interesting connection between

Leggett-Garg inequality violation and anomalous weak values.

Introduction. The prominent role of measurement is one of the distinctive features

of quantum theory [1]. The impossibility of interpreting the results of a measurement

on a quantum system in terms of pre-existing values is the core message of Bell’s non-

locality test [2, 3], as well as the one of non-contextuality tests [4]. Such occurrence

has also been recognised by Leggett and Garg in the behaviour of macroscopic sys-

tems when subject to subsequent measurements [5]. For these objects, it is natural to

assume that they will be found in a definite, realistic macro-state (macroscopic real-

ism), and that a measurement, especially when carried out by a microscopic probe, can

not perturb such macro-state (non-invasive measurability). This original observation by

Leggett and Garg has lead to a fecund production of theoretical [6, 7, 8, 9, 10, 11, 12,

13] and experimental [14, 15, 16, 17, 18, 19, 20, 21] work focussing on the inadequacy

of such macro-realistic view [22]; this has also inspired somehow the transposition of

Bell’s nonlocal argument to the time domain [23, 24, 25, 26, 27].

In its simplest form, Leggett and Garg’s arrangement considers a macroscopic body

undergoing three two-outcome measurements at different times, with the first serving

as a preparation. The correlation among the outcomes can be shown not to be in ac-

cordance with macro-realistic prescriptions. To date, the violation of the Leggett-Garg

inequality has been reported on macroscopic objects, such as transmon qubits [14] and

crystals [20], and following refinements have been explored with superconducting flux

qubits [21]. The test, however, is also suited to highlight the inadequacy of a realistic

view to the description of simpler quantum objects, such as phosphorus impurities [18].

In this case, the focus is rather in the assessment of the quantum character of the system

in view of technical applications, than in its fundamental value.

The canonic three-measurement arrangement can be generalised in several direc-

tions. The simplest extension considers longer sequences [6, 8], and can lead to larger

discrepancies, as it has been tested with photons [28] and nuclear spins [17]. A different

take considers substituting the measurement in the middle with a weak measurement

imparting limited back-action [29]: while shot by shot the measurement delivers only

partial information on the observable, it still provides the correct expectation value on

a large ensemble [30]. This concept has been introduced in [32, 31], and tested on sin-

gle photons in [15], with further extension to multi-party scenarios appearing shortly

after [16].

The experimental scheme for a Leggett-Garg test (LGT) can also be employed for

observing so-called post-selected values: the value of the second observable is consid-

ered only on events chosen according to the outcome of the last measurement. Post-

selection procedures are expected to be mostly harmless in classical statistics, although

the subject is vigorously debated [33, 34, 35, 36]; in this context, post-selection oper-

ated in the weak-measurement regime can lead to anomalous values, in that they fall

outside the range allowed to standard values [37, 38]. When one allows for such a weak

measurement to be performed in a Leggett-Garg test, then a direct connection can be

established between the violation of macro-realism and the emergence of anomalous

post-selected values [32, 15, 39], like it was demonstrated for quantum contextuality

[40, 41].

In this Letter, we present an experiment encompassing these two generalisations

at the same time, by demonstrating a multiple-measurement setting operated in the

weak regime. We perform a LGT on the polarisation of single photons, estimating

non-commuting observables via ’weak averages’ [42], and draw an explicit link to the
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emergence of anomalous values. Our experiment confirms the intimate connection

between the observation of anomalies in the post-selected statistics of quantum mea-

surement, and the failure of a macrorealistic view.

Theoretical background. The simplest LGT one can design involves three measure-

ments, which we label as IA, IB , and IC ; these are two-outcome observables which can

take either the value +1 or -1. The inequality writes [5]:

− 3 ≤ B3 = 〈IAIB〉+ 〈IBIC〉 − 〈IAIC〉 ≤ 1. (1)

The measurement of IA can be taken to coincide with the initial preparation in the state

|ψA〉 [31], hence one can assign the fixed value +1 for IA:

− 3 ≤ B3 = 〈IB〉+ 〈IBIC〉 − 〈IC〉 ≤ 1. (2)

The connection with anomalous post-selected values of IB is established by consid-

ering the two instances IC = 1 and IC = −1 separately, each with the respective

occurrence probabilities pC(1) and pC(−1):

B3 = 〈IB〉+
[
1〈IB〉 − 1

]
pC(1)−

[
−1〈IB〉 − 1

]
pC(−1) (3)

with a〈IB〉 identifying the post-selected value of IB , conditioned on the outcome a for

IC . Exploiting the relation:

〈IB〉 = 1〈IB〉pC(1) + −1〈IB〉pC(−1), (4)

it is possible manipulate the Eq. (3) as

B3 = 1 + 2pC(1) (1〈IB〉 − 1) (5)

Inserting the condition for the standard values of 〈IB〉, one recovers the limits of the

Leggett-Garg inequality.

This connection can be extended to the multiple-measurement LGT introduced

in [6] that considers four measurements, including state preparation IA:

|B4| = |〈IB〉+ 〈IBIC〉+ 〈ICID〉 − 〈ID〉| ≤ 2 (6)

The form of this inequality resembles the familiar Clauser-Holt-Shimony-Horne test

for space-like separated systems [43]; in that case, two partners alternate four distinct

experimental arrangements, and verify whether the collected statistics is compatible

with a local, realistic theory [23, 25]. This can be viewed as a single system inter-

rogated at four different times, including preparation. We can manipulate the four-

measurement term B4 as we did for its three-measurement counterpart, by distinguish-

ing the two instances for the last measurement ID:

|B4| = |〈IB〉+ 〈IBIC〉+ pD(1) [1〈IC〉 − 1]−

− pD(−1) [−1〈IC〉 − 1]|
(7)

We now assume that the post-selected values are bound to be found in the same ranges

as the standard values: in this case, it is easy to verify that |B4| is upper bounded by

2. Differently from the three-measurement case, where any anomalous value would

result in a violation, it can be shown that the inequality (7) demands a minimal value
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−〈IC〉 ≥
3−M

2pD(−1) , whereM = 〈IB〉+ 〈IBIC〉+ 〈IC〉, with a similar expression hold-

ing for +〈IC〉.

Experimental implementation. We perform a test of the inequality (7) by exploiting

single photons undergoing single and sequential weak measurements of their polar-

ization. Single photons are emitted by a downconversion source [44]; at a heralding

rate around 130 kHz, the quality of the emission is certified by a measured value of

the antibunching parameter [45] of 0.13 ± 0.01 without any background/dark-count

subtraction. This implies that in our test we can genuinely associate the outcomes of

the measurements to properties of single particles, avoiding classical wave-like analo-

gies [46]. The state of the photon is prepared (pre-selected) in the polarisation state

|ψA〉 = cosα|H〉+ sinα|V 〉 by means of a calcite polarising beam splitter (PBS) and

a half-wave plate (HWP).

The use of a single-mode fibre (SMF) then prepares the transverse profile F(x, y)
in a Gaussian shape of width σ, which ensures that the two directions can be used

as distinct pointers for the weak measurements [42]. These operations are imple-

mented by coupling the polarisation to the transverse position by means of the uni-

tary transformations Ûx = exp(−igxÎB ⊗ P̂x) and Ûy = exp(−igyÎC ⊗ P̂y), where

ÎC = |H〉〈H | − |V 〉〈V | and ÎB = |ψγ〉〈ψγ | − |ψ⊥
γ 〉〈ψ

⊥
γ | is associated to an arbi-

trary direction for the linear polarisation: |ψγ〉 = cos γ|H〉 + sin γ|V 〉 and |ψ⊥
γ 〉 =

sin γ|H〉 − cos γ|V 〉. The operators P̂x and P̂y are the momenta associated to the x

and y positions, respectively. The interaction Ûx (Ûy) is brought about by a 2-mm-long

birefringent crystal whose extraordinary (e) optical axis lies in the x-z (y-z) plane, at

a π/4-angle with respect to the z direction. Due to the spatial walk-off effect expe-

rienced by the photons, the two polarization paths get slightly separated along the x
(y) direction. The actual interaction along the IB basis can be tuned by means of a

HWP. The condition g2x/σ
2 ≃ g2y/σ

2 ≪ 1 ensures that the back-action on the incom-

ing state is negligible, i.e. the measurement operates in the weak regime [42]. Along

with the spatial walk-off, each birefringent crystal also induces a temporal walk-off and

a possible polarization change, both to be compensated to avoid unwanted additional

decoherence effects. We were able to do this by adding after each crystal a second

birefringent crystal of properly chosen length (1.1 mm) with the optical axis along

the y (x) directions respectively, each mounted on a piezo-controlled rotator with 100

µrad nominal resolution, allowing to cancel the temporal walk-off avoiding unwanted

circular components in the polarisation state due to the previous interaction.

After the second weak interaction, the photons arrive to a HWP that undoes the

preceding rotation and, at the same time, determines the projection of the state onto one

of the post-selected states 〈ψA|, 〈ψD| = cos δ〈H | + sin δ〈V | or 〈ψ⊥
D| = sin δ〈H | −

cos δ〈V |, by means of a PBS.

At the end of the optical path, the single photon is detected by a spatial-resolving

single-photon detector prototype, i.e. a two-dimensional array made of 32× 32 “smart

pixels” [47] - each embedding a SPAD detector and its front-end electronics for count-

ing and timing single photons - operating in parallel with a global shutter readout. The

SPAD array is operated in gated mode, with each count by the SPAD on the heralding

arm triggering a 6 ns detection window in each pixel of the array. At our heralding rate

of ∼130 kHz, the dark count rate of the array is drastically reduced by the low duty

cycle, improving the signal-to-noise ratio.

Since we are interested in the LGT as a tool for probing quantumness, we estimate

each term in the inequality (7) separately in our setup. The chain of weak interactions
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Figure 1: Experimental setup. Heralded single photons are produced by downconver-

sion in a 5-mm long LiIO3 non-linear crystal (NLC) cut for type-I phasematching; the

pump beam, obtained by second harmonic generation (SHG) of a modelocked laser

(rep. rate 76MHz), produces idler (λi = 920 nm) and signal (λs = 702 nm) photons,

which are then coupled in a single-mode fibre (SMF). The idler photons are detected

by means of a Single-Photon Avalanche Diode (SPAD), which imparts a trigger to the

signal detection system. Signal photons are prepared in the polarisation state |ψA〉 by

means of a polarising beam splitter (PBS) and a half-wave plate (HWP) (IA = 1), then

they pass through a birefringent system BCy that shifts them in the transverse y direc-

tion, depending on their polarisation, thus measuring IC weakly. BCy consists of two

birefringent crystals: the first one realizes the weak interaction, while the second one

compensates temporal walk-off and decoherence effects. A similar system, BCx, per-

forms in cascade a weak measurement of IB by shifting the photons in the x direction;

this is placed after a HWP allowing to measure along an arbitrary linear polarization

axis. A further HWP is used to counter the basis change and decide the observable ID
which determines the post-selection. The photons are finally detected by means of a

spatial-resolving 32×32 SPAD array.

and the space-resolved detector allow us to reconstruct the expectation values 〈IB〉 and

〈IC〉 by measuring the average x and y positions of the photons, respectively, when

post-selecting on the input state 〈ψA|: 〈x̂〉 ≃ gx〈ÎB〉 and 〈ŷ〉 ≃ gy〈ÎC〉. The covari-

ance of the x and y positions gives 〈x̂ ŷ〉 ≃
gxgy
2 (〈ÎB ÎC〉 + 〈ÎB〉〈ÎC〉). By inverting

these relations, it is possible to obtain the single and sequential values 〈ÎC〉, 〈ÎB〉 and

〈ÎB ÎC〉, estimated as weak averages. This resolves a major difficulty, in that by us-

ing standard “strong” measurements one would only have access to the symmetrized

quantity 1
2 〈ψA|IBIC + ICIB |ψA〉 [48]. Post-selection on 〈ψD| and 〈ψ⊥

D| occurrence

delivers the probabilities pD(1) = |〈ψD|ψA〉|
2 and pD(−1) = |〈ψ⊥

D|ψA〉|
2, as well as

the weak values 1〈IC〉 and −1〈IC〉.
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Figure 2: Behaviour of the quantity B4 in eq. (7) vs. the parameters α (related to

the state |ψA〉) and δ (determining the states |ψD〉 and |ψ⊥
D〉), both in π units, for four

different values of the parameter γ defining the polarisation operator IB : γ = 0.1π
for plot (a), γ = 0.4π for plot (b), γ = 0.5π for plot (c), γ = 0.95π for plot (d).

In each of these plots, the yellow part of the surface indicates the non-violation area

(−2 ≤ B4 ≤ 2), while in orange and magenta are highlighted respectively the positive

(B4 > 2) and negative (B4 < −2) violation areas. In each plot, the blue arrow indicates

the point for which the violation was experimentally checked

Results and conclusions. Fig. 2 reports a theoretical simulation showing the shape

of B4 for four different values of γ, plotted vs. the parameters α and δ determining the

pre- and post-selection states. Aside of the yellow part of the surface, indicating where

the classical bound holds, for each γ value one observes orange and/or magenta areas,

corresponding to the B4 > 2 and B4 < −2 violations respectively.

We tested the inequality for different choices of the initial state α, of the orientation

γ of weak measurement, and of the final post-selection δ: the four combinations have

been identified to deliver a violation (indicated by the blue arrow in each plot reported

in Fig. 2) close to the maximal value, whose results are illustrated in Table 1. For

each of the four tests performed, the experimental values of B4 are in excellent agree-

ment with the theoretical expectations within the statistical uncertainties, granting for

both the positive and negative values a classical bound violation between 3.4 and 4.4

standard deviations. In the table, we also report the measured weak values showing

how anomalies, i.e. values outside the standard range −1 to 1, do flag the violation

of the Leggett-Garg inequality: this corroborates the intimate connection between the
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emergence of anomalous values and the failure of a realistic description.

Parameters B
(th)
4 B

(exp)
4 1〈Ic〉 −1〈Ic〉

γ = 0.1π
α = 0.233π 2.82 2.76± 0.17 2.34± 0.04 −0.34± 0.04
δ = 0.867π
γ = 0.4π
α = 0.767π −2.82 −2.74± 0.18 −0.30± 0.04 2.20± 0.04
δ = 0.633π
γ = 0.5π
α = 0.833π −2.50 −2.56± 0.16 0.01± 0.06 1.86± 0.06
δ = 0.667π
γ = 0.95π
α = 0.8π 2.71 2.86± 0.19 1.86± 0.04 −0.12± 0.06
δ = 0.15π

Table 1: Leggett-Garg inequality violation results obtained in our four experimen-

tal scenarios. The first column reports the γ, α and δ values exploited in each ex-

periment, the second and third columns host respectively the theoretical (B
(th)
4 ) and

experimentally-obtained (B
(exp)
4 ) values of the quantity B4, while the fourth and fifth

columns show the anomalous weak values obtained for IC in each experiment.

We demonstrated the capability of our setup to address single photons with negligi-

ble disturbance, certifying it by a LGT and, in a complementary way, by the presence of

anomalous weak values upon post-selection. This is a manifestation of the good quality

of our device, which may find applications to random number generators [49, 50, 51].

This work has been supported by EMPIR-14IND05 “MIQC2” (the EMPIR initiative

is co-funded by the EU H2020 and the EMPIR Participating States) and the MIUR

Progetto Premiale 2014 “Q-SecGroundSpace”.
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1 Appendix

We can generalise the connection between the violation of a LG inequality and post-

selected values as follows: consider a sequence of m binary measurements In, with

the first one I1 coinciding with state preparation, hence I1 = 1 deterministically. A

generalised LG inequality is written as:

− nδn=2k+1 − (n− 2)δn=2k ≤ Bn ≤ n− 2, (8)

being:

Bn =

n−2∑

m=1

〈ImIm+1〉+ 〈In−1In〉 − 〈I1In〉. (9)

We now consider the last measurement In, and distinguish between the events for

which In = 1 or In = −1, each occurring with probabilities p+ and p−, respec-

tively. This leads us to consider the post-selected values ±〈InIn+1〉 for any correlator

in (8):

Bn = p+

(
n−2∑

m=1

+〈ImIm+1〉+ +〈In−1〉 − 1

)

+p−

(
n−2∑

m=1

−〈ImIm+1〉 − −〈In−1〉+ 1

) (10)

If we now assume that all post-selected values are regular, in that they are both within

the spectrum of ordinary eigenvalues, the term in p+ is upper bounded by n − 2. The

term in p− actually contains an expression akin to Bn−1 for the post-selected values;

the upper bound for the whole quantity is n − 2, as well. Therefore, the regularity of

the post-selected values in both their domain and their compatibility with macroscopic

realism, leads to the LG inequality (8).
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