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Quantum mechanics, one of the keystones of modern physics, exhibits several

peculiar properties, differentiating it from classical mechanics. One of the

most intriguing is that variables might not have definite values. A complete

quantum description provides only probabilities for obtaining various eigenval-

ues of a quantum variable. These and corresponding probabilities specify the

expectation value of a physical observable, which is known to be a statistical

property of an ensemble of quantum systems. In contrast to this paradigm, we

demonstrate a unique method allowing to measure the expectation value of a

physical variable on a single particle, namely, the polarisation of a single pro-

tected photon. This is the first realisation of quantum protective measurements.

Quantum theory has led to an unprecedented success in predicting a vast amount of

experimental results, with a perfect agreement between its predictions and every realised

connected experiment. However, until this day there is no consensus about the foundational

concepts of quantum mechanics. The reality of the wavefunction is still under hot debate

[1–4]. Probably the most puzzling feature of quantum theory, standing in stark contrast

with classical physics, is the fact that physical observables lack definite values. A complete

description of a quantum system only predicts the spectrum and probabilities for the

measurement outcomes of a physical observable. Given the quantum state of the system

|Ψ〉, which, according to standard quantum mechanics, comprises its complete description,

to each observable A we can associate a definite number: 〈Ψ|A|Ψ〉 =
∑
piai (pi being

the probability to obtain the (eigen)value ai as the result of the measurement of A). The

meaning of this number is statistical: for finding the expectation value of A it is necessary to

have an ensemble of identically prepared systems and to perform numerous measurements.

Single measurement yielding the expectation value of a physical variable seems to be

against the spirit of quantum mechanics. However, it has been suggested that, in certain

special situations, one can find the expectation value of an observable performing only a

single measurement. This is the method of protective measurement (PM), originally proposed
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as an argument supporting the reality of the quantum wavefunction [5].

The conceptual strength of the PM argument for the reality of the quantum state is a

highly controversial issue [6–12], namely, does the procedure allow observing the state or

only the protection mechanism? Nevertheless, the idea of PM triggered and helped studying

various foundational topics beyond exploring the meaning of the wavefunction, such as the

analysis of Bohmian trajectories [13], determination of the stationary basis [12] and analysis

of measurement optimisation for minimising the state disturbance [14]. The concept of

protection was also extended to measurement of a two-state vector [15]. In spite of the

rich and diverse analysis of the theory behind PM, to this date PM have not been realised

experimentally.

Protection can be realised [5] both actively or passively: in this paper we employ an active

protection technique based on the Zeno effect [16]. It is worth mentioning that, although

weak measurements (WMs) [17] and Zeno effect [18–23] have been largely considered in

experiments for several physical systems, up to now no experiment joining them in a PM

has been realized yet.

Our main result is the extraction of the expectation value of the photon polarisation by

means of a measurement performed on a single protected photon (see Fig. 1), that survived

the Zeno-type protection scheme. The polarisation operator is defined by

P = |H〉〈H| − |V 〉〈V |, (1)

where H and V are the horizontal and vertical polarisations, respectively. We note that,

because of the presence of the active protection in our experiment, the single click of a

multi-pixel camera tells us that the expectation value of the polarisation operator of the

single protected photon is 〈P 〉 = −0.3± 0.3 (see Fig. 1), in agreement with the theoretical

predictions (〈P 〉 = −0.208).

Our experiment (see Fig. 2) is analogous to a Stern-Gerlach experiment. Heralded sin-

gle photons, prepared in the polarisation state |ψθ〉 = cos θ|H〉 + sin θ|V 〉, pass through a

birefringent material shifting them in the transverse direction x (according to their polarisa-
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FIG. 1: Estimation of the polarisation expectation value 〈P 〉 by means of a single

protective measurement. The x coordinate of the pixel which detected the single photon

tells us - without the need of any statistics - the expectation value of the polarisation operator,

〈P 〉 = −0.3(3), where the uncertainty is estimated from the width of the photon counts distribution

presented in the paper, the theoretical value being (for θ = 17π
60 ) 〈P 〉 = −0.208.

tion). The spatial mode is close to a Gaussian one with a 4.1 pixels σ (being σ the source of

uncertainty associated with the estimation of 〈P 〉 presented in Fig. 1). The WM interaction

is obtained exploiting K = 7 birefringent units, while the state protection is realised via

the quantum Zeno scheme (see Methods for experimental details). At the end of the opti-

cal path, the photons are detected by a spatial-resolving single-photon detector prototype

[24]. Without protection, the photons end up in one of the two regions corresponding to

the vertical and horizontal polarisations, centered around x = ±a (see Fig. 3a). Then, the

expectation value can be statistically found by counting the ratio of counts:

〈P 〉 =
NH −NV

N
. (2)

In contrast, when employing PM, the photons end up in a region whose center is located at

x = a〈P 〉 (see Fig. 3b). A large ensemble of measurements allows finding the center with

arbitrarily good precision, but even a single photon detection provides information about
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FIG. 2: Experimental setup. Heralded single photons are produced by type-I Parametric

Down-Conversion in a LiIO3 crystal, then properly filtered, fiber coupled and addressed to the

open-air path where the experiment takes place. After being prepared in the polarisation state

|ψθ〉 = cos θ|H〉 + sin θ|V 〉, they pass through a birefringent material shifting them in the trans-

verse direction x (according to their polarisation). The weak interaction is obtained by means of

K = 7 birefringent units, each unit composed of a first crystal separating the beam by 1.66 pixels

(less than the beam width) and a second one used to compensate the phase and time decoherence

induced by the first crystal: only the action of all units together allows separating orthogonal

polarisations. The protection of the quantum state, implementing the quantum Zeno scheme, is

realised by inserting a thin-film polariser after each birefringent unit, projecting the photons onto

the same polarisation as the initial state. At the end of the optical path, the photons are detected

by a spatial-resolving single-photon detector prototype, i.e., a two-dimensional array of 32 × 32

“smart pixels”.

〈P 〉, albeit with a finite precision defined by the width of the distribution.

In Fig. 4(a-d) we show the results obtained collecting heralded single photons for a

measurement time of 1200 s. In panels (a) and (c) we see, respectively, a histogram and a
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FIG. 3: Illustrative drawing showing the measurement of unprotected (panel (a)) and

protected (panel (b)) photons. In the first case, 6 photons fall close to x = −a (corresponding

to P = −1), while 4 photons fall near x = a (corresponding to P = 1), giving the expectation

value 〈P 〉 = −0.2. In the second case, instead, all the photons accumulate close to x = −0.2a,

the 〈P 〉 = −0.2 position; this indicates that, with PM, we can estimate the expected value of our

observable even with a single photon.

contour plot of the photon counts distribution observed in the unprotected case for the input

state |ψ 17π
60
〉 = 0.629|H〉+0.777|V 〉. As in a standard Stern-Gerlach experiment, we observed

photons only in two regions corresponding to the eigenvalues of P . The expectation value of

the polarisation 〈P 〉 evaluated using (2) from this distribution (after dark count subtraction)

is 〈P 17π
60
〉 = −0.21(4), in agreement with theoretical expectations, 〈P 17π

60
〉 = −0.208. Panels

(b) and (d) show histogram and contour plot of the photon counts distribution obtained
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in the protected case for the same polarisation state. Instead of two distributions around

x = ±a, here we find a single distribution of photon detections centered very close to the

expected value x = 〈P 〉a. The measured expectation value is 〈P 17π
60
〉 = −0.19(2) (dark

counts subtracted). This result demonstrates that we have been able to realise and exploit

the PM concept, providing the estimation of the polarisation operator, 〈P 〉, by the detection

of a single photon.

This is further confirmed in Fig. 4 (e) and (f), presenting typical photon detection maps

for the input state |ψ 17π
60
〉 obtained from a small number of detected photons. Specifically,

Fig. 4(e) and (f) correspond respectively to the unprotected case (N = 14 detection events)

and to the protected one (N = 17 detection events); the circles drawn in the two figures

represent the width of the distributions reported in Fig. 4(a-d). As expected, there is a clear

concentration of the counts inside the circles that - despite the non-ideality of our SPAD

array, presenting a non-negligible level of dark counts likely responsible for the detection

events outside the circles- demonstrates the validity of our technique even when just few

detections are considered. The first detected photons in the runs are signified with white

pixels. We see that while the white pixel of Fig. 4(f) provides a good estimate of the

expectation value, we cannot learn much from the white pixel of Fig. 4(e).

Indeed, using a single photon is what makes PM special. Nevertheless, one could argue

that our experiment concerns a single post-selected photon (i.e. that survived all protection

stages) and allowing post-selection, one can perform a measurement yielding the expectation

value in the case of both weak and strong interaction.

It is obvious that the photon survival probability decreases when the interaction strength

grows, while increasing the number of interaction-protection stages decreases the uncer-

tainty, but also the survival probability. To discuss quantitatively the performances of PM

with respect to the straightforward alternative, a projective measurement exploiting, e.g., a

polarising beam-splitter, we plot in Fig. 5 the ratio R = uPBS(P )
u(P )

between the uncertainties

on 〈P 〉 (u(P ) and uPBS(P ) respectively, considering uPBS(P ) the uncertainty associated with

the measurement procedure saturating the Quantum Cramer-Rao bound, i.e. being equal
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FIG. 4: Results obtained for the input state |ψ17π
60
〉 = 0.629|H〉+ 0.777|V〉. Panels (a) and

(c): histogram and contour plot of the photon counts distribution obtained for the unprotected

state. Panels (b) and (d): histogram and contour plot of the photon counts distribution obtained

for the protected state. Panel (e): experiment with 14 single events (the first one in white), without

protection. The yellow dashed line indicates the x = a〈P 17π
60
〉 value. Panel (f): experiment with

17 single events (the first one in white), with protection: as expected, all the photons accumulate

around the x = a〈P 17π
60
〉 position (yellow dashed line).
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to the inverse of the square root of the Quantum Fisher information [25]). We consider in

both cases the same initial resources (photon number), taking into account the photons lost

along the interaction-protection steps (see Methods). We consider two different scenarios:

K = 7 (yellow surface) and K = 100 (blue surface) interaction-protection stages. One

immediately notices that, in both cases, PM is almost always advantageous (R > 1) with

respect to the projective measurement, going below the R = 1 plane (in magenta) only in

presence of extremely weak interactions. In our experiment, with ξ ∼ 0.4 and just K = 7, a

10% advantage is already present for most of the possible states, even if the maximum for R

corresponds to ξ ∼ 1. For K = 100, instead, the reasonably weak interaction ξ ∼ 0.4 grants

the maximum of the advantage (R > 8.5 almost everywhere), while for stronger interaction

the advantage is reduced to R < 4. The advantage of the protective measurement technique

stems from the very high survival probability of the protected photons. This comes from

the fact that, in presence of a sequence of identical interaction-protection stages as in our

scheme, the relative probability of losing a photon in a protection step decreases with the

single photon advancing in the sequence, since it is more likely to find the photon close to

the “right paths” created in our K interaction-protection steps (see Methods for theoretical

details).

It is also worth pointing out that our experiment is the first realisation of a “robust” WM

[26] at single photon level.

To conclude, our results demonstrate that a single-event detection can provide a reliable

information regarding a certain property of a quantum system -the expectation value of the

polarisation operator in our case- which was considered to be only statistical, belonging to

an ensemble of identically prepared quantum system. This means that PM can be useful

in practical situations where one wants to test an unknown state preparation procedure,

taking advantage of the fact that both the state preparation and the state protection are

performed exploiting the same projective measurement system (or equivalently a set of

identical projective measurements as in our case). This is the first experimental realisation

of protective measurements [5].
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FIG. 5: Comparison between the uncertainty on P with the PM approach (u(P)) and

the one given by projective measurement (uPBS(P)). Yellow surface: ratio R = uPBS(P )
u(P )

for a PM scheme with K = 7 interaction-protection stages (as in our experiment), plotted versus

the interaction strength ξ and the H-polarisation component (cos θ)2 of the single-photon state

|ψ〉. Blue surface: ratio R for a PM with K = 100 stages. Magenta surface: R = 1 bound,

discriminating the part where PM approach is advantageous (above) and disadvantageous (below)

with respect to the projective measurement.
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I. METHODS

A. Setup

Our experimental setup (Fig. 2) is composed of three parts. In the first one -the prepa-

ration stage- we produce single photons in well-defined polarisation states, by means of a

heralded single-photon source (SPS) based on Type-I Parametric Down-Conversion (PDC)

[27], and a state filtering system. The spatial mode is close to a Gaussian of width 4.1 pixels.

The second part contains a sequence of weak interactions and state protection mechanism,

the latter based on polarisation filters.

Finally, the photons are detected by a single-photon detector with a spatial resolution

consisting of an array of single-photon detectors.

Incidentally, the scheme for protective measurement has got some analogy with to the

one realised in [28, 29], but of course these two papers, aimed at realising sequential weak

measurements, do not consider any protection mechanism. Furthermore, in these cases two

weak interactions were considered, while in the actual scheme we have realised a challenging

sequence of 7 interactions in a row.

The SPS is based on a 796 nm mode-locked Ti:Sapphire laser (repetition rate: 76 MHz),

whose second harmonic emission pumps a 10×10×5 mm LiIO3 non-linear crystal, in which

correlated photons are produced by PDC. The idler photons (λi = 920 nm) are coupled to

a single-mode fiber (SMF) and then addressed to a Silicon Single-Photon Avalanche Diode

(SPAD), heralding the presence of the correlated signal photons (λs = 702 nm). These,

after being SMF-coupled, are addressed to a launcher injecting them into the free-space
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optical path, where the protective measurement protocol is implemented. After the launcher,

the heralded single photons are collimated by a telescopic system, and then prepared in

the linear polarisation state |ψθ〉 (by means of a calcite polariser followed by a half-wave

plate and a polariser). We have estimated the quality of our single-photon emission with

a Hanbury-Brown and Twiss interferometer, obtaining a value for the parameter α [30]

(directly connected to the second-order Glauber autocorrelation function g(2)) of 0.13±0.01

without any background or dark count subtraction, that being largely below 1 testifies the

quality of our single photon source.

The Hamiltonian evolution of the quantum state is induced by exploiting birefringence. In

our optical path we can insert up to K = 7 birefringent units, each of them composed of two

different calcite crystals (the number K = 7 of verification measurements was chosen from

practical considerations approximating the ideal case of large K; because of losses originating

from optical elements imperfections and because of the detector non-unit quantum efficiency

and dark counts, further increasing K would result in a low photon survival probability, and

consequently a low signal-to-noise ratio at the detector output). The first crystal of each

element is a 2 mm long birefringent crystal whose extraordinary (e) optical axis lies in the Y-Z

plane, with an angle of π/4 with respect to the z direction. Due to the spatial walk-off effect

experienced by the horizontally-polarised photons (i.e. along the x direction), horizontal

and vertical-polarisation paths get slightly separated along the x direction (coupling to the

pointer variable). The second crystal of each unit is a 1.1 mm long birefringent crystal with

the optical e-axis orthogonal to the beam (thus not contributing to the spatial walk-off) that

nullifies, through phase compensation, the temporal walk-off introduced by the first one.

The protection of the quantum state, implementing the quantum Zeno scheme, is realised

by inserting a thin-film polariser after each birefringent unit, projecting the photons on the

same polarisation of the initial state |ψθ〉. Uhlmann’s fidelities between reconstructed states

and theoretical expected states always exceed 99%.

At the end of the optical path, the photons are detected by a spatial-resolving single-

photon detector prototype. This device is a two-dimensional array made of 32× 32 “smart
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pixels” - each hosting a Silicon Single-Photon Avalanche Diode (SPAD) detector and its

front-end electronics [24], but we used only 32 × 20 pixels to avoid distortion due to dark

counts in the regions with negligible photon detection probability). The SPAD array is gated

with a 6 ns integration windows, triggered by the SPAD in the heralding arm in order to

reduce the dark counts and improve the signal-to-noise ratio.

Aside from the single-photon state |ψ 17π
60
〉 = 0.629|H〉+0.777|V 〉, with which we obtained

the data set presented in the paper, we tested our setup with other two states, namely

|ψπ
4
〉 = 1√

2
(|H〉+ |V 〉) and |ψπ

8
〉 = 0.924|H〉+ 0.383|V 〉.

The obtained results for these data sets, together with the one shown in the main paper,

are summarized in Fig. 6. As immediate to see, in the unprotected case the photon counts

accumulate around the positions x = ±a, forming the distributions reported in panels (a),

(b) and (c) for the states |ψπ
4
〉, |ψ 17π

60
〉 and |ψπ

8
〉, respectively. From these photon-counts

distributions, we can evaluate the expectation value of each state polarisation, obtaining

〈Pπ
4
〉 = −0.03(4), 〈P 17π

60
〉 = −0.21(2), 〈Pπ

8
〉 = 0.72(2), all in excellent agreement with the

theoretical expectations (〈Pπ
4
〉 = 0, 〈P 17π

60
〉 = −0.208 and 〈Pπ

8
〉 = 0.707, respectively).

When we introduce the protection mechanism, instead, we notice (panels (d), (e) and

(f)) that all the photons accumulate around a specific position, corresponding to x = a〈P 〉:

as stated in the main text, this means that each single photon carries information about the

expectation value of its polarisation, granting the possibility of extracting such value even

in a one-shot experiment with just a single photon. The expectation values obtained in the

protected case are respectively 〈Pπ
4
〉 = −0.012(14), 〈P 17π

60
〉 = −0.19(2) and 〈Pπ

8
〉 = 0.72(2),

in good agreement with the theory, as well as with the ones obtained without protecting the

single photons.

In order to obtain these values, the dark counts of the 32 × 32 SPAD array, responsible

for the “floor” of counts in all the six plots, were properly evaluated and subtracted.
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B. Theoretical analysis

In the following we will describe the theory behind the protective measurement technique

implemented in our experiment to extract the expectation value of the photon polarisation

P = |H〉〈H| − |V 〉〈V | by means of a measurement performed on a single protected photon,

where H and V are the horizontal and vertical polarisations. As explained in the paper,

for doing this we take advantage of a spatial resolving detector, thus it is quite obvious to

consider the space and polarisation degrees of freedom when we describe the wavefunction

of our single photon, i.e. |Ψin〉 = |ψ〉 ⊗ |fx〉 with |ψ〉 = cos θ|H〉 + sin θ|V 〉 and |fx〉 =∫
dx f(x)|x〉 where f(x) is a Gaussian curve whose square is normalised to one, namely

f(x) = (2πσ2)−
1
4 exp(− x2

4σ2 ).

The protective measurement consists of a sequence of identical interactions, exploiting the

spatial walk-off in non-linear crystals (using a technique completely analogous to the one used

in, e.g., [28]) corresponding to the unitary transformation U = exp(igP⊗ΠH) (being P the

momentum operator and g the von Neumann coupling constant between P and the projector

ΠH = |H〉〈H|), and the protective measurement, performed by exploiting the polarisation

projector Πψ = |ψ〉〈ψ|. Actually, this can be also described as a test on an unknown state

preparation procedure exploiting a series of identical projective measurements, the first one

really used to prepare (select) the single-photon state, while the other ones used as protective

measurements. After K steps of this sequence consisting of a weak interaction followed by

a protective measurement, the non-normalised output state of the single photons will be:

|Ψout〉 = (ΠθU)K |Ψin〉 =
(
〈H|Πθ|H〉eigP + 〈V |Πθ|V 〉1x

)K |Ψin〉. (3)

Thus, the probability that the protected single-photon survives after K interaction-

verification steps is psur(K) = Tr[|Ψout〉〈Ψout|], while the probability of finding the protected

single-photon in a specific position x0 of our spatial-resolving detector (given that it survived
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the verification process) is

FK(x0) = psur(K)−1 Tr[|x0〉〈x0|Ψout〉〈Ψout|] (4)

= psur(K)−1

(
K∑
n=0

K!

n!(K − n)!
〈H|Πθ|H〉n〈V |Πθ|V 〉K−nf(x0 + ng)

)2

. (5)

As explained in the paper, the spatially-resolved detection of the protected single-photon

provides an estimation of the value of P . A relevant question is related to the quality

of this estimation, i.e. the uncertainty that can be associated with this estimation. This

uncertainty is obviously associated to the uncertainty on the arrival position of one protected

single photon, related to the probability distribution profile FK(x). The uncertainty in the

position is u(x) =
√
ε(x2)− ε(x)2, with ε(xn) =

∫
dx xnFK(x). Then, we note that there

ia a correspondence between the value of 〈P 〉 and the average position ε(x), where the

protected single photon is detected, i.e., the H-polarisation corresponds to 〈P 〉 = 1 and the

position ε(x) = Kg
2

, while the V -polarisation corresponds to 〈P 〉 = −1 and the position

ε(x) = −Kg
2

(actually, the V -polarisation is not affected by the interaction according to

the unitary interaction operator U , while the H-polarisation is shifted by Kg, because of

the fact that each interaction induces a shift g, according to Eq. (5). Anyway, we decided

to shift the whole X axis by −Kg
2

for an easier comparison with the well-known Stern-

Gerlach experiment). Thus, the uncertainty on 〈P 〉 associated with the detection of a single

protected photon can be obtained simply by re-scaling the spatial uncertainty u(x), i.e.

u(P ) = u(x) 2
Kg

.

It is interesting to compare the performance of the protective measurement technique

presented above in situations of strong and weak interaction, corresponding to g � σ and

g � σ respectively, versus the usual technique involving a single strong measurement, for

example exploiting a polarizing-beam-splitter (PBS). In the PBS measurement, starting

from M initial photons in the polarisation state |ψ〉 the probability distribution of observing

m photons V -polarised (and, obviously, (M − m) H-polarised) is the binomial-one with

probability parameter (cos θ)2. Thus, the estimator of P is P = 2m
M
− 1 and the uncertainty

on this estimator can be evaluated as uPBS(P ) =
√
〈P 2〉 − 〈P 〉2 = | sin(2θ)|√

M
. This uncertainty
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level is easily demonstrated to be the optimal one in terms of quantum Fisher information

(indeed the quantum Fisher Information is H = sin(2θ)−2), i.e. the one that saturates the

quantum Cramer-Rao bound [25].

In order to provide a fair comparison between this PBS-based measurement and our

protective-measurement-based one we should consider the two measurement approaches ex-

ploiting the same initial resources, i.e. the same number of initial prepared photons. In

the protective measurement case we have considered the uncertainty associated with the

detection of a protected single-photon, but the probability of survival of a K-step protec-

tive measurement process is psur(K), this means that to have one protected photon arriving

at our ideal spatial resolving detector we need, on average, 1/psur(K) initial photons. To

perform a fair comparison, we set M = 1/psur(K) also in the PBS measurement case, and

we define the ratio between the uncertainties R = uPBS(P )
u(P )

. This is what we show in Fig.

4 of the main text, where R plotted versus the strength of the interaction (ξ in the main

text called interaction strength corresponds to the ratio g/σ) and the (linear) polarisation

state of the single photon |ψ〉 (specifically, (cos θ)2 is 〈ψ|ΠH |ψ〉), for K = 100 and K = 7

interactions. As already said, the protective measurement procedure is almost always ad-

vantageous (R > 1) with respect to the PBS measurement, and it becomes disadvantageous

only in the presence of extremely weak interactions (it is not shown in the figure, but, e.g.,

also for K = 100 and g/σ = 0.02 and |ψ〉 = 2−1/2(|H〉+ |V 〉) we have R = 0.996).

In the case of K = 7 (K = 100) interactions, the maximum advantage is R ∼ 3 (

R ∼ 8.5) for ξ ∼ 1 (ξ ∼ 0.4), while a strong interaction reduces our factor to R ∼ 1.6

(R ∼ 4). We underline that, considering a weak interaction exploiting, as in our experimental

configuration, birefringent crystals separating the H- and V -photons paths of 1.66 pixels,

but with K = 100 interaction-protection stages, one would observe a total separation of

166 pixels between H and V polarisations, an order of magnitude above the FWHM of the

single-photons spatial mode (a scenario similar to the one of Fig. 2 in the main text).

Here we want to stress that, even though projective measurement is an optimal mea-

surement for the parameter P , i.e. a measurement procedure able to reach the quantum
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Cramer-Rao bound [25], protective measurement allows obtaining an estimation of 〈P 〉 far

better than the one achievable with such method, surpassing this way the quantum Cramer-

Rao bound itself (being the state preparation procedure embedded in the protection scheme).

R can be understood also as a parameter identifying the resources needed to achieve the

same level of uncertainties in the two measurement techniques: in fact, to achieve the same

level of uncertainty, the initial number of photons needed in the PBS measurement is R2,

the one used in the protective measurement.

The advantage of the protective measurement technique comes from the very high survival

probability of the protected photons. As evident from Fig. SM3, indeed, with K = 100

interactions and g/σ ∼ 0.4 we have psur > 0.57 even for the most lossy state. Also in the

case of strong interaction g/σ = 6 the survival probability is surprisingly high (psur > 0.05).

To understand this, one should consider the situation in which the protective measure-

ment is performed without weak interactions: one has just to replace the “weak” birefringent

crystals by “strong” ones, or to use a beam of narrow width, such that the shift due to each

crystal will be much larger than the width of the beam (the situation depicted in Fig. 8).

Then, the readings of the detector provide the expectation value with a precision scaling

as 1/
√
K, where K is the number of interaction-protection stages. The 1/

√
K uncertainty

scaling with the number of interactions K presents some analogy with the one of the pro-

jective measurement, where the uncertainty scales of a factor 1/
√
N with the number N of

exploited photons.

The advantage can be understood observing the fact that the average number of photons

needed for observing a single protected photons, i.e. 1/psur(K), grows at a much slower pace

with respect to K, as shown in Fig. 7 (b). This comes from the fact that, in presence of a

sequence of identical interaction-protection stages as in our scheme, the relative probability

of losing a photon in a protection step because of unsuccessful protection measurement

decreases with the single photon advancing in the sequence since photons are more likely on

the “right path” (see Fig. 8).

Obviously, the above considerations assume an ideal scenario where the the only source of
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losses in the protective measurement is represented by the projection measurement preform-

ing the verification of the state, neglecting completely the optical losses induced by the real

optical devices present in the experimental setup. In the specific case of our experiment, the

optical losses greatly reduce the advantage discussed so far, but this is a technical limitation

that can be, in principle, strongly reduced. It is important to underline that the advan-

tage of the protective measurement technique can become absolutely relevant in a less lossy

measurement scenario, and that our proof-of-principle experiment and simulations pave the

way to the exploitation of the protective measurement approach in atomic or solid state

quantum systems, where losses are typically less than the ones experienced in photon-based

experiments.
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(a) (b) (c)

(d) (e) (f)

FIG. 6: Results obtained with the different polarisation input states exploited. Plots

(a), (b) and (c): photon count distributions obtained with three different input states (|ψπ
4
〉 =

1√
2
(|H〉+ |V 〉), |ψ 17π

60
〉 = 0.629|H〉+0.777|V 〉 and |ψπ

8
〉 = 0.924|H〉+0.383|V 〉 respectively) in 1200

s, without protection. In all these plots two different peaks centered in x = ±a, corresponding to

horizontally- and vertically-polarised single photons, are present. Plots (d), (e) and (f): photon

counts distributions obtained with the same set of states in 1200 s, protected. In contrast to

what present in the three panels above, here we can see a single peak of photon counts, centered

in correspondence of x = 〈P 〉a, demonstrating how, with protective measurements, each photon

carries information about the expectation value 〈P 〉. In both the protected and unprotected cases,

dark counts are estimated and subtracted before evaluating 〈P 〉.
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(a) (b)

FIG. 7: Photon survival probability in a protective measurement scheme. Plot (a):

Protected photon survival probability psur(K = 100) plotted versus ξ = g/σ (representing the

interaction strength) and (cos θ)2 (i.e. the H-polarisation component) of the single-photon state

|ψ〉. Plot (b): the shaded area represents the average number N of initial photons needed to

observe a protected photon at the end of the protective measurement process (1/psur(K)) versus

the number of interaction-protection stages K (the worst-case scenario, indicated by the blue curve

on the boundary, corresponds to the state |ψπ
4
〉). For comparison, a dashed line corresponding to

the linear scaling with K is reported.
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Interaction + 
compensation ProtectionProtection

Interaction + 
compensation

FIG. 8: Protected measurement scheme in case of strong interaction ξ >> 1. here, the

red lines represent the photon beams, with the H- and V -polarisation completely separated by

the birefringent crystals. From the second birefringent crystal pair (interaction+compensation

blocks) onwards, the H- and V -beam recombine in some spots (indicated by the yellow circle) in a

coherent way, forming a state with non-zero survival probability in the subsequent protection stage.

This effect results in a reduction of photon losses, specially close to the path corresponding to the

expectation value of 〈P 〉, granting advantage to the protective measurement scheme with respect

to the projective one even without weak interaction (although lower than when weak coupling is

exploited). This can be intuitively understood analising the probability distribution of the survived

photons considering |ψθ〉 = (|H〉+ |V 〉)/
√

2.
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