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1.  Introduction

The dispersion relation λ = c/ν is valid only for a plane wave. 
In a laser beam, since the wavefronts bend, the wavelength is 
different from one point to an other and it is different from 
c/ν. This effect it is known as diffraction and is an unavoid-
able phenomenon connected with the wave nature of light.

Diffraction has been extensively investigated to correct 
dimensional measurements by laser interferometry [1–14]. 
When the interfering beams are identical, the detector is infi-
nite, the optical path difference is small, and the displacement 
to be measured occurs along the beam axis, the fractional dif-
ference of the fringe period from the plane wave wavelength 
is proportional to the divergence square which, for generic 
paraxial beams, is expressed by the eigenvalues of the second-
moment matrix of the angular power-spectrum.

For the dissemination of the unit of length, lasers are cali-
brated against frequency standards. The frequency calibration 
achieves relative uncertainties smaller than 10−10, but trans-
lating frequency into wavelength requires the characteriza-
tion of the laser beam and the correction for the effects of 

diffraction. By using Gaussian approximations of the inter-
fering beams, the correction is proportional to the divergence 
square and, typically, ranges from parts in 10−7 to parts in 
10−9. However, high accuracy measurements and poor 
beam quality require the determination of the second central 
moment of the angular power-spectrum, which is the way to 
generalize the divergence concept to arbitrary paraxial beams. 
In this paper, we review the angular power spectrum measure-
ment and the basic formulae for the correction calculation and 
illustrate a new view onto the data analysis, which exploits 
symmetries to filter the noise without loss of information and 
to gain visibility of the beam diffraction.

Next, our new view is applied to the INRIM’s measure-
ments of the lattice parameter by combined x-ray and optical 
interferometry [15–17]. These measurements were corrected 
by imaging the angular power-spectrum in the focal plane of 
a converging lens [18]. The required accuracy raised ques-
tions about the power-spectrum measurements and correction 
estimates. Recently, a joint INRIM and PTB investigation 
brought into light the presence of small spectrum comp
onents at relatively large angles—consistent with the Airy 
patterns from diffraction-limited fiber-collimator lenses—
that went unnoticed in the previous analyses. Section 4 com-
pares the present and previous data analyses and shows the 
improvement achieved. The updated corrections are given in 
section 5.
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2. Theory

2.1.  Fourier optics

The angular spectrum of a paraxial beam, u(x, y; z)eikz, which 
propagates along the z axis with wave-number k,

ũ( p, q; z) =
1

2π

∫∫ +∞

−∞
u(x, y; z)e−i( px+qy) dpdq,� (1)

is its Fourier transform in terms of plane waves with variable 
propagation directions [5, 19]. In (1), x,y are the transverse 
coordinates, p = kθx and q = kθy are the reciprocal coordi-
nates, and the θx,y angles identify the propagation directions of 
the plane waves. The beam axis, i.e. the propagation direction 
of the u(x,y;z) center of mass, π0, is identified by the center of 
mass of the power spectrum |ũ( p, q)|2. Hence,

π0 =

∫∫ +∞

−∞
π |ũ( p, q)|2 dpdq,� (2)

where π = ( p, q)T, the power spectrum is independent of the 
z coordinate, and we assumed that u(x,y;z) and ũ( p, q; z) have 
unit norm. The second central moment is

Γ0 = 1/k2
∫∫ +∞

−∞
(π − π0)(π − π0)

T|ũ( p, q)|2 dpdq� (3)

and it generalizes the divergence concept.

2.2.  Diffraction correction

In the interference of two identical and coaxial paraxial 
beams, whose complex amplitudes differ only by free-space 
propagation, the difference between the period of the inter-
ference pattern integrated by an infinite detector, λe, and the 
plane-wave wavelength, λ = 2πc/ω, is

λe − λ

λ
=

γ2
1 + γ2

2

2
� (4)

where the propagation difference is assumed much smaller than 
the Rayleigh length and γ2

1,2 are the eigenvalues of the second 
central moment matrix Γ0 of the beam angular power spec-
trum. Equation (4) is the weighted average of each ray cosine-
error, it originates from the spread of the transverse impulse 
of the photons, and it holds for any paraxial beam, no matter 
if its profile is Gaussian or not. In the case of Gaussian beams 
having cylindrical symmetry, ∆λ/λ = θ2

0/4 = 1/(kw0)
2, 

where ∆λ = λe − λ, and θ0  and w0 = 2/(kθ0) are the beam 
divergence and the 1/e2 radius at the waist.

If the interfering beams are Gaussian, the generalization of 
(4) to non-coaxial beams,

λe − λ

λ
=

(1 − x2
0/w2

0)(γ
2
1 + γ2

2)

2
+

α2

2
+

β2

2
,� (5)

is given in [7]. In (5), x0 is the shear of the beam axes at the 
beam waists, 2α is the misalignment between the beam axes, 
and β is the angular misalignment between the measurand dis-
placement and the axis of the measurement beam. The β2/2 
term is of geometrical origin; it expresses that the displacement 

occurs at an angle β with respect to the beam axis. The α2/2 
and x0/w0 terms take the decoupling of the interfering rays, 
which is due the combination of displacement and spread of 
the ray bundle, into account.

In order to calculate ∆λ/λ by the focal plane method 
[18], a key observation is that γ2

1 + γ2
2 = Tr(Γ0), where 

Tr(Γ0) is the trace of second moment matrix. Hence, (4) can 
be rewritten as

λe − λ

λ
=

Tr(Γ0)

2
.� (6)

A second key observation is that the calculation of Tr(Γ0) 
requires the integration of the univariate function I(θ) 
resulting from the power-spectrum averaging over the azi-
muth φ of the propagation directions. In fact,

Tr(Γ0) =

∫ +∞

−∞

∫ +∞

−∞
(θ2

x + θ2
y )I(θ) dθxdθy =

∫ +∞

0
θ3

[∫ 2π

0
I(θ,φ) dφ

]
dθ

= 2π
∫ +∞

0
θ3I(θ) dθ,

�

(7)

where I(θ) = |ũ(kθ)|2 is the normalized power-spectrum, 

θ = (θx, θy) is any propagation direction, and θ = |θ| =√
θ2

x + θ2
y  and φ = arctan(θy/θx) are elevation and azimuth 

coordinates in the reciprocal space, whose origin is the beam-
axis direction. Equation  (7) makes it possible to reduce the 
noise of the focal plane image, to trace back the identification 
and elimination of the camera dark-noise to a more tractable 
one-dimensional fitting problem, and to bring into light spec-
trum-details otherwise invisible.

3.  Combined x-ray and optical interferometry

An x-ray interferometer consists of three Si crystals cut so 
that the {2 2 0} diffracting planes are orthogonal to the 
crystal surfaces [15, 16]. X rays (17 keV Mo Kα source) are 
split by the first crystal and recombined by the third, which 
is called the analyser, via a mirror crystal. When the anal-
yser is moved orthogonally to the {2 2 0} planes, a periodic 
variation of the transmitted and diffracted x-ray intensities is 
observed, the period being the diffracting-plane spacing, d. 
The analyser embeds a front mirror, so that its displacement is 
measured by optical interferometry. The measurement equa-
tion is d = mλ/(2n) where n is the number of x-ray fringes in  
m optical fringes of λ/2 period.

In 2014, the INRIM made seven measurements of the lat-
tice parameter. Three from February to March, with the inter-
ferometer crystals arranged as in the parent ingot (side A). 
Four from May to June, with the inverted analyser (side B). 
The measurements, whose accuracy approached 10−9d, were 
corrected for the difference between the effective period of 
the integrated signal and the wavelength of a plane wave. In 
each measurement campaigns, the angular power-spectrum of 
the beam emerging from the optical interferometer was meas-
ured by using the Fourier transforming properties of a lens. 
Exemplar results are shown in figure 1.

Metrologia 54 (2017) 559
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In February, we used a Hilger and Watts TA3 autocollimator 
equipped with a COHU 6710 CCD camera; the focal plane cal-
ibration was 7.2(2) µrad/pixel, but the resolution was limited 
to 8 bit and the captured images were affected by a large dark 
noise. The fixed-pattern noise visible in the residuals is due to 
non-uniformity of the dark currents on the chip; the dark spots 
are due to dust particles inside the autocollimator.

In May, we used a converging lens having 0.5 m focal 
length; the focal plane image was acquired by a cooled  
16 bit HAMAMATSU CMOS camera FLASH 4.0 having 
much less readout and dark noises. The focal plane was iden-
tified by checking that parallel translations of a laser beam do 
not cause translations of the beam image; calibration, about 
13.3(4) µrad/pixel, was accomplished by tilting the beam by 
known angles. The linear fringe pattern in the residuals—also 
visible in the February data—might be due to a scratch on the 
interferometer optics. The rotation between the February and 
May images is due to the different assembling of the cameras.

4.  Data analysis

Up to now, we did not realize that, since it can be expressed 
in term of Tr(Γ0) (which is independent of the Γ0 representa-
tion), ∆λ/λ depends only on the second moment about the 

center of mass and it can be obtained by the application of 
(7). Therefore, we resorted to the Γ0 eigenvalues and esti-
mated the full second-moment matrix of the images. Since the 
dark noise limits the accuracy of the Γ0 calculation by sums 
over the pixels (the noise in the tails has the heaviest weight 
and errors in identifying and subtracting it yield oversized or 
undersized estimates), the pixels far from the center of mass 
can be advantageously discarded [20]. Attention was given to 
the trade-off between clipping and noise rejection; but, as part 
of the spectrum is rejected too, there were unavoidable subjec-
tivity and uncertainty. Therefore, in [15, 16], we estimated Γ0 
by fitting the bivariate Gauss function

Î(θ) + C = A exp(−θTΓ−1
0 θ/2) + C� (8)

to the focal plane data IFP(θi). The results are shown in 
figures 1 and 2.

The PTB developed a procedure to obtain the angular spec-
trum via the discrete Fourier transform of two-dimensional 
samples of the complex amplitude estimated from wavefront 
and intensity profiling by means of a Shack–Hartmann sensor 
[15]. In this case, the intensity and wavefront samples are 
fitted by using bivariate Gauss functions (intensity samples) 
and Zernike polynomials (wavefront samples) as bases. Next, 
the results are combined to give the complex amplitude, which 

Figure 1.  Normalized images of the laser beam. Top: February 2014 measurement, COHU 6710 camera. Bottom: May 2014 measurement, 
HAMAMATSU FLASH 4.0 camera. Left: focal plane images. Right: residuals after subtracting the dark noise and bivariate Gauss 
functions. The colours indicate the normalized intensities of the images and residuals.
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is re-sampled to calculate the angular spectrum by discrete 
Fourier transform. Owing to the data smoothing, the spectrum 
is free of noise, so that the mass center and second moments 
can be obtained from sums over the samples.

A comparison of the INRIM and PTB power-spectrum meas-
urements, done by means of travelling standards realized in the 
form of single-mode fibers equipped with collimators, brought 
into evidence that the INRIM’s smoothing of the focal-plane 
images by Gauss functions was unable to take small spectrum 
components at relatively large angles into account. As shown in 
figure 2 and [16], this problem went unnoticed, but it is brought 
into light by the logarithmic plots shown in figures 3 and 4.

In order to eliminate the difficulty of capturing these 
components by fitting analytically-specified freeform shapes 
to the two-dimensional images, the PTB rethought about the 
problem and realized that it can be made one-dimensional as 
shown in (7). Since the impact of noise is reduced in the pro-
cessing, I(θ) can be approximated binning the pixels having 
the same (rounded) radial coordinate. The integration over the 
radial direction is done by fitting

Î(θ) + C = e−Qθ2

[
n∑

i=1

AiLi(Qθ2)

]2

+ C,� (9a)

where the Gauss–Laguerre functions are used as basis, to the 
binned data, IFP(θi). When the spectrum components to be 
modelled are many orders of magnitude smaller than the spec-
trum peak, it is convenient to fit

θ2Î(θ) + Cθ2 = θ2e−Qθ2

[
n∑

i=1

AiLi(Qθ2)

]2

+ Cθ2�

(9b)

to the θ2
i IFP(θi) data. Figures 3 and 4 show the binned data 

and compares (9a) and (9b) against Gauss functions. It is 
worth noting that (9a) and (9b) are tools to remove the dark 
noise, to smooth the binned data and to ensure that Î(θ) > 0 
and that the integrals in the trace calculation converge and 
are insensitive to the dark noise. From a physical viewpoint, 
(9a) and (9b) model effective beams having the same central 
second-moment, but cylindrical symmetry. Figure 5 shows the 

Figure 2.  Green dots: radial plot of the focal plane images shown in figure 1. Red: bivariate Gauss functions fitting the data. Left: February 
2014 measurement, COHU 6710 camera. Right: May 2014 measurement, HAMAMATSU FLASH 4.0 camera.

Figure 3.  Green dots: radial (logarithmic) plot of the focal plane images shown in figure 1. The radial bins are 10 µrad wide. Left: 
February 2014 measurement, COHU 6710 camera. Right: May 2014 measurement, HAMAMATSU FLASH 4.0 camera. Gauss functions 
(red) and (9a) and (9b) models (blue) fitting the data are also shown.
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convergence of the Tr(Γ0) estimate with respect to the number 
n of basis functions.

The initial estimate of the beam-axis direction is found by 
the fitting of a bivariate Gauss function to the data. Since the 
trace of the non-central second-moment matrices,

Tr(Γ1) = Tr(Γ0) + |θ1 − θ0|2,� (10)

where θ1 is any direction, exceed Tr(Γ0) by the square of the 
θ1 distance from the beam axis direction θ0, the center uncer-
tainty propagates into an overestimate. It is worth noting that 
β1 = |θ1 − θ0| is the angular misalignment between the beam 
axis and the θ1 direction. Therefore, if the displacement occurs 
along θ1, the Tr(Γ1)/2 error includes the β2

1/2 contribution of 
(5). This brings into light that the splitting of the fringe-period 
error in diffraction and cosine contributions is conventional. 
Equation (10) suggests to improve the correction estimate by 
minimizing the trace calculation versus the non-centrality of 
the second moment. As it is shown in figure 6, this is done by 
fitting the

Tr[Γ(θx, θy)] = a0 + axθx + ayθy + (θ2
x + θ2

y )� (11)

parabola to the traces of a number of non-central moments.

5.  Results

The table 1 compares the old and new diffraction corrections 
obtained by fitting bivariate Gauss functions (2010 and 2014) 
and models (9a) and (9b) (2017) to the focal plane images 
of the beams exiting from the INRIM’s combined x-ray and 
optical interferometer. In 2010, to check the measurement pro-
cedure, the INRIM used different fiber collimators. In 2014, to 
investigate the beam clipping by the interferometer optics and 
the difference between the two interfering beams, the power-
spectrum measurements were carried out separately on both 
the reference and measurement beams (May 2014, analyser 
side B) and with a variable iris in the optical path (February 
2014, analyser side A).

In 2010, the measured values of the lattice parameter car-
ried out with the analyser assembled in the front (side A) and 
inverted (side B) layouts were separately corrected; in 2014, 
all the measured values were corrected for the same, average, 
error. The new corrections values have been obtained by reex-
amining the archive files of the angular power-spectrum meas-
urements and by recalculating the second central moments. 
All the corrections were obtained by minimizing the trace 
calculation versus the non-centrality of the second moment.

Four terms contribute to the correction uncertainty: the 
calibration of the focal plane coordinates, the focus of the 
autocollimator and telescope, the integration of the noisy 
data points, and scattering by dust particles in the beam path.  

Figure 4.  Green dots: radial (logarithmic) plot of the θ2
i IFP(θi) data 

shown in figure 3 (right). The radial bins are 10 µrad wide. The 
Gauss function (red) and (9b) model (blue) fitting the data are also 
shown.

Figure 5.  Tr(Γ0)/2 estimate from the data shown in figure 4 versus 
the number n of basis functions in (9b).

Figure 6.  Diffraction error versus the non-centrality of the second 
moment. The red dots are the non-central moments of the focal 
plane image shown in figure 1 (top). The paraboloid fitting the data 
is also shown; the minimum coordinates indicate the propagation 
direction of the beam.
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Table 1.  Diffraction correction, expressed in nm m−1, calculated by fitting the focal plane images of the beam with Gauss functions (2010 
and 2014) and the model (9a) and (9b) (2017). To allow the lattice parameter values published in 2011 [15] and 2015 [16] to be  
re-corrected, the new corrections are given (2017), together with the ones applied applied in 2010 and 2014.

Data file

∆λ/λ ∆λ/λ

Data file

∆λ/λ ∆λ/λ

2010 2017 2014 2017

Analyser side A

Collimator 12 mma 7.16 8.17 Iris 9 mma 3.89 5.45
Collimator 12 mma 7.16 8.29 Iris 9 mma 3.94 5.42
Collimator 12 mmb 7.36 7.51d Iris 10 mma 3.84 4.92

Iris 10 mma 3.84 5.27
Old and New correction 7.26(65) 8.2(1.2)d

Analyser side B

Collimator 15 mma 8.93 15.56 Interfering beamsc 4.08 6.13
Interfering beamsc 4.15 5.64
Reference beamc 4.00 6.26
Measure beamc 4.00 5.94

Old and new correction 8.93(85) 15.6(2.3)
Old and new correction 3.97(60) 5.63(85)

a Hilger and Watts TA3 autocollimator and COHU 6710 camera.
b Converging lens and COHU 6710 camera.
c Converging lens and HAMAMATSU FLASH 4.0 camera.
d Owing to a non-optimized beam intensity, only the Gaussian tip of the angular power-spectrum is detectable. Therefore, this value was excluded from the 
2017 average.

Figure 7.  Measured values of the 28Si lattice parameter versus the correction for the laser-beam diffraction. The measurements were made 
from 2010 to 2014. Red: 633 nm He–Ne laser. Green: 532 nm frequency-doubled Nd:YAG laser. Left: focal plane data fitted with Gauss 
functions. Right: focal plane data fitted with (9a) and (9b) models. Blue: best lines fitting the data.

Figure 8.  Corrected lattice parameter values versus the applied correction. The measurements were made from 2010 to 2014. Red: 633 nm 
He–Ne laser. Green: 532 nm frequency-doubled Nd:YAG laser. Left (reproduced from [16]): focal plane data fitted with Gauss functions. 
Right: focal plane data fitted with (9a) and (9b) models. Blue: best lines fitting the data.
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The uncertainty of the focal plane calibration is 4%. The frac-
tional error due to a detection offset σz ≈ 2 mm with respect 
to the focal plane is

σTr

Tr(Γ)
≈ 2|F − z0|σz

F2 ,� (12)

where F  =  0.5 m is the focal length and z0 the distance of the 
beam waist from the lens principal plane. We don’t know were 
exactly is the beam waist, but assuming |F − z0| ≈ 3 m, which 
is compatible with the size of the experimental set-up, the 
fractional uncertainty is 5%. As regards the momentum calcul
ation, the observed variability associated to different binning 
of the power-spectrum samples and the number of basis func-
tions is about 5%. Though this uncertainty is reduced by the 
averaging over different binnings implied by the momentum 
minimization, we nevertheless maintained the 5% fractional 
uncertainty. Eventually, the last source of uncertainty is the 
forward scattering by dust particles. Putting it all together, we 
cautiously associated to the 2017 corrections given in table 1 
a fractional uncertainty equal to 15%.

In [16], to check the correction estimate, we examined 
the results of a number of test d220 measurements carried 
out from 2010 to 2014 with different laser beams. The 
measurement results are shown in figure 7 together with the 
relevant correction for the diffraction. The corrected values 
given in [16] and reproduced in figure  8 (left) suggested 
overestimated corrections, but we were unable to shed light 
on the problem. All the archive files of the angular power-
spectrum measurements made at the time were reexamined 
and the second central moments recalculated by fitting (9a) 
and (9b) to the focal plane data. Though these test measure-
ments were not explicitly carried out to study diffraction 
and not all of them own a full experimental check of the 
error budget, the results given in figures 7 and 8 (right) show 
that the supposed overestimate disappears and confirm the 
improvement achieved.

6.  Conclusions

An error was found in the estimate of the correction for the 
laser-beam diffraction of the INRIM measurements of the 28Si 
lattice parameter by combined x-ray and optical interferometry 
[15, 16]. Specifically, the correction—which is proportional to 
the second central moment of the angular power-spectrum—
was calculated as relevant to the bivariate Gaussian-beam that 
most closely approaches the measured spectrum. However, 
small spectrum components at large angles went unnoticed, 
but they had a significant effect on the momentum.

The archived measurements of the angular power-spectrum 
were reexamined and the second central moments recalculated 
by exploiting symmetries to filter the noise and to reduce the 
calculation to a one-dimensional integration. This allowed for 
high-order analytical approximations of the one-dimensional 
data and more accurate momentum calculations. To allow the 
lattice parameter values given in [15, 16] to be re-corrected, 

the newly calculated corrections have been given, together 
with the applied ones.

The results obtained bring into light the importance of 
beam characterization when calibrating wavelength standards 
for optical interferometry. The transposition of the frequency 
uncertainty into the wavelength one might lead to underesti-
mations; high-accuracy measurements or poor beam quality 
might also require the specification of the beam angular 
spectrum.
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