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Abstract

We show how the same set-up and procedure, exploiting spatially multi-
mode quantum correlations, allows the absolute calibration of a EMCCD
camera from the analog regime down to the single photon counting level, just
by adjusting the brightness of the quantum source. At single photon level
EMCCD can be operated as an on-off detector, where quantum efficiency
depends on the discriminating threshold. We develop a simple model to
explain the connection of the two different regime demonstrating that the
efficiency estimated in the analog (bright) regime allows to accurately predict
the detector behaviour in the photo-counting regime and vice-versa. This
work establishes a bridge between two regions of the optical measurements
that up to now have been based on completely different standards, detectors
and measurement techniques.



One of the main direction in modern optics is the development of quan-
tum technologies, such as quantum communication, imaging and sensing,
where single photon [1, 2, 3, 4] or few photon states of light are generated
manipulated and detected [5, 6, 7, 8]. Development of dedicated methods for
characterizing detectors in this context is necessary, as widely recognised in-
side the radiometric community [9]. Single photon regime is far from the one
where traditional radiometry operates and where the best accuracy is avail-
able [10]. Some specific activities in this context are already on-going[11], in
particular related to the calibration of single-photon detectors exploiting the
Klyshko’s twin-photon coincidence technique [12, 13, 14, 15, 16, 17, 18, 19]
and its developments [20, 21, 22, 23, 24, 25, 26, 27].

Beside the commonly used on-off and single-photon avalanche photodi-
odes without spatial resolution new types of detectors are considered for spe-
cific application to overcome their limitation, namely photon number resolv-
ing and spatially resolving detectors. Among them Electron-multiplication
charge-coupled-devices (EMCCDs) cameras represent a commercial and dif-
fuse approach for single- and few-photon imaging when high spatial resolution
is required. EMCCDs and intensified CCD have been used also for top level
experiments in quantum optics and quantum information technology when
many spatial modes have to be detected, from sub-shot noise imaging [28],
quantum illumination [29] and ghost imaging [30] to detection of EPR state
and entanglement of orbital angular momentum [31, 32, 33, 34, 35].

In this paper we present the absolute calibration of a EMCCD camera,
operated in photon counting regime as a threshold detector (”on-off”) pixel
by pixel, by the measurement of spatially multi-mode quantum correlation
in squeezed vacuum. The ”on-off” behaviour is achieved by applying a dis-
criminating threshold T on the electron counts ne at each pixel: a photon
is detected if ne > T . In this regime, the camera works as a non-linear
photon number resolving detector, counting the number of incident photons
in a region of many pixel (spatial multiplexing) and acquiring many frames
(time multiplexing). Hereinafter, we assume to work in condition of low illu-
mination (negligible probability to have more than one photon per pixel per
frame); in such condition the device can be approximated as a linear photon
counting detector.

The main difference between the Klyshko’s twin photon coincidence tech-
nique and the method presented here stems from the fact that we com-
pared the number of detected photons in correlated areas in a large inte-
gration time, exploiting a technique that was developed for CCD in ana-
log regime [36, 37, 38, 39, 40, 41]. In particular, we measure the noise
reduction factor ζ = 〈[δ(N1 − αN2)]

2〉/〈N1 − αN2)〉 and the correlation
C = 〈N1N2〉−〈N1〉〈N2〉; where α = 〈N1〉/〈N2〉, N1 and N2 being the number
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of photons in the two correlated areas. These quantities are related to the
mean detection efficiency η by: ζ ≃ 1+α

2
− ηA and C ≃ ηA〈N1〉 both in

analog and photon counting regime for low photon number per mode; where
A is a geometrical parameter [41].

Even if, in principle, also in the case of an EMCCD operated in photon
counting it would be possible to exploit the Klyshko’s twin photon technique,
there are a certain number of practical reasons preventing its use: Klyshko’s
technique needs an illumination regime providing not more than one coinci-
dence per frame, but in this illumination range the noise becomes dominant.
Moreover, the read time of an EMCCD is higher respect to single photon
detectors, yielding Klysko’s technique very slow.

It is important to note that the detection efficiency includes both the
transmission efficiency of the optical detection system and the CCD camera
quantum efficiency. The efficiency of the CCD could be measured by per-
forming a conventional calibration of the losses in the optical channel through
a trasmissivity measurement (as in the Klyshko’s twin-photon technique).

In this work, we exploit the same procedure for the absolute calibration of
the detection efficiency both for the EMCCD operating in proportional (ana-
log) regime (i.e. without electron-multiplication) and when it is operating in
photon counting regime under the assumption of low illumination. Then, we
compare the results obtained in the two regimes for the same device and the
same experimental set-up (only the power of the source of twin-photon has
to be tuned, as well as the mode of operating of the camera). We have to
consider that in photon counting regime the detection efficiency is a function
of the threshold. Therefore, it is not possible performing a direct comparison
between the efficiencies for the two regimes. However, it is possible calcu-
lating the dependence η(T ) by the measured value of the analog quantum
efficiency η0 and to compare this with the measured efficiency in photon
counting.

This quantum efficiency measurements, obtained for the same detector
operated in proportional and photon-counting regimes, is the most significant
result of this paper that takes advantage of the unique versatility in terms of
regimes of operation of our detector.

In order to obtain the theoretical behaviour for the noise and for the
quantum efficiency η(T ) of our camera, we analyse the typical model of an
EMCCD [42, 43], then we estimate the parameters involved in this model
by means of a set of measurements that are independent on the absolute
calibration.

For n photoelectrons at its input, the multiplication stage of each pixel
provides a random number of electron counts x following the distribution
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[44]:

P(x|n) = xn−1exp(−x/g)

gn(n− 1)!
for n > 0; (1)

P(x|n) = δ(x) for n = 0; (2)

where g is the mean multiplication gain. As the total number of electron
counts per pixel is due to the contribution of photoelectrons multiplication
counts and to the noise counts, the electron counts random distribution at
the output is the convolution of P(x|n) with the noise distribution:

Ptot(x|n) =
∫

∞

−∞

P(y|n)Pnoise(x− y)dy. (3)

The most relevant noise contributions typically affecting an EMCCD are:
read noise, dark current and spurious charges.

The read noise, generated by the on-chip output amplifier, follows a Gaus-
sian distribution Prn(x;µ, σ) where the mean value µ is the bias level of the
read-out distribution and the standard deviation σ characterizes the fluctu-
ation of read noise:

Prn(x;µ, σ) =
1

σ
√
2π

exp

[

−(x− µ)2

(2σ2)

]

. (4)

The dark current is due to thermally generated charges and strongly
depends on temperature and acquisition time. Generally, it can be inde-
pendently measured and subtracted from data. In our case, the camera
parameters can be set to have a negligible contribution of dark current.

Spurious charges, also called Clock Induced Charge (CIC), are created
during the fast clock variations required for shifting the photoelectrons to
the readout register. CIC generate an electron counts distribution Psc(x|n)
that has the same behaviour of equations 1 and 2, but with gain gsc lower
than g.

In a reasonable operating configuration, the probability to have more then
one spurious charge is negligible. Therefore, the random probability distri-
bution of the electron counts, in the absence of illumination (i.e. electrons
generated by photon absorption), is:

Pnoise(x) = (1− psc)Prn(x) + psc

∫

∞

−∞

Prn(y)Psc(x− y|n = 1)dy, (5)

where psc is the probability to have a spurious event, and the probability
that a pixel clicks due to the noise is:

Noise(T ) =
∫

∞

T
Pnoise(x)dx. (6)
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The definition of detection efficiency, for a camera in single photon count-
ing regime, is: η(T ) = Ptrue(T )/pph, where Ptrue(T ) is the probability that a
pixel clicks (x ≥ T ) due to an incident photon and pph is the probability to
have an incident photon. When operating with a sufficient low light level, it
is possible to assume that at most one photon is detected per pixel. Under
this condition, the probability that a pixel clicks is:

Pclick ≃ η0pphP1(x ≥ T ) + (1− pph)Pnoise(x ≥ T ) (7)

where η0 is the probability that an incident photon generates a photo-electron
and corresponds to the analog detection efficiency. If we use a threshold
sufficiently high to cut out the main part of the read noise (T ≥ 2σ + µ),
it is possible to assume that double detection event on the same pixel are
negligible (for double detection events we intend all possible combinations:
photon-photon, photon-noise, noise-noise). Therefore, we have:

Pclick ≃ η0pphP1(x ≥ T ) + Pnoise(x ≥ T ) (8)

Ptrue(x ≥ T ) = η0pphP1(x ≥ T ) ⇒ η(T ) = η0P1(x ≥ T ). (9)

hence, the number of click per frame is: Nclick = Ntrue + Nnoise and we can
measure the number of true counts, used for calculate ζ and C, as Ntrue =
Nclick −Nnoise.

The function P1(x) represents the electron counts distribution under the
assumption that there is at most one photon per pixel, that there are no
spurious counts and taking into account the contribution of the read noise:

P1 =
∫

∞

−∞

1

σ
√
2π

e
−(y−µ)2

2σ2 P1(x− y)dy, (10)

where P1(x) = P(x|n = 1) = g−1e−x/g is the distribution of electron counts
generated by one photon.

For what concerns our camera, we have estimated independently all the
parameters involved in the models. Therefore, we are able to predict the be-
haviour of detection efficiency and noise in function of an arbitrary threshold
T and in function of the analog detection efficiency η0.

Figure 1 presents the histogram of the electron counts distribution for
a frame acquired with closed shutter (no input light): showing an excel-
lent agreement between the experimental data and the theoretical predic-
tion in equation 5. Two different behaviours are clearly visible: at low
counts level the Gaussian contribution of read noise is dominant; instead,
at high counts level only the exponential contribution of spurious charges
is observable. By fitting the theoretical distributions of read noise, on the
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first part of the histogram we estimate µ = 507.9(0.3)counts/pixel, σ =
24.88(0.03)counts/pixel and by fitting the distribution of spurious charge
on the second part of the histogram we estimate the parameters psc =
0.0044(0.0006) and gsc = 141(2)counts/pixel.

Figure 1: Logarithmic scale histogram of the electron counts distribution
for a frame acquired without incident light (blue dots). Gaussian (red line)
and exponential (orange line).

Figure 2 shows the histogram of the electron counts distribution for a
frame acquired with input light. The light intensity was selected to avoid
double events, but, at the same time, to guaranty that spurious charges are
negligible respect to photoelectrons. By fitting the theoretical distributions
P1(x) on the part of the histogram in which the read noise is negligible we
estimate the mean multiplication gain of the camera g = 147(2)counts/pixel.

Figure 2: Logarithmic scale histogram of the electron counts distribution
for a frame acquired with incident light (blue dots). Exponential curve fit
(orange line).
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All the uncertainties are evaluated on a set of 35 frames acquired under
the same illumination conditions. For each frame we perform a fit. Figures
1 and 2 are examples of two particular frames histograms, in presence and
in absence of illumination respectively.

Our set-up (Figure 3) is composed by a diode laser, operating at λ =
406nm in pulsed mode, synchronized with the exposure time of a electro-
multiplied CCD camera (EMCCD). The laser is coupled in a single mode
fibre providing a well Gaussian shaped beam, the beam is then collimated,
and a polarising beam splitter (PBS) selects the vertical component of the
polarization. The laser beam pumps a 5×5×15mm3 BBO non-linear crystal
of Type II, where two correlated beams are produced through spontaneous
parametric down conversion. The generated twin beams are sent to the
EMCCD by two plane mirrors. A far field lens with a focal length of f = 10
cm is located in a f − f configuration, between the output surface of the
crystal and the detection plane. An interference filter at 800 nm with 40 nm
bandwidth and a central transmittivity of 99% is put in front of the camera.
The phase matching is set to maximizing the emission around the degenerate
wavelength (λ = 812nm).

Figure 3: Schematic representation of the experimental apparatus.

Figure 4 shows the behaviour of η(T ) derived by the model of EMCCD
(Equation 9) and compares it with the experimental results showing a per-
fect agreement with the theoretical prediction. The analog quantum ef-
ficiency, derived using the same technique based on twin beam in analog
regime[40, 41], is η0 = 0.54(0.02). It is worth recalling that η0 and η rep-
resent the detection efficiency of the beam at 812nm, including both the
transmission efficiency of the optical detection system and the CCD camera
quantum efficiency. It is important to note that the model and the measure-
ment technique, based on twin beams, are not valid for low threshold level
when the noise contribution becomes dominant. In our system this happen
approximately for T < 560 counts. Figure 5 shows the level of noise in pho-
ton counting regime and the corresponding theoretical level provided by the
Equation 5.
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Figure 4: Quantum efficiency, in function of the threshold T , estimated ex-
ploiting spatial correlations of quantum twin beams. The continuous line
shows the theoretical prediction calculated by equations 9 and 10, and by
mean of the preliminary estimation of η0.

The results shown in Figure 4 represent the first absolute calibration of
the quantum efficiency of an EMCCD operating as a threshold detector.

The comparison shows that the behaviour of the detection efficiency of
the EMCCD, in on-off regime after threshold application, is completely pre-
dictable by a simple model that is function of the measured value of the gain
of the electro-multiplication register, of the efficiency measured in the analog
regime and of the chosen threshold T . Thus, on the one side we achieve a
complete characterization and understanding of the behaviour of a device
acquiring more and more importance in the field of single photon measure-
ment. On the other side, we establish a bridge between the light intensity
level typical of classical radiometric measurements, the analog regime and
the quantum radiometry operating at single-photon level [9, 11].

The possibility to use the same absolute calibration technique, for the
same device, both for photon counting regime and for analog regime pro-
vides a radiometric link between low illumination regime (few photons) to
the mesoscopic and to the classical macroscopic ones. This represents an
important step in the development of quantum radiometry providing trace-
ability of measurement at the few photon level, the relevant illumination level
for most of the emerging quantum technologies.
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Figure 5: Measured probability to have a click per pixel per frame due to a
noise event in function of the threshold (uncertainty bars are smaller than
dots). Continuous line represents the prediction obtained by our model:
equations 5 and 6.
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