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Weak value measurements have recently given rise to a great amount of interest in both the possibility of
measurement amplification and the chance for further quantum mechanics foundations investigation. In
particular, a question emerged about weak values being proof of the incompatibility between quantum
mechanics and noncontextual hidden variables theories (NCHVTs). A test to provide a conclusive answer
to this question was given by Pusey [Phys. Rev. Lett. 113, 200401 (2014)], where a theorem was derived
showing the NCHVT incompatibility with the observation of anomalous weak values under specific
conditions. In this Letter we realize this proposal, clearly pointing out the connection between weak values
and the contextual nature of quantum mechanics.
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In 1988 Aharonov et al. introduced [1] weak value
measurements [2–5], first realized in Refs. [6–13], that
represent a new paradigm of quantum measurement where
so little information is extracted from a single measurement
that the state does not collapse.
Weak values, i.e., weak measurements of an operator

performed on an ensemble of pre- and postselected states,
present nonclassical properties, assuming anomalous values
(i.e., values outside the eigenvalue range of the observable).
In recent years they have been the subject of a great amount
of interest for the possibility of amplifying the measurement
of small parameters [8,14–16] as well as for their non-
classical properties, allowing the investigation of fundamen-
tal aspects of quantum mechanics [3,4,17].
In particular, a question emerged about anomalous weak

values constituting a proof of the incompatibility of
quantum theory with noncontextual hidden variables the-
ories (NCHVTs) [18–20], i.e., theories assuming that a
predetermined result of a particular measurement does not
depend on which other observables are simultaneously
measured [31]. The possibility of testing this connection
was recently unequivocally demonstrated in Ref. [21],
showing that the mere observation of anomalous weak
values is largely insufficient for this purpose, while non-
contextuality is incompatible with the observation of
anomalous weak values under specific experimental con-
ditions. This result is of deep importance for understanding
the role of contextuality in quantum mechanics, also in
view of possible applications to quantum technologies.
To properly define the connection between noncontex-

tuality and weak values, in Ref. [21] the following theorem
was presented and proved, here in a form avoiding any
(hidden) reference to quantum mechanics [22].

Theorem 1.—Let us suppose that we have a preparation
procedure Pψ i

, a sharp measurement procedure Mψf
with

outcomes PASS and FAIL, and a nondestructive measure-
ment procedure MW with outcomes x ∈ R, such that
(1) The pre- and postselected states jψ ii and jψfi are

nonorthogonal, i.e.,

pψf
≔ PðPASSjPψ i

;Mψf
Þ > 0; ð1Þ

(2) Ignoring the postmeasurement state, MW is equiv-
alent to a two-outcome measurement with unbiased
noise, i.e.,

PðxjP;MWÞ ¼ pnðx − gÞPð1jP;MΠÞ
þ pnðxÞPð0jP;MΠÞ ∀ P ð2Þ

for some sharp measurement procedure MΠ with
outcomes 0 and 1, and probability distribution FðxÞ
with median x ¼ 0.

(3) We can define a “probability of disturbance” pd such
that, ignoring the outcome of MW , it affects the
postselection in the same way as mixing it with
another measurement:

PðPASSjP;MW;Mψf
Þ¼ð1−pdÞPðPASSjP;Mψf

Þ
þpdPðPASSjP;MdÞ ∀P

ð3Þ

for some measurement procedure Md with out-
comes PASS and FAIL.

(4) The values of x under the pre- and postselection have
a negative bias that “outweighs” pd; i.e., for the
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quantity p− ≔ ðpψf
Þ−1 R 0

−∞ Pðx;PASSjPψ i
;MW;

Mψf
Þdx holds the inequality

I ¼ p− −
1

2
−

pd

pψf

> 0: ð4Þ

There is, then, no noncontextual ontological model
for the preparation Pψ i

, measurement MW , and
postselection on PASS of Mψf

satisfying the out-
come determinism for sharp measurements.

Here, we present the very first experimental test of this
theorem, performed by exploiting polarization weak mea-
surements on heralded single photons [23,24].
In the framework of quantum mechanics, the preparation

procedure P corresponds to the preselection of the polari-
zation state jψi ¼ cos θjHi þ eiβ sin θjVi of our single
photons, while the postselection process Mψf

is repre-
sented by the projector jψfihψfj, which yields for the
probability pψf

the equivalence pψf
≔PðPASSjP;Mψf

Þ¼
jhψfjψij2. The nondestructive measurement procedure
MW , instead, is implemented as a weak interaction induced
by the unitary evolution Û ¼ expð−igΠ̂ ⊗ P̂Þ, with g being
the von Neumann coupling constant between the observ-
able Π̂ and a pointer observable P̂ (see Fig. 1).
In our experiment, a single-photon state is prepared in

the initial state jϕii¼ jψi⊗ jfxi, with jfxi ¼
R
dxFðxÞjxi,

where jFðxÞj2 ¼ pnðxÞ is the probability density function
of detecting the photon in the position x of the transverse
spatial plane. The shape of pnðxÞ is Gaussian with good
approximation since the single photon guided in a single-
mode optical fiber is collimated with a telescopic optical
system (see Fig. 2), and by experimental evidence we can
assume the (unperturbed) pnðxÞ to be centered around zero,
with width σ.
The single photon undergoes a weak interaction realized

as a spatial walk-off induced in a birefringent crystal,

described by the unitary transformation Û. The probability
of finding the single photon in the position x0 of the
transverse plane [see Eq. (2)] can be evaluated as

Pðx0jP;MWÞ ¼ tr½Mx0 jψihψ jM†
x0 �; ð5Þ

where Mx0 jψi ¼ hx0jÛjϕii. The quantities Pð1jP;MΠÞ
and Pð0jP;MΠÞ in Eq. (2) correspond, respectively, to the
probability that the single photon undergoes or does not
the weak interaction in the crystal, i.e., Pð1jP;MΠÞ ¼
hψ jΠ̂jψi and Pð0jP;MΠÞ¼1−Pð1jP;MΠÞ¼hψ j ~̂Πjψi
(with ~̂Π ¼ I − Π̂).
The quantity PðPASSjP;MdÞ in Eq. (3) represents an

unknown measurement process, but what we need to
demonstrate is just that its contribution is negligible
because of the nondestructive nature of the measurement
MW (since we exploited the weak measurement paradigm).
The parameter pd, quantifying such a contribution (i.e., the
disturbance that MW causes to the subsequent sharp
measurement Mψf

) can be evaluated as the amount of
decoherence induced on the single photon by the weak
interaction Û, pd ¼ 1 − e−ðg2=4σ2Þ.
Our experimental setup (Fig. 2) consists of a 796 nm

mode-locked Ti:sapphire laser (repetition rate, 76 MHz)
whose second harmonic emission pumps a 10 × 10 ×
5 mm LiIO3 nonlinear crystal, producing type-I parametric
down-conversion. The idler photon (λi ¼ 920 nm) is
coupled to a single-mode fiber (SMF) and then addressed
to a silicon single-photon avalanche diode (SPAD),
heralding the presence of the correlated signal photon

FIG. 1. Scheme of a “gedanken” experiment for the non-
contextuality test of Theorem 1. The single photons, prepared
in the initial state jψ ii, undergo a weak interaction and a sharp
postselection measurement before being addressed to a detector
with spatial resolution. For each part of the scheme, both the
noncontextual (below) and quantum mechanical (above) descrip-
tion of its effect are reported.

FIG. 2. Experimental setup. After the weak interaction with a
birefringent crystal, the heralded single photon is projected onto
the postselected state by a Glan linear polarizer, then addressed to
the space-resolving detector. For some consistency checks, a
tomographic apparatus can be inserted at some point between the
polarizer and the detector. SHG, second harmonic generator;
PBS, polarizing beam splitter; BC, birefringent crystal; POL,
Glan polarizer.
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(λs ¼ 702 nm) that, after being SMF coupled, is sent to a
launcher and then to the free-space optical path where the
weak value evaluation is performed.
We have estimated the quality of our single-photon

emission, obtaining a gð2Þð0Þ value (or, more properly, a
parameter α value [25–27]) of 0.13� 0.01 without any
background or dark-count subtraction.
After the launcher, the heralded single photon state is

collimated by a telescopic system, and then prepared
(preselected) in the chosen state jψ ii by means of a calcite
polarizer followed by a quarter-wave plate and a half-wave
plate. The weak measurement is carried out by a 1 mm long
birefringent crystal (BCx), whose extraordinary (e) optical
axis lies in the X-Z plane, with an angle of π=4 with respect
to the Z direction. Because of the spatial walk-off expe-
rienced by the vertically polarized photons, horizontal- and
vertical-polarization paths get slightly separated along the
X direction, inducing in the initial state jψ ii a small
decoherence (below 1%) that keeps it substantially unaf-
fected. Subsequently, the birefringent crystal BCc performs
a phase compensation that is tuned in order to nullify the
temporal walk-off generated in BCx. From the parameters g
and σ of our system, we estimated pd ¼ 0.0019� 0.0002.
After the weak measurement is performed, the photon

meets a Glan polarizer projecting it onto the postselected
state jψfi. Then, the photon goes to the detection device, a
two-dimensional array made of 32 × 32 “smart pixels,”
fabricated in a cost-effective 0.35 μm standard comple-
mentary metal-oxide semiconductor technology. Each pixel
hosts a 30 μm diameter silicon SPAD detector with 15%
photon detection efficiency (PDE) at 702 nm (the peak PDE
is 55% at 420 nm), and its front-end electronics for sensing
and quenching the avalanche and counting the number of
detected photons [28]. The SPADs are gated with 6 ns
integration windows, triggered by the SPAD detector of the
heralding arm; spurious detections within such integration
windows are minimized thanks to the array’s excellent
dark-counting rate performance (120 cps at room temper-
ature, with just 3% hot pixels).
A removable polarization tomographic apparatus [29,30]

is inserted between the Glan polarizer and the detector only
when needed, i.e., to verify the fulfillment of the condition
in Eq. (3).
Figure 3 shows the plot of the quantity I of Eq. (4) with

respect to the angle θ of the linearly polarized postselection
state jψfi ¼ cosðθÞjHi þ sinðθÞjVi, with jψ ii ¼ ð1= ffiffiffi

2
p Þ

ðjHi − jViÞ. Experimentally, by choosing θ ¼ 0.18π we
obtained the value I ðexpÞ ¼ 0.063� 0.011, in excellent
agreement with the quantum-mechanical predictions and
5.7 standard deviations distant from the noncontex-
tual bound.
In order to demonstrate the validity of Eq. (2), we

removed the polarizer realizing Mψf
, so that we could

estimate the probability QðxÞ that a single photon prepared
in any arbitrary polarization state jψi is detected at the

position x after the weak interaction, a faithful estimation of
PðxjP;MWÞ. This task was accomplished by sending the
(tomographically complete) set of four different input states
fjHi, jVi, jþi ¼ ð1= ffiffiffi

2
p ÞðjHi þ jViÞ, jRi ¼ ð1= ffiffiffi

2
p Þ

ðjHi − ijViÞg, and measuring QðxÞ in the absence of the
polarizer performing the state postselection. Then, we
compared the measured QðxÞ with the expected one
obtained from the right side of Eq. (2); the function
pnðxÞ is reconstructed by fitting the spatial profile in the
absence of the weak interaction (Pð1jP; Π̂Þ ¼ 0), and the
value of g is estimated by maximizing the interaction
(Pð0jP; Π̂Þ ¼ 0).
The validity of our approach is shown by the fidelity

between the measured QðxÞ and the expected one, QðeÞðxÞ,
evaluated by sampling more than 230 points in the region
where QðxÞ is significantly nonzero, obtaining 0.997,
0.991, 0.994, 0.996 for the four input states jHi, jVi,
jþi, and jRi, respectively. To confirm the quality of our
reconstruction, we also performed a pixel-by-pixel prox-
imity test of the two probability distributions for the pixels
where the QðxÞ is significantly nonzero. We define the
proximity between the two distributions as

PROXψðxÞ ¼
�

2QðxÞQðeÞðxÞ
½QðxÞ�2 þ ½QðeÞðxÞ�2

�1
2

: ð6Þ

As shown in Fig. 4, for all of the input states the proximity
between the two distributions is larger than 0.99 for almost
every point, demonstrating that our experimental setup
provides a faithful realization of the condition in Eq. (2).
Finally, to prove that the condition of Eq. (3) is fulfilled,

we used the following method, based on the comparison
between experimental probabilities collected in different
conditions, in order to get rid of any possible bias due to
quantum-mechanical assumptions. First, we prepared a
(tomographically complete) set of states and registered
the detection probabilities P and ~P, obtained with the
Glan polarizer projecting the single-photon states onto jψfi
and its orthogonal j ~ψfi. For each input state jψi, these

FIG. 3. I plot, with respect to the postselection angle θ. For
θ ¼ 0.18π, we obtained I ðexpÞ ¼ 0.063� 0.011, certifying a
violation of the noncontextual bound of 5.7 standard deviations.
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probabilities are given by the photon counts divided by the
trigger counts NT of the heralded single-photon source
(P ¼ ðNψf=NTÞ, ~P ¼ ðN ~ψf=NTÞ). Second, we switched
the position of the preparation stage and the birefringent
crystals, in order to nullify the weak interaction without
altering the optical losses in the system, and performed the
same set of acquisitions. To get rid of any bias, proper dark
counts and background noise subtraction is performed.
For each input state, these two acquisitions correspond,

respectively, to the evaluation of the quantities
PðPASSjP;MW;Mψf

Þ and PðPASSjP;Mψf
Þ reported

in Eq. (3). Concerning the third one, connected to the
unknown measurement procedure Md, one can notice that
by definition PðPASSjP;MdÞ ∈ ½0; 1�, and thus one can
write

ð1 − pdÞPðPASSjP;Mψf
Þ

≤ PðPASSjP;MW;Mψf
Þ

≤ ð1 − pdÞPðPASSjP;Mψf
Þ þ pd; ð7Þ

giving an upper and a lower bound to the parameter
pd. The collected data allowed us to obtain
ð0.000021� 0.000014Þ ≤ pd ≤ ð0.086� 0.050Þ; the pd
value derived by the system parameters fits perfectly in
this range.
As a further consistency check, we tested the output state

after the sharp measurement Mψf
(realized by the Glan

polarizer) by inserting the tomographic apparatus in the
setup (see Fig. 2), implicitly accepting some quantum-
mechanical assumptions. Such an apparatus was exploited
to perform two different experiments.
In the first one, we used it to project the state after Mψf

onto ψf and ~ψf. While we were able to detect a clear signal

with the tomographic device realizing the same projection
as the Glan polarizer (i.e., onto ψf), the amount of signal
registered with the tomographer projecting onto ~ψf was
so small as to be completely indistinguishable from the
detector noise, as expected when photons undergo two
subsequent projections onto orthogonal axes. This confirms
that the sharp measurement process Mψf

is performing a
projection onto the state ψf.
In the second experiment, we instead performed the

tomographic reconstruction of the state after the postse-
lection on jψfi. We prepared a tomographically complete
set of input states, i.e., jHi, jþi, jLi ¼ ð1= ffiffiffi

2
p ÞðjHiþ

ijViÞ, and jRi, and we tried to reconstruct via quantum
tomography the state after the Mψf

measurement process.
From the tomographic reconstructions, we obtained states
whose fidelities with respect to the chosen jψfi were
FH ¼ 0.9995, Fþ ¼ 0.9999, FL ¼ 0.9991, and FR ¼
0.9811. These values led us to estimate pd ¼ 0.0051�
0.0046, fitting the range obtained for pd with the method
presented above, and in good agreement with the pd value
derived from the system experimental parameters
(pd ¼ 0.0019� 0.0002).
Since all conditions of the theorem presented in Ref. [21]

have been verified, we can assess that the results of our
experiment clearly violate the noncontextual bound for the
quantity I in Eq. (4), providing a sound demonstration of
the connection between weak values and the intrinsic
contextual nature of quantum mechanics.
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