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Abstract—The paper describes the features of the centrifugal 
balance developed at INRIM, which is a suitable weighing 
instrument for accurate mass determination of small object in 
weightless conditions. A new measurement model is proposed, 
which allows to measure any kinds of objects, solid and not with 
an accuracy comparable to a classic laboratory balance. 
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centrifugal balance. 

I.  INTRODUCTION  
In view of a possible realization of a balance to be used on 

board of the International Space Station (ISS), INRIM has been 
involved in a project for the development of a suitable balance 
working in weightless conditions. Measurement of mass in 
weightless conditions cannot be made through the classic 
gravitational balances used on Earth. A different approach is 
then required, by taking advantage of the inertial properties of 
the mass.  

Some methods, for mass measurement under microgravity 
conditions have been proposed such as the use of the 
characteristic frequency of vibration [1-3], with an accuracy 
generally not better than 1⋅10-3. A different inertial method, 
based on the measurement of centrifugal forces was first 
experimented at INRIM (formerly IMGC-CNR )[4].  

The latest balance prototype was realized in 2005. This 
balance was suitable to measure small solid object  (full scale 
value of 150 g), it was the only balance designed to measure the 
mass of objects in weightless conditions to an extended 
uncertainty better  than 3⋅10-5.    

Recently, the control system and the equations model  have 
been improved in such a way that the balance is able to measure 
with small uncertainties different kinds of objects (solids, 
liquids, powders, gel, organic tissues). 

In this paper the centrifugal method as well as  the design 
and the features of the balance are briefly described, and the 
new calibration method is shown. 

II. THE CENTRIFUGAL METHOD 
The centrifugal force Fc acting on the object rotating round an 
axis is given by   

 

 
 

Figure 1: The centrifugal method 
            

2ω⋅⋅= rmFc                     (1) 
 
where m is the mass of the object, r is the distance of its centre 
of gravity from the rotation axis , and ω is the angular speed 
around it. 

The mass m of the object can be obtained, provided that the 
other quantities in (1) are known. The problem concerns the 
evaluation of r. Only in the case of a homogeneous and 
geometrically regular body, the position of its centre of gravity 
and in turn its distance r from the rotation axis, can be estimated 
with good accuracy. 

This problem can be solved considering two measurements 
with the object radially displaced at two different radial 
positions, where the displacement b between the two positions 
is well known (see Fig. 1).  

In this way  
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Figure 2: Scheme of the BIC1 and BIC2 balances 

 
 

The mass m of the object can be easily obtained 
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and it no longer depend on the value of r, but only on the  radial 
displacement b. 

In principle two different operational modes can be applied 
if  one of the two quantities, Fc or ω, is held constant in both 
measurements: 
 
- constant-force Fc  
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- constant-speed ω   
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It must be pointed out that the centrifugal method can be  
applied to any kind of  object, provided that the value r  would 
not change between the two measurements taken at different 
radial positions. With the constant-speed configuration, the 
force acting on the object under measurement increases while it 
moves toward the external radial position, therefore this method 
is appropriate only for rigid objects.  On the contrary with the 

constant-force configuration, where the rotational speed is 
automatically adjusted to maintain the field of the centrifugal 
forces acting on the object constant in both radial positions, 
even non-rigid objects can be measured.  

 

III. THE  PREVIOUS PROTOTYPES BIC1 AND BIC2 
Two previous prototypes  (BIC 1 and BIC 2), were both 

based on the centrifugal method with the constant-force 
configuration, In Fig. 2 the scheme of the two prototypes is 
shown.  On board of a rotating disc, a pan with the object to be 
weighed can move radially between two positions; in addition 
the pan is subjected to a force exerted by a spring. During the 
rotation the centrifugal force is balanced by the centripetal force 
generated by the spring. A sensor monitors the position of the 
radial pan: it allows the main motor to rotate the disc at the 
equilibrium speed ω1, that is, when the radial pan reaches its 
rest position. The whole platform is then radially moved toward 
its outer position at the known distance b, then the control 
reduces the rotating speed to ω2 to get the same equilibrium 
between centripetal and centrifugal force. The  value of the 
gross mass (object and radial pan) can be easily derived from 
(5) since Fc and b are known values, characteristic of the 
balance. The net mass of the object is finally obtained by 
subtracting the mass of the radial pan, determined once and for 
all. 

BIC 1 was a prototype realized to demonstrate the feasibility 
of the centrifugal method: its relative uncertainty was about 10-

2, that is 2-3 g with a 250 g of full scale. 
The construction of the prototype named BIC 2 began at 

IMGC-CNR, supported by the Italian Space Agency (ASI), in 
view of a possible use on board the International Space Station. 
This prototype was designed to fulfil the requirements typical 
of a space applications (weight, dimensions, materials, electric 
parameters, reliability, safety), and to improve the performance. 
Final tests on the ground-model showed an uncertainty of 100 
mg with a full-scale of 500 g, that is 2⋅10-4 in relative terms.  

 

 
Figure 3: The BIC2 balance 



 
 

Figure 4: Scheme of the balance BIC3 
 
 

The BIC 2 was  essentially similar to BIC 1, but with a 
thermal control of the spring (used as the reference force),  and 
to the electronics on board the rotating disc. To obtain better 
results, a different approach had to be adopted and the BIC 3 
was realized. 

 

IV. THE BALANCE PROTOTYPE BIC3 
BIC 3 is the 3rd prototype of the inertial centrifugal 

balance realized at INRIM, which was completed in 2005 [5]. 
BIC 3 was developed to fulfil the requirements suggested 

by some of the potential users of the ISS, interested to an 
instrument able to monitor the growing of biological specimens 
during experiments on board the ISS. A scheme and a picture 
of BIC 3 are shown in Fig. 3 and Fig. 4 respectively. The main 
improvement was the measurement of the centrifugal force by 
a beam derived from a commercial electronic balance having 
capacity 200 g and resolution of 0.1 mg. Contrary to the classic 
application, in this particular configuration the beam is placed 
vertically instead of horizontally in order to measure radial 
horizontal forces. To increase to a maximum the load of the 
inertial balance, the  beam and the pan assembly, when 
unloaded, has been balanced as possible, making it almost 
insensitive to the centrifugal field. 

The pan was designed and its mass adjusted to achieve an 
almost perfect balancing of the group which, unloaded, 
generates very limited residual centrifugal forces, of the order 
of a few mN. 

The rotating disc contains the whole structure of the inertial 
balance which is driven by a stepping motor, the speed ω is 
determined with a relative uncertainty of 1⋅10-6. It is 
electrically connected to the outside through  sliprings, 
which are used to supply the electronics and connect via 
RS232 the onboard microprocessor to the external 
computer.  

 

 
 

Figure 5: Picture of the centrifugal balance BIC 3. 
 

 
The measurement group (beam, pan and object) is radially 

displaced by a d.c. motor, the positions are determined by two 
stops realized by a low thermal-coefficient material (Invar). 
The same system is used to radially move in the opposite 
direction a counter-balancing mass. 

 
In addition the radial displacement b of the beam of 22 mm 

is measured by a laser-diode Michelson interferometer having 
an accuracy of 0.1 µm.  

In order to avoid the impact of the air against the beam, the 
radial pan and the object under measurement are housed inside 
an aluminium enclosure, a lid can be opened when the balance 
is at rest, for loading/unloading the objects to be weighed.  
 

As the electromagnetic compensation system of the 
beam requires a centrifugal field stable in direction and 
value, as is the gravitational field, otherwise it does not  
provide a valid measurement, the rotation speed must be 
constant within a few parts in 106 . This performance was 
obtained by  the direct coupling of the rotating disc to the 
motor shaft.  
 

For a correct operation on Earth surface, a requirement, 
no longer required while operating in space, is the perfect 
verticality of the axis, this is to avoid force measurements 
variable with the same frequency of the rotation. 
 
The main features of the balance are: 
 

• diameter 300 mm 
• height 250 mm 
• weight 10 kg  
• speed from 50 to 100 rpm 
• centrifugal acceleration about 1 g or less 
• measurement time less than 1 min 



• capacity 150 g 
• weighing chamber has a diameter of 3 cm and 4 cm 

height  
 

Initially the BIC 3 was tested by using  the constant-speed 
configuration, hence was able to measure only rigid objects. 
Only recently, the measurement method has been improved in 
such a way to maintain constant the centrifugal force during the 
radial displacement of the pan toward the external radial 
position. As discussed in section II, with constant-force 
configuration also compressible objects can be weighted. 

V. THE CALIBRATION METHOD 
In a traditional balance the reading mw is given in term of 

mass, actually the reading is proportional (in principle is linear) 
to a force F which is converted in terms of mass m, on the 
contrary, on the use of the centrifugal balance we are interested 
to the force which can be determined from the reading  mw 

 
(7) 

The calibration curve can be estimate by the calibration of 
the centrifugal balance with mass reference standards. 

The adopted method consists to fit the differences of the 
readings of the balance corresponding to Fc1 and Fc2, obtained 
at constant speed with different values of loads. As an example 
the results at 66.6 rpm are given in Fig. 6 and Fig.7, typically 
the maximum residual is less than 0.2 mg.  From the results, the 
response of the balance can be assumed linear, and from the 
slope of the fit, obtained at different speeds, which is 
proportional to bω2, the proportional coefficient can be 
determined, so that  Fc= C mw. 

  As at the Earth surface the object is subjected to a vertical 
gravitational force the load on the beam balance produces  no 
linear effects. In addition, the pan when unload is also sensitive 
to the centrifugal force. 

In previous model, suitable for the constant-speed 
configuration, the mass measurements obtained by Equ. 6 were 
corrected by using a second order polynomial equation [5]. This 
approach was not satisfactory for the use both at constant-speed 
and constant-force, hence a new equation model has been 
implemented.   

Taking into account the no-linear effects, the assumed 
models for the two centrifugal forces are 

[ ] ϑωα +++= 2
101  )1( rmmFc               (8) 

[ ] ϑωα ++++= 2
202 )()1( brmmFc           (9) 

where, m0, α and θ , in addition to C, are parameters to be 
estimated by the calibration procedure. 

From (8) and (9)  
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for the  constant-speed configuration, and  
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 for the  constant-force configuration. 

 In order to obtain the parameters m0, α, θ and C, the balance 
was tested by using mass standard in the range from 10 g to 150 
g, at different angular speeds, as an example in Fig. 8 the results 
at 50 g are shown.  

 

 
Figure 6. Results at a constant speed of 66.6 rpm (internal force Fc1, 
external force Fc2). 

 
Figure 7. Fitting of the reading difference at a constant speed of 66.6 rpm, 
maximun residual is 0.15 mg 

 
Figure 8. Fitting of the measurements at 50 g at different angular speeds. 
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Parameter Value 

C 9.7358 m s-2 

m0 0.5140 g 

α 1.30 × 10-4 

θ 0.022 mN 
 

Table 1. Parameters estimated 
 

The parameters m0, α and θ and C  were determined by the 
least square method, they are given in Table 1.  

These parameters have been validated using the balance 
with the two configurations, constant-force (Equ.10) and 
constant-speed (Equ. 11) in the range from 10 g to 150 g. 

Fig. 9 shows the residuals for both configurations, the 
maximum residual is within 3 mg. 

The mass uncertainty has been evaluated considering the 
following contributions 

• reading repeatability u(mw)=0.4 mg 

• no linearity =1.6 mg 

• radial displacement u(b)= 0.3 µm 

• angular speed u(ω)/ω=1×10-6 
The evaluated expanded uncertainty is U(m)= 5 mg. 
In practice at constant force we are interested to the 

difference of speeds and at constant speed we are interested in  

 
 

 
Figure 9. Residuals obtained with the BIC 3 calibration at constant- force and 
constant - speed configuration. 

 
 

 Mass/g F 
const. 

ω 
const. Δm./g 

Water 21.888 21.887 22.004 0.117 

Sugar 19.613 19.613 19.617 0.004 

Gel 18.672 18.673 18.677 0.004 

 
Table 2. Measurements with no solid substances 

 

the difference of force. As the difference of speed is more 
accurate than the difference of force, the results at constant 
force are usually more accurate. 

This new model has been validated with no solid substances 
contained in (not full) vial glass, as water, gels and sugar, of 
about 20 g, some results are shown in Table 2.  
 

With the constant force configuration the results are very 
accurate and as expected there are problems at constant speed. 
With water the results obtained with the constant speed method 
are not consistent. With sugar and gel  the difference is less 
evident. 

 

VI. CONCLUSIONS 
 

The centrifugal balance realized at the INRIM is an 
instrument able to weigh small object in weightless conditions.  

With respect to the previous methods, a new model has been 
developed in order to use the balance with the two 
configurations: constant force and constant speed. This last one 
allows to measure no solid substances, this was not possible for 
the previous models. The uncertainty for both configurations is 
3×10-5 on the whole range of 150 g.  

In space the performances would be better, because on the 
ground the vertical gravitational field makes measurements 
more severe than in space.  

On the base of this prototype a development of a flying 
model would be easily possible.  
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