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conventional mass and force.

Andrea Malengo and Walter Bich

Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy

E-mail: a.malengo@inrim.it

Abstract.

The conventional mass is a useful concept introduced to reduce the impact of the

buoyancy correction in everyday mass measurements, thus avoiding in most cases its

accurate determination, necessary in measurements of “true” mass. Although usage

of conventional mass is universal and standardized, the concept is considered as a sort

of second-choice tool, to be avoided in high-accuracy applications. In this paper we

show that this is a false belief, by elucidating the role played by covariances between

volume and mass and between volume and conventional mass at the various stages of

the dissemination chain and in the relationship between the uncertainties of mass and

conventional mass. We arrive at somewhat counter-intuitive results: the volume of the

transfer standard plays a comparatively minor role in the uncertainty budget of the

standard under calibration. In addition, conventional mass is preferable to mass in

normal, in-air operation, as its uncertainty is smaller than that of mass, if covariance

terms are properly taken into account, and the uncertainty over-stating (typically)

resulting from neglecting them is less severe than that (always) occurring with mass.

The same considerations hold for force. In this respect, we show that the associated

uncertainty is the same using mass or conventional mass, and, again, that the latter is

preferable if covariance terms are neglected.

Submitted to: Metrologia
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1. Introduction

In accurate mass measurements it is imperative that the air buoyancy effect be evaluated

and corrected for.

In order to minimize the magnitude of the correction, in legal metrology the concept

of conventional mass value is adopted [1] rather than that of mass. As a matter of fact,

all the International Recommendations published by the International Organization of

Legal Metrology (OIML) in the field of mass standards and weighing instruments refer

to the conventional mass value. For example, the maximum permissible errors of mass

standards [2, 3] and weighing instruments [4] as a function of their accuracy classes are

given in terms of conventional mass. As a consequence, this concept is also useful in

many technological and scientific applications, in that the correction is typically so small,

compared to the target uncertainty, that it can be safely neglected. The conventional

mass value is commonly perceived as a tool useful in low- to medium-accuracy

applications, whereas in high-accuracy measurements mass is claimed to be preferable, in

particular when the unknown standard has a density widely different from the reference

density ρc = 8 000 kg m−3 and the measurement conditions deviate significantly from

reference conditions. This view is reflected in the OIML Recommendation R111 [2], in

which it is prescribed that, “If the air density deviates from 1.2 kg m−3 by more than

10 %, mass values should be used in calculations and the conventional mass should be

calculated from the mass.”

We will show that this suggestion does not hold, provided that covariances are taken

into account. Indeed, contrary to what it is often assumed, the conventional mass value

can fruitfully be employed also in high-accuracy applications, provided that the relevant

buoyancy correction is applied and the associated uncertainty evaluated. Actually, in

the same OIML document R111 a formula is also given for the buoyancy correction

relevant to the conventional mass value. This correction, as it is well known, is much

smaller than the corresponding correction for mass.

The correction, be it to mass or to conventional mass, plays a major role in the

dissemination of mass standards. At each step of the traceability chain, the unknown

standard is compared to a reference by means of a comparator. Following an earlier

attempt to address the issue [5], it was shown for both mass [6] and conventional mass

value [7] that along this chain the air buoyancy effect plays an opposite role in the

correction of the measurement, depending on the role of the standard, i.e., depending

on whether the standard is the unknown (during its calibration), or the reference (when

used in the subsequent step). However, to the best of our knowledge the interplay

between mass and conventional mass value along the dissemination chain has never

been elucidated, with the consequence that a consistent propagation of uncertainties

back and forth between these two closely connected quantities is lacking.

Often, in calibration certificates of mass standards, when both mass and

conventional mass value are given, the same uncertainty (the one about mass) is

associated to both estimates. This practice is in many cases an over-simplification
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of the correct procedure.

Similar considerations apply also to the calibration and subsequent use of weights

for dead-weight force machines or pressure balances, or when calibrated weights are used

as transfer standards to calibrate balances, as it has been recently demonstrated [8].

We show that the uncertainties associated with mass, conventional mass and force

can be accurately evaluated only by taking into account the covariances related to air

buoyancy, the most important being the one between mass (or conventional mass) and

volume or density. This covariance constitutes a key term in the calibration of mass

standards and in their subsequent use as reference standards of mass or force; and

in understanding the relationship between the uncertainties associated with mass and

conventional mass.

After a brief reminder about conventional mass in Section 2, in Section 3 we review

the measurement models used in mass (and conventional mass) measurements and in

the use of mass standards as force standards. We discuss and compare the associated

uncertainties and covariance terms in Section 4. In Section 5 we give an example and

in Section 6 we summarize our findings. An appendix is devoted to the expression of

the most important formulas in terms of density.

2. Brief reminder

Two bodies, say, two mass standards i and j, having the same mass m0, are in general

not in equilibrium on a beam balance under the (locally constant) gravity acceleration g

in air having density ρa, the net unbalance being ρa (Vi − Vj), where V denotes volume.

Practicality suggests that standards having the same nominal value appear equal, i.e.,

balance each other, in air rather than in vacuum. This requirement is fulfilled when

mi −mj = ρa (Vi − Vj). Indeed, mass standards having a given nominal value m0 are

not adjusted so as to have all a “true” mass mi = m0, in which case they would balance

in vacuum, but, more practically, in such a way that they balance in air, specifically, in

air having a reference density ρ0 = 1.2 kg m−3. As a consequence, the true mass m of a

standard having nominal value m0 is

m = m0 + ρ0 (V − V0) , (1)

where V0 is a reference volume to be suitably specified in order to guarantee not

only worldwide consistency among mass standards having nominal value m0, but also

traceability to the SI mass unit. Since volume is an extensive quantity, thus depending

on the standard size and therefore on m0, it is convenient to constrain the density m0/V0
to a specific value m0/V0 = ρc = 8 000 kg m−3 at the reference temperature tref = 20 ◦C.

Therefore, a generic standard having nominal value m0 is adjusted in such a way

that its conventional mass (strictly speaking, the conventional value of the result of

weighing in air) mc, rather than its mass m, equals the nominal value, mc = m0, from

which equation (1) becomes

m = mc(1− ρ0/ρc) + ρ0V , (2)



Buoyancy contribution to uncertainty of mass, conventional mass and force. 4

which in turn, using densities rather than volumes, becomes the familiar expression

mc (1− ρ0/ρc) = m (1− ρ0/ρ) . (3)

The conventional mass mc of a mass standard is fully defined by equation (3) in

terms of its mass m and density ρ, and the reference values ρc and ρ0 for material and air,

respectively [1]. The reference density ρc = 8 000 kg m−3, approximately corresponding

to that of stainless steel, was adopted in 1971, the previous reference density being

that of brass, ρ = 8 400 kg m−3 at the reference temperature of 0 ◦C [9]. The change

reflects the corresponding change in the material generally used for the construction

of mass standards. Up to 1971, mass standards had been adjusted so as to balance

in air a brass reference, whereas since that date the reference was taken as a (ideal)

stainless-steel standard. Incidentally, this implied a relative change in the adjustment

of all standards and balances of ≈ 7× 10−6. This small revolution might be compared

with the much smaller (relative) uncertainty component (< 1× 10−7) initially associated

with the intended redefinition of the kilogram. Yet, this uncertainty component raised

deep concern [10], although it was recognized as irrelevant to the routine dissemination

and calibration activity [11].

3. Mass, conventional mass and force

Routine calibrations of mass standards are aimed at determining their conventional

mass. Accordingly, virtually all weighings give as output the conventional value of the

result of weighing in air, i.e., the conventional mass of the body to be weighed. The

conventional mass mct of the standard t under calibration is (we adopt the same notation

as in [1])

mct = mcr −∆mcw, (4)

where mcr is the conventional mass of the reference standard r and ∆mcw = mcwr−mcwt

is the difference of the balance indications mcwr and mcwt when r and t are on its pan,

respectively. In this respect, it is to be noted that the balance scale is adjusted in

conventional mass.

Equation (4) is exact for a calibration performed at ρ0 = 1.2 kg m−3, with the

reference standard at a temperature t = tref = 20 ◦C. In general, however, ρa 6= ρ0, so

that using equation (4) yields an approximate result. This approximation is inherent in

the concept of conventional mass and is considered acceptable as far as the corresponding

bias it not larger than 1/3 of the expanded uncertainty. This, combined with the

fact that in the calibration of an OIML standard the expanded uncertainty has to be

not larger than 1/3 of the corresponding maximum permissible error, implies that the

bias has to be smaller than 1/9 of the maximum permissible error. A further general

constraint on the density of OIML standards is that it must be such that a deviation

of ±10 % of the air density from the reference value implies a corresponding bias not

larger than 1/4 of the corresponding maximum permissible error. When one of the
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above-mentioned limits is exceeded, the correction has to be taken into account using a

model more complete than (4).

To determine the correction Ccb, we use the well-known model for mass comparisons

mt = mr − Cb −∆mw, (5)

in which

Cb = ρa(Vr − Vt) (6)

is the buoyancy correction for mass and ∆mw is the indication difference obtained

from ∆mcw of equation (4) by using the balance sensitivity S which is, with good

approximation [12], S = (1− ρ0/ρc)−1, so that

∆mw = S−1∆mcw. (7)

Note that our model (5) departs from the corresponding model (9) in [1] as concerns

the signs of the various contributions.

Using definition (2) in equation (5) yields

mct = mcr − Ccb −∆mcw, (8)

where

Ccb = (1− ρ0/ρc)−1(ρa − ρ0)(Vr − Vt) (9)

is the counterpart of the corresponding term ρa(Vr − Vt) in equation (5), and thus

represents the sought buoyancy correction Ccb for conventional mass, and the last term

in the RHS derives from equation (7). Equation (8) is the model for conventional mass

comparisons, and thus constitutes the counterpart to equation (5).

Corrections (6) and (9) vanish for ρa = 0 and ρa − ρ0 = 0, respectively, or for

∆V = 0 .

Since in routine calibrations typically ρa − ρ0 ≈ 0, the buoyancy correction Ccb to

conventional mass is at least one order of magnitude smaller than the corresponding

correction Cb for mass, so that the coefficient (1− ρ0/ρc)−1 ≈ 1.000 15 can be neglected

in the evaluation of the correction uncertainty, as well as, in most cases, also in the

evaluation of the correction itself.

Within this approximation, and using densities instead of volumes, the buoyancy

correction Ccb for conventional mass takes the form

Ccb = (ρa − ρ0) (mr/ρr −mt/ρt) , (10)

or, assuming reasonably mr ≈ mt ≈ mcr,

Ccb ≈ mcr (ρa − ρ0) (1/ρr − 1/ρt) , (11)

which corresponds to equation (10) in [1]. In this paper we take into account the

coefficient in the calculation of the correction, but neglect it in the evaluation of the

associated uncertainty.

Using definition (2) in different ways, equation (5) takes the equivalent forms

mct = (1− ρ0/ρc)−1[mr − ρa(Vr − Vt)− ρ0Vt −∆mw], (12)
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or

mt = (1− ρ0/ρc)mcr + ρ0Vr − ρa(Vr − Vt)−∆mw. (13)

Equations (5), (8), (12) and (13) provide the mass mt and the conventional mass

mct of the standard t under calibration in terms of the mass mr or conventional mass

mcr of the reference mass standard r.

As concerns the force Ft generated in the Earth gravitational field by the weight t

having mass mt and conventional mass mct, it is

Ft = (mt − ρaFVt)g = [mct(1− ρ0/ρc) + (ρ0 − ρaF)Vt]g, (14)

where ρaF and g are the local air density and strength of the gravitational field,

respectively, and the third member derives from definition (2) of conventional mass.

4. Uncertainties

4.1. uncertainties associated with mass and conventional mass

The uncertainty associated with mt is obtained by applying the uncertainty propagation

rule to equation (5):

u2(mt) = u2(mr) + u2(Cb) + u2(∆mw), (15)

and that associated with mct is obtained in the same way from equation (8):

u2(mct) = u2(mcr) + u2(Ccb) + u2(∆mcw), (16)

In both equations, the second terms in the RHS, u2(Cb) and u2(Ccb), represent the

uncertainty contributions due to the air buoyancy corrections for mass and conventional

mass which, considering equations (6) and (9), are given by

u2(Cb) =

(
∂mt

∂ρa

)2

u2(ρa) +

(
∂mt

∂Vr

)2

u2(Vr) +

(
∂mt

∂Vt

)2

u2(Vt) +

2
∂mt

∂mr

∂mt

∂Vr
u(mr, Vr) + 2

∂mt

∂mr

∂mt

∂ρa
u(mr, ρa) (17)

and

u2(Ccb) =

(
∂mct

∂ρa

)2

u2(ρa) +

(
∂mct

∂Vr

)2

u2(Vr) +

(
∂mct

∂Vt

)2

u2(Vt) +

2
∂mct

∂mcr

∂mct

∂Vr
u(mcr, Vr) + 2

∂mct

∂mcr

∂mct

∂ρa
u(mcr, ρa), (18)

respectively. Correlations between the volumes Vt and Vr have been neglected for

simplicity, although they can occasionally occur.

The last terms in the RHS of equations (17) and (18) might be meaningful if the

standard t is calibrated in the same laboratory in which the reference r was calibrated,

i.e., when the correlation between the air densities ρa and ρa1 measured during the two

calibrations is non-negligible. These covariance terms are discussed in subsection 4.1.2.
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The covariances u(mr, Vr) and u(mcr, Vr) arise from the calibration of the mass

reference standard r. Previous papers [6, 7] have independently considered these two

covariance terms. However, in order to clarify their role, these terms need to be jointly

analysed and compared.

4.1.1. Covariances u(mr, Vr) and u(mcr, Vr) The covariances u(mr, Vr) and u(mcr, Vr)

are determined on the basis of the previous calibration from which the value mr was

obtained using, say, a reference r1 having mass mr1 and volume Vr1. The corresponding

measurement models are

mr = mr1 − ρa1(Vr1 − Vr)−∆mw1 (19)

and

mcr = (1− ρ0/ρc)−1[mr1 − ρa1(Vr1 − Vr)− ρ0Vr −∆mw1], (20)

where ρa1 is the air density during the previous calibration.

From equations (19) and (20), it can be shown [6, 7] that

u(mr, Vr) = ρa1u
2(Vr). (21)

and

u(mcr, Vr) = (ρa1 − ρ0)u2(Vr), (22)

respectively.

It follows that u(mr, Vr) − u(mcr, Vr) = ρ0u
2(Vr). This implies that it is always

u(mr, Vr) > u(mcr, Vr); in addition, knowing one of the two covariances is sufficient to

obtain the other, with no need to know ρa1.

Note that u(mr, Vr) ≥ 0, i.e, it is non-negative, and vanishes only if mr has been

determined in vacuum, (or if r is the international prototype of the kilogram itself, in

the current implementation of the SI).

On the contrary, u(mcr, Vr) is typically negative, taking positive values only in the

rare cases in which ρa1 > ρ0 and vanishing when ρa1 = ρ0. This means that, as expected,

mcr is independent of Vr if the calibration of the reference standard was performed at

ρa1 = ρ0. Similarly, mr is independent of Vr if the calibration was performed at ρa1 = 0.

Thus, the common practice of disregarding the covariance term u(mr, Vr), implies

the assumption that the weighing for the calibration of the reference standard was made

in vacuum, whereas disregarding u(mcr, Vr), implies the assumption ρa1 = ρ0.

It is to be noted that |u(mr, Vr)| = |u(mcr, Vr)| for ρa1 = ρ0/2 whereas in general,

in normal ambient conditions, where ρa1 > ρ0/2, |u(mr, Vr)| > |u(mcr, Vr)|.

4.1.2. Covariances u(mr, ρa) and u(mcr, ρa) In those cases in which the air densities

ρa1 and ρa are correlated, equations (5) and (8) yield

u(mr, ρa) = u(mcr, ρa) = (Vr − Vr1)u(ρa, ρa1), (23)

where we neglected the term (1− ρ0/ρc)−1.
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The contribution (23), usually negligible, may become significant when standards

with very different volumes (or densities) are compared, as when silicon and stainless

steel or platinum-iridium standards are involved in the same calibration.

4.1.3. Evaluation of u2(Cb) We are now able to evaluate the buoyancy contribution

(17) to mass uncertainty. The covariance terms, considering equations (5), (6), (21) and

(23), are

2
∂mt

∂mr

∂mt

∂Vr
u(mr, Vr) = 2(−ρa)u(mr, Vr) = −2ρaρa1u

2(Vr), (24)

and

2
∂mt

∂mr

∂mt

∂ρa
u(mr, ρa) = 2(Vt − Vr)(Vr − Vr1)u(ρa, ρa1), (25)

so that

u2(Cb) = (Vr − Vt)2u2(ρa) + [(ρa − ρa1)2 − ρ2a1]u2(Vr) + ρ2au
2(Vt) +

2(Vt − Vr)(Vr − Vr1)u(ρa, ρa1), (26)

the same result given in [6], apart from the last covariance term and a different

factorization that makes the physical interpretation more straightforward. Equation

(26) shows that the covariance term (24) has the effect of removing the contribution

ρ2a1u
2(Vr) contained in u2(mr) in equation (15), so that the net contribution of Vr to

u2(mt) is

u2Vr(mt) = (ρa − ρa1)2u2(Vr). (27)

From equation (27) it is evident that the uncertainty associated with the volume

of any transfer standard provides a negligible contribution (vanishing for ρa = ρa1) to

the uncertainty of the mass of the standard under calibration, provided that the air

densities ρa and ρa1 are not too different, as it is the case when the dissemination is

carried out in the same laboratory. Indeed, an error in the volume of a mass standard

involves of course a corresponding error in its mass when calibrating it. However, the

error is compensated when that standard takes the role of reference in the subsequent

calibration of other mass standards.

As concerns the covariance term (25) (the last term in equation (26)), it is worth

noting that when working in the same laboratory typically u(ρa1) ≈ u(ρa) and the two

air densities are highly correlated. In such case, u(ρa1, ρa) ≈ u2(ρa). By developing

calculations and considering the contribution (Vr1 − Vr)
2u2(ρa) already included into

u2(mr), it results that the net contribution of the air density to u2(mt) is given by

(Vr1−Vt)2u2(ρa), that is, it does not depend on the volume Vr. Hereafter, the covariance

term (25) will be neglected.

When u(mr, Vr) = 0, i.e., when ρa1 = 0, equation (26) becomes

u2(Cb) = ρ2au
2(Vr) + ρ2au

2(Vt) + (Vr − Vt)2u2(ρa). (28)
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This is also the expression resulting from neglecting covariance. This practice,

inappropriate yet usually adopted, implies an overestimation of u(mt) (the sensitivity

coefficient of the covariance being negative) due to double counting of the volume

contribution, the overestimation amounting to 2ρaρa1u
2(Vr).

4.1.4. Evaluation of u2(Ccb) To evaluate the buoyancy contribution (18) to the

conventional mass uncertainty u(mct), we use equation (22) in equation (18), thus

obtaining

2
∂mct

∂mcr

∂mct

∂Vr
u(mcr, Vr) = −2(ρa − ρ0)u(mcr, Vr)

= −2(ρa − ρ0)(ρa1 − ρ0)u2(Vr) (29)

for the covariance term, and eventually

u2(Ccb) = (Vr − Vt)2u2(ρa) + [(ρa − ρa1)2 − (ρa1 − ρ0)2]u2(Vr)
+ (ρa − ρ0)2u2(Vt). (30)

We neglected the covariance (23), whose contribution is the same as for mass, and

is given by equation (25).

Similarly to what was discussed in 4.1.3, this result is the same as that given in [7]

(where densities are used rather than volumes) with a different factorization.

Equation (30) shows that the covariance term (29) has the effect of removing the

contribution (ρa1−ρ0)2u2(Vr) already contained in u2(mcr), so that the net contribution

of Vr to conventional-mass uncertainty u2(mct) is (ρa − ρa1)
2u2(Vr), equal to the

corresponding contribution to u2(mt) given by equation (27).

When ρa1 = 0, i.e., when u(mr, Vr) = 0, equation (30) becomes

u2(Ccb) = (Vr − Vt)2u2(ρa) + (ρ2a − ρ20)u2(Vr) + (ρa − ρ0)2u2(Vt). (31)

When ρa1 = ρ0, i.e., when u(mcr, Vr) = 0, the covariance term (29) vanishes and

equation (30) becomes

u2(Ccb) = (Vr − Vt)2u2(ρa) + (ρa − ρ0)2u2(Vr) + (ρa − ρ0)2u2(Vt). (32)

Thus, the common-practice assumption u(mcr, Vr) = 0, leading to equation (32), has the

consequence that the uncertainty u(mct) is typically overestimated, since the covariance

term (29) is typically negative (unless ρa < ρ0 < ρa1 or ρa1 < ρ0 < ρa). However, the

overestimation is less severe than in the case of mass, which constitutes an advantage

of conventional mass over mass.

4.2. Comparison between u(mt) and u(mct)

The uncertainty u(mt) can be calculated from either model (5) or (13), using the

buoyancy contribution (26) to obtain

u2(mt) = u2(mr) + [(ρa − ρa1)2 − ρ2a1]u2(Vr)
+ ρ2au

2(Vt) + (Vr − Vt)2u2(ρa) + u2(∆mw) (33)
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or, equivalently

u2(mt) = u2(mcr) + [(ρa − ρa1)2 − (ρa1 − ρ0)2]u2(Vr)
+ ρ2au

2(Vt) + (Vr − Vt)2u2(ρa) + u2(∆mw). (34)

In a similar manner, the uncertainties u(mct), obtained from models (8) and (12)

using equation (30), are

u2(mct) = u2(mcr) + (Vr − Vt)2u2(ρa) + [(ρa − ρa1)2 − (ρa1 − ρ0)2]u2(Vr)
+ (ρ0 − ρa)2u2(Vt) + u2(∆mw) (35)

or

u2(mct) = u2(mr) + (Vr − Vt)2u2(ρa) + [(ρa − ρa1)2 − ρ2a1]u2(Vr)
+ (ρ0 − ρa)2u2(Vt) + u2(∆mw). (36)

The relationship between the uncertainties associated with mass and conventional

mass can be obtained directly from equation (2) in the form

u2(mct) = u2(mt) + ρ20u
2(Vt) + 2

∂mct

∂mt

∂mct

∂Vt
u(mt, Vt), (37)

but is more easily obtained by subtraction of, say, equations (33) and (36):

u2(mct) = u2(mt) + [(ρa − ρ0)2 − ρ2a]u2(Vt). (38)

Formula (37) is the correct tool to express the uncertainty associated with

conventional mass in terms of the uncertainty about mass. Unfortunately, in common

practice the covariance term (note that it is always negative) is ignored, which engenders

errors and confusion.

Formula (38), which might be compared with formula (16) in [5], has a nice physical

interpretation. In the uncertainty u2(mct) about conventional mass, the contribution

(ρa − ρ0)2u2(Vt), specific of the buoyancy correction to conventional mass, is added to

u2(mt), whereas ρ2au
2(Vt), specific of the buoyancy correction to mass, is subtracted.

The difference ∆u2 = u2(mct) − u2(mt) does not depend on u(Vr), since u(Vr)

contributes in the same way (equation (27)) to the uncertainties (33) and (36) associated

with mass and conventional mass. It rather depends on ρa, being equal to zero for

ρa = ρ0/2 = 0.6 kg m−3. For ρa = ρ0, ∆u2 = −ρ20u2(Vt) and for ρa = 0, ∆u2 = ρ20u
2(Vt).

In the usual working conditions, i.e., for ρa > 0.6 kg m−3, u(mct) < u(mt), that is,

the uncertainty of the conventional mass is smaller than that of mass, provided that the

covariance between mass and volume is properly taken into account.

Independent of the value of ρa, if u(Vt) is small enough, as it is for example the

case when the volumes are determined by hydrostatic weighing, u(mct) ≈ u(mt).

4.3. Uncertainty associated with force

As concerns the force Ft generated by the artefact t according to equation (14), its

uncertainty u(Ft) must be the same, no matter whether it is derived from u(mt) or
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u(mct). To demonstrate this fact, covariance terms need to be taken into account, as

for mass calibrations.

The uncertainty u(Ft) is

u2(Ft) =

[
u2(mt) + V 2

t u
2(ρaF) + ρ2aFu

2(Vt) + 2
∂Ft

∂mt

∂Ft

∂Vt
u(mt, Vt)

]
g2

+

(
Ft

g

)2

u2(g), (39)

or

u2(Ft) =

[
u2(mct) + V 2

t u
2(ρaF) + (ρaF − ρ0)2u2(Vt) + 2

∂Ft

∂mct

∂Ft

∂Vt
u(mct, Vt)

]
g2

+

(
Ft

g

)2

u2(g). (40)

when expressed in terms of mass or conventional mass, respectively.

The covariance terms are

2
∂Ft

∂mt

∂Ft

∂Vt
u(mt, Vt) = −2ρaρaFu

2(Vt), (41)

from equation (21), and

2
∂Ft

∂mct

∂Ft

∂Vt
u(mct, Vt) = − 2(ρaF − ρ0)u(mct, Vt)

= − 2(ρaF − ρ0)(ρa − ρ0)u2(Vt), (42)

from equation (22).

Equations (39) and (40) thus become

u2(Ft) =
{
u2(mt) + V 2

t u
2(ρaF) + [(ρaF − ρa)2 − ρ2a]u2(Vt)

}
g2

+

(
Ft

g

)2

u2(g). (43)

and

u2(Ft) =
{
u2(mct) + V 2

t u
2(ρaF) + [(ρaF − ρa)2 − (ρa − ρ0)2]u2(Vt)

}
g2

+

(
Ft

g

)2

u2(g), (44)

respectively.

By substitution of u2(mct) from equation (38) into equation (44) it can easily be

verified that equations (43) and (44) are equivalent, as expected.

The effect of taking into account the covariance term is to reduce the uncertainty

due to the air buoyancy. Apart from g, the contribution is the same as for mass, so that

all the considerations made in section 4.1 apply here equally well.

This result is very important, because the volumes (or densities) of the weights

used as force standards are usually estimated only approximately, with uncertainties

typically much larger than those associated with volumes of mass standards. As a

consequence, negliging the covariance term, as it is usually done (see, e.g., [13]), involves
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a large, unnecessary over-stating of the uncertainty associated with force. In addition,

inconsistency is likely to arise between the uncertainty calculated from mass and that

calculated from conventional mass. To the best of our knowledge, this aspect has never

been analyzed in detail in force metrology, apart from brief discussions in [5, 14].

Using similar considerations, it has been demonstrated [8] that a balance calibrated

in conventional mass can be used to determine the mass of an arbitrary sample with

adequate uncertainty, provided that covariances are suitably taken into account.

5. Examples

In order to clarify the propagation of uncertainties through the dissemination chain

in terms of mass and conventional mass, two examples are given. In both of them

the tranfer standard r is a 1 kg standard having mass mr with u(mr) = 0.050 mg

and Vr = 124.750(25) cm3, which has been calibrated at ρa1 = 1.190 kg m−3. The

conventional mass uncertainty u(mcr) is, from equation (38), u(mcr) = 0.040 mg.

In the examples, this standard is used to calibrate at ρa = 1.150(1) kg m−3

two working standards t1 (example 1) and t2 (example 2) having mass mt1 and

mt2, respectively. The volume of t1, determined by hydrostatic weighing, is

Vt1 = 125.780(10) cm3, whereas that of t2, estimated approximately considering a

density ρ = 7 950(50) kg m−3, is Vt2 = 125.8(8) cm3. The comparison uncertainty is

u(∆mw) = 0.010 mg.

Subsequently, these two mass standards are used as transfer standards to calibrate

at ρa = 1.120(1) kg m−3 and with the same comparison uncertainty u(∆mw) = 0.010 mg,

the same standard t3 having mass mt3 and volume Vt3 = 124.500(25) cm3, determined

by hydrostatic weighing. The two standards are also used as force standards at the air

density ρaF = 1.120(1) kg m−3, using g = 9.81 m s−2 with negligible uncertainty for the

acceleration due to gravity.

The uncertainties associated with mass, conventional mass and force are given in

the last two columns and in the bottom line, respectively, of tables 1 and 2. The values

in brackets are the uncertainties that would be obtained neglecting the covariance terms

(24) and (29), as it is usually done. As concerns the force uncertainty, the two brackets

refer to neglection of covariance in mass and conventional mass calculations, respectively.

In example 1 it is to be noted that, while u(mct1) > u(mcr), the effect of covariance,

jointly with the fact that u(Vt1) < u(Vr), is such that, surprisingly, u(mt1) < u(mr).

In example 2, the large uncertainty about the volume of t2 contributes considerably

to the mass uncertainty u(mt2), whereas the conventional mass is much less affected.

As regards the calibration of t3, the covariance contribution is such that the

uncertainty u(mt3) about its mass is largely independent of the uncertainty about the

volume of the transfer standard used in the calibration, be it t1 (volume accurately

known) or t2 (volume barely known).

A similar, less marked effect is observed on the uncertainty about conventional mass.

Yet, the expanded uncertainty U(mct3) obtained by properly considering covariance
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is U(mct3) = 0.098 mg. This value, despite the fact that the volume of the transfer

standard t2 has a large uncertainty, is less than one fourth of the maximum permissible

error (MPE) for 1 kg standards of OIML Class E1, thus largely complying with the

requirement U(mc) < 0.167 mg. For the same reason, i.e., the large uncertainty of Vt2,

disregarding covariance would yield the non-complying value U(mct3) = 0.18 mg. This

agrees with [7].

As concerns the forces generated by mt1 and mt2 it is worth noting that, although

u(mt1) and u(mt2) are very different, the uncertainties related to the corresponding

forces are comparable. In practice, taking into account the covariance contribution, the

most important term for the uncertainty associated with the force is the contribution due

to the air density uncertainty, whereas the volume does not contribute in a significant

way. In addition, the over-stating of the force uncertainty that is given by neglecting

covariance is much larger when working with mass than with conventional mass, which

strongly indicates that, generally speaking, the latter route is preferable to the former.

Table 1. Dissemination from a reference (r) to a working (t3) standard through

a transfer standard t1 whose volume is well-known. The last two columns give

the uncertainties about mass and conventional mass, and the last row gives the

uncertainties about the force generated by t1. The values in brackets are the (incorrect)

uncertainties obtained neglecting the covariance terms. In the case of force, in the first

bracket there is the uncertainty obtained when working with mass, in the second that

obtained from conventional mass.

Standard V/cm3 ρa/kgm−3 u(m,V )/mg cm3 u(mc, V )/mg cm3 u(m)/mg u(mc)/mg

mr 124.750(25) 1.190 7.4× 10−4 −6.3× 10−6 0.050 0.040 (0.050)
mt1 125.780(10) 1.150 1.2× 10−4 −5.0× 10−6 0.043 (0.060) 0.041 (0.051)
mt3 125.500(25) 1.120 7.0× 10−4 −5.0× 10−5 0.051 (0.067) 0.043 (0.051)

@ ρaF = 1.120(1) kgm−3 u(Ft1) = 13.0µN (13.7µN) (13.3µN)

Table 2. Dissemination from a reference (r) to a working (t3) standard through

a transfer standard t2 whose volume is barely known. The last two columns give

the uncertainties about mass and conventional mass, and the last row gives the

uncertainties about the force generated by t2. The values in brackets are the (incorrect)

uncertainties obtained neglecting the covariance terms. In the case of force, in the first

bracket there is the uncertainty obtained when working with mass, in the second that

obtained from conventional mass.

Standard V/cm3 ρa/kgm−3 u(m,V )/mg cm3 u(mc, V )/mg cm3 u(m)/mg u(mc)/mg

mr 124.750(25) 1.190 7.4× 10−4 −6.3× 10−6 0.050 0.040 (0.050)
mt2 125.8(8) 1.150 7.4× 10−1 −3.2× 10−2 0.92 (0.92) 0.058 (0.065)
mt3 125.500(25) 1.120 7.0× 10−4 −5.0× 10−5 0.056 (1.29) 0.049 (0.091)

@ ρaF = 1.120(1) kgm−3 u(Ft2) = 13.2µN (126.7µN) (15.2µN)
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6. Conclusions

The main conclusion of this paper is that, in order to maintain consistency along the

whole dissemination chain, at each step the covariance terms arising from the buoyancy

contribution to the uncertainties of both mass and conventional mass should be carefully

taken into account. To enable the user to do so, it is recommended to give in calibration

certificates the covariance u(mcr, Vr) or u(mr, Vr)) or, as in [6], ρa1 and u(Vr), or, of

course, the corresponding values in terms of density (see the Appendix).

If calculations are carried out properly, somewhat surprising results are obtained.

First, the uncertainty of the volume of the reference standard does not play a significant

role. In addition, the uncertainty of a calibrated standard in some circumstances can

be smaller that that of the reference. Finally, working with mass or conventional

mass is essentially equivalent, although for normal operation in air the uncertainty of

conventional mass is considerably smaller that that of mass. The relationship between

mass and conventional mass uncertainties is governed by equation (38).

If covariance contributions are not taken into account, the uncertainty of mass

suffers from a considerable over-stating, arising from a double counting of the uncertainty

contribution of the volume of the reference standard. As to conventional mass, apart

from a rarely occurring possibility of (moderate) uncertainty under-stating, in most

practical situations the uncertainty over-stating is much smaller than for mass. This

leads to the counter-intuitive conclusion that working with conventional mass is safer

than working with mass.

The same conclusions are valid as concerns the uncertainty about the force

generated by a deadweight. If calculations are carried out properly, working with mass or

conventional mass is equivalent. This conclusion contradicts the widespread belief that

high-level force metrology requires calibration in mass of the deadweight, thus limiting

the conventional value to lower-level activity. Rather, conventional mass is preferable,

being more tolerant towards neglection of covariance terms.

7. Appendix

The analysis given in this paper can be carried out in terms of density instead of volume.

Here we give the most important formulas. Most of these results, some of which in a

different form, are also given in [6, 7].

The weighing model (5) in terms of density is

mt = mr(1− ρa/ρr)(1− ρa/ρt)−1 −∆mw (45)

or, using the conventional mass mcr,

mt = mcr
(1− ρ0/ρc)(1− ρa/ρr)
(1− ρ0/ρr)(1− ρa/ρt)

−∆mw, (46)

which is equivalent to equation (13).
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For the conventional mass (8), under the usual assumption mt ≈ mr,

mct = mcr [1 + (ρa − ρ0) (1/ρt − 1/ρr)]−∆mcw, (47)

or

mct = mr
(1− ρ0/ρr)
(1− ρ0/ρc)

[1 + (ρa − ρ0) (1/ρt − 1/ρr)]−∆mcw. (48)

The counterparts to the covariances (21) and (22) are

u(mr, ρr) = −ρa1
mr

ρ2r
u2(ρr) (49)

and, taking mcr1 ≈ mcr,

u(mcr, ρr) = −(ρa1 − ρ0)
mcr

ρ2r
u2(ρr), (50)

respectively.

By pairwise comparing equations (49) vs (21) and (50) vs (22), and considering

that typically u(V )/V ≈ u(ρ)/ρ, the useful formulas

u(m, ρ) = − m
V 2

u(m,V ) (51)

and

u(mc, ρ) = − m
V 2

u(mc, V ) (52)

are obtained.

The buoyancy contribution to the mass uncertainty, which in terms of volume is

given by equation (26), becomes

u2(Cb) =

[
mr

(
1

ρt
− 1

ρr

)]2
u2(ρ2a) + ρ2a

m2
r

ρ4t
u2(ρt)

+ [(ρa − ρa1)2 − ρ2a1]
m2

r

ρ4r
u2(ρr), (53)

whereas the corresponding contribution to conventional mass, equation (30), is

u2(Ccb) =

[
mcr

(
1

ρt
− 1

ρr

)]2
u2(ρ2a) + (ρa − ρ0)2

m2
cr

ρ4t
u2(ρt)

+ [(ρa − ρa1)2 − (ρa1 − ρ0)2]
m2

cr

ρ4r
u2(ρr). (54)

Equation (38) can be expressed in terms of density as

u2(mct) = u2(mt)− [(ρa − ρ0)2 − ρ2a]
m2

t

ρ4t
u2(ρt). (55)

As concerns force, equations (14) become here

Ft = mt(1− ρaF/ρt)g (56)

and

Ft = mct(1− ρ0/ρc)(1− ρ0/ρt)−1(1− ρaF/ρt)g
≈ mct[1 + (ρ0 − ρaF)/ρt − (ρ0/ρc)]g, (57)
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The last term, a first-order approximation, is the same as equation (3) in [13].

The corresponding (equivalent) uncertainties are

u2(Ft) =

[
u2(mt) +

m2
t

ρ2t
u2(ρaF) +

m2
t

ρ4t
[(ρaF − ρa)2 − ρ2a]u2(ρt)

]
g2

+

(
Ft

g

)2

u2(g) (58)

and

u2(Ft) =

[
u2(mct) +

m2
ct

ρ2t
u2(ρaF) +

m2
ct

ρ4t
[(ρaF − ρa)2 − (ρa − ρ0)2]u2(ρt)

]
g2

+

(
Ft

g

)2

u2(g), (59)

respectively.
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[10] M Gläser, M Borys, D Ratschko and R Schwartz, 2010 Metrologia 47, 4, 419

[11] F Cabiati and W Bich, 2009 Metrologia 46, 5, 457
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