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Ab-initio based analytical evaluation of entropy in
magnetocaloric materials with first order phase transitions

Marco Piazzi1∗, Jan Zemen2, and Vittorio Basso1

1 Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
2 Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK

Abstract
We combine spin polarised density functional theory and thermodynamic mean field theory to
describe the phase transitions of antiperovskite manganese nitrides. We find that the inclusion
of the localized spin contribution to the entropy, evaluated through mean field theory, lowers the
transition temperatures. Furthermore, we show that the electronic entropy leads to first order
phase transitions in agreement with experiments whereas the localized spin contribution adds
second order character to the transition. We compare our predictions to available experimental
data to assess the validity of the assumptions underpinning our multilevel modelling.

Keywords: magnetocaloric effect, first order magnetic transitions, Density Functional Theory, Mn-based
antiperovskites, electronic entropy

1 Introduction
Promising materials for magnetic cooling applications, like La(Fe,Si)13, MnFe(X,P) (with X =
Ge, Si, As), FeRh and their related compounds, showing a giant magnetocaloric effect (MCE),
are all characterized by first order magnetoelastic transitions. Moreover, the theory-led design
of new compounds showing enhanced MCE is by no doubt an appealing task, hindered by
the difficulty to predict phase transitions at finite temperatures from first principles. The
development of an even approximate method allowing to predict this kind of transitions is
therefore of high interest.

Spin polarised density functional theory (SDFT) can predict the ground state (GS) energy
and the electronic density of states (DOS) of metallic compounds in ferro- (FM), antiferro-
(AFM) or non magnetic (NM) states [4]. The prediction of Curie points through SDFT has
been also performed in the past [4]. However, the presence of first order phase transitions
and the evaluation of the entropy change at the transition are related to an estimate of the
thermodynamic free energy associated with thermally disordered localized moments. Therefore,
it is beyond the capabilities of standard SDFT.
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Moreover, the treatment of magnetostructural problems including lattice and magnetic de-
grees of freedom linked together has been formulated introducing microscopic Hamiltonians
and this approach has been applied to magnetostructural transitions in martensites [6]. The
method employed is based upon the Monte Carlo sampling of the microscopic energy states, so
alternative analytical means would be desirable.

These observations led us to investigate thermodynamic models based on mean field theory
(MFT) as an alternative approach. Indeed MFT allows for the analytical evaluation of magnetic
entropy and for the inclusion of magnetoelastic effects and it is able to describe, within the
approximation of the existence of magnetic sublattices, both the FM and AFM magnetically
ordered states [18].

In this work we focus on a class of relevant magnetocaloric compounds, the Mn-based
antiperovskites, i.e. ANMn3 with A = Ga, In, Ni, Sn [7]. These systems show a metallic
behaviour with a low temperature (LT) magnetically ordered non collinear AFM state and a
high temperature (HT) paramagnetic (PM) state. Many members of the ANMn3 family show
also a large magnetovolume effect [23]. Together with the evaluation of the GS properties
of these systems as a function of lattice distortion, it is interesting to foresee their transition
temperature and entropy changes from the available SDFT data. Therefore, we have explored
the possibility to combine SDFT zero temperature results with a MFT thermodynamic model
to predict finite temperature properties.

In the paper we show that a MFT description of the non collinear AFM configuration of
Mn-based antiperovskites is possible thanks to the particular arrangement of the magnetic mo-
ments placed at Mn sites within the unit cell. We use the results of SDFT calculations to set
the parameters of the MFT model which includes magnetic, electronic and lattice contributions
to the entropy and we derive the AFM-PM phase transition temperature Tt. We show that the
transition temperature is critically dependent on the inclusion of the magnetic contribution to
the total entropy and on the evaluation of the energy of the HT PM state. In particular, the
inclusion of magnetic entropy is essential to lower Tt as compared to the transition tempera-
ture based on the electronic entropy alone. However, the predicted Tt is still higher than the
experimental values. We discuss the possible origin of this discrepancy in the final section of
this paper.

2 Antiperovskite systems
We have investigated a class of magnetocaloric compounds, i.e. the antiperovskite manganese
nitrides, having general formula ANMn3, with A representing a metal element, choosing A =
Ga, In, Ni, Sn.

As already mentioned in Sec. 1, these systems show a metallic behaviour with a LT non
collinear AFM state and a HT PM state. The crystal has a cubic antiperovskite structure with
five atoms per unit cell and space group symmetry Pm 3̄m [3, 7, 8, 9, 16, 21, 22, 24]. The
three Mn atoms, placed at the centres of the cubic unit cell faces, are the magnetic ions in the
compounds and they have magnetic moments µi (with i = A,B,C), see Figure 1. Therefore,
we can distinguish three equivalent magnetic sublattices A, B, C, corresponding to different
Mn atomic sites. In the non collinear AFM state the magnetic moments are arranged in the
(111) plane either in the Γ5g triangular vortex structure (Figure 1a) or in the Γ4g configuration
(Figure 1b) [7]. In both cases µA = µB = µC with µi = ‖µi‖ (i = A,B,C). SDFT simulations
have shown that the difference between the Γ5g and Γ4g arrangements is introduced only by spin-
orbit coupling and that the latter results to be a small contribution only. The GS arrangement
depends on the particular A metal element present in the compound. It is the Γ5g one for A =
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Ga, In, while it is the Γ4g one for A = Ni, Sn.
In the unstrained case, the nearest-neighbours exchange energy of the system can be de-

scribed by the Heisenberg Hamiltonian H =
∑

〈i,j〉 Wijµi · µj , with 〈i, j〉 and Wij > 0 repre-
senting the i-th, j-th nearest-neighbours Mn sites and the exchange coupling parameters, re-
spectively. We will assume the latter to be independent on the Mn atoms, so that Wij = W > 0
for all i, j. The sum in the Hamiltonian can be arranged so that it contains two different terms.
The first term has the form W/2

∑
unit cells ‖µA + µB + µC‖

2 and its minimization brings to
the condition µA + µB + µC = 0, corresponding to the non collinear AFM GS of the system.
The second term is expressed as −W/2

∑
unit cells

(
µ2
A + µ2

B + µ2
C

)
.

The MFT thermodynamic model is then developed by passing from the inclusion of the
local magnetic moments µi to the description of the macroscopic sublattice magnetizations
(averaged magnetic moment per unit mass) M i (i = A,B,C). It is reasonable to assume that
the same two terms present in the Heisenberg Hamiltonian are also the terms appearing in the
MFT magnetic free energy. Therefore, we can assume the first term of the free energy to be
zero by taking the condition, valid also at finite temperature, MA + MB + MC = 0. We
are then left with a term −W/2

∑
unit cells

(
M2

A +M2
B +M2

C

)
, with Mi = ‖M i‖ (i = A,B,C),

representing an effective FM-like interaction for the magnetizations of each sublattice. This
way, the non collinear AFM order between A, B and C sublattices corresponds to a FM order
in each sublattice. Since the strength of the interaction coupling W and the exchange energy
are the same for all of them, we can choose one sublattice as representative of the magnetic
behaviour of the whole system, for example the A one. Then, it is feasible to treat the system as
a ferromagnet and to identify the order parameter appearing in the MFT free energy describing
it (see Sec. 3) with the magnetization MA of the chosen sublattice.

(a) (b)

Figure 1: Representation of the antiperovskite nitride ANMn3 unit cell (A being a metal) for
the (a) Γ5g and (b) Γ4g magnetic arrangements. (111) plane is highlighted; arrows indicate the
nearest-neighbours Mn atoms’ magnetic moments, laying in the plane. Drawings produced by
VESTA software [15].

3 Thermodynamic model
Free energy and equation of state. The equation of state of a ferromagnet having magne-
tization MA in the scalar case in which a preferential axis coincident with the direction of the
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applied magnetic field has been fixed, neglecting magnetoelastic coupling and pressure effects,
is given by:

∂GL (T,MA)

∂MA

∣∣∣∣
T

= 0. (1)

GL (T,MA) in Eq. (1) is the Landau free energy mass density (in units J kg−1) in the mean
field approximation, expressed as

GL (T,MA) = G0 −
1

2
µ0WM2

A − T [Smagn (MA) + Sel (T ) + Slatt (T )]− µ0HAMA. (2)

In Eq. (2): T and µ0 are the temperature and the vacuum permeability, respectively; MA

represents the order parameter of MFT and in the antiperovskite system under investigation it
is the magnetization per unit mass (in units Am2 kg−1) of the A magnetic sublattice (see Sec. 2
for further details on this system); HA is a fictitious applied magnetic field acting only on MA,
introduced for mathematical purposes but not linked directly to a physical magnetic field.

The first term on the right hand side in Eq. (2) is an overall constant setting the energy
scale by changing the GS energy of the system. The second term represents the magnetic
exchange energy, depending upon the dimensionful (kgm−3) exchange coupling parameter W >
0 introduced in Sec. 2. The third term is the sum of the magnetic (Smagn), electronic (Sel) and
lattice (Slatt) contributions to the entropy per unit mass (i.e. in J K−1 kg−1) of the system.
Finally, the last term resembles the Zeeman energy describing the interaction between the A
magnetic sublattice of the system and the fictitious magnetic field HA.

It is more convenient to rewrite Eqs. (1), (2) in terms of the dimensionless quantities
mA = MA/M0 (−1 ≤ mA ≤ 1), hA = HA/ (WM0) and t = T/T0 representing the reduced
magnetization, magnetic field and temperature respectively, as follows:

∂gL (t,mA)

∂mA

∣∣∣∣
t

= 0 (3)

with gL (t,mA) = GL (t,mA) /
(
µ0WM2

0

)
, and

GL (t,mA) = G0−
µ0WM2

0

2
m2

A−nmagnkBT0t [smagn (mA) + sel (t) + slatt (t)]−
(
µ0WM2

0

)
hAmA.

(4)
In Eq. (4), M0 represents the saturation magnetization of the A sublattice along the field
direction. nmagn is the number of magnetic ions per unit mass. We observe that it can be
determined as nmagn = N f.u.

magn/M
u.c., where N f.u.

magn and Mu.c. are the number of magnetic ions
per formula unit and the mass of the unit cell of the lattice depending on the system under
investigation. kB is the Boltzmann constant. T0 = aJµ0WM2

0 / (nmagnkB) is the AFM-PM
transition temperature at hA = 0 and in absence of electronic entropy; aJ = (J + 1) / (3J), J
is the total angular momentum quantum number of magnetic atoms. Finally, in Eq. (4), we
have introduced the dimensionless contributions to the entropy defined as s = S/(nmagnkB).

It is worth noting that at a given t, the exchange and entropic energy terms of Eq. (4)
behave differently as a function of magnetization, with the decrease in exchange energy at
higher mA counteracting the increase in −smagn. The stable magnetic state at any temperature
t and for various fields hA is determined, through Eq. (3), by minimizing the total energy gL.
Therefore, the key point is to establish how each term appearing in Eq. (4) behaves at different
temperatures.
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Lattice entropy. The lattice contribution has been included for completeness by using the
Debye model. Although magnetoelastic interactions exist and may be relevant [2, 10, 12, 19]
in the present paper we will not consider them. Therefore the entropy of the lattice gives a
contribution which is only relevant for the specific heat values.

In the Debye approximation the specific heat is then given by [1]:

cV (t) = 9kBnions

(
t

tD

)3 ∫ tD/t

0

x4ex

(ex − 1)2
dx (5)

where nions = N f.u.
ions/M

u.c is the mass density of lattice ions, N f.u.
ions being the number of lattice

ions per formula unit, and tD = TD/T0, TD being the Debye temperature. The lattice entropy,
not depending on mA, is then obtained from Eq. (5) simply as Slatt (t) =

∫ t
0 cV (t′) /t′ dt′, so

that in dimensionless form it reads:

slatt (t) =9
nions

nmagn

∫ t

0

dt′

t′

[(
t′

tD

)3 ∫ tD/t′

0

x4ex

(ex − 1)2
dx

]

= −3
nions

nmagn

[
ln
(
1− e−tD/t

)
− 4

(
t

tD

)3 ∫ tD/t

0

x3

ex − 1
dx

]
.

(6)

Electronic entropy. Sel describes the contribution to the entropy per unit mass due to the
conduction electrons present in a metallic compound and it is given by Sel (T ) = (γ/ρel)T or,
in dimensionless form, by:

sel (t) =
T0

nmagnkB

γ

ρel
t. (7)

In Eq. (7) ρel is the conduction electrons’ mass density (in units kg m−3) and γ = (πkB)
2D(EF)/3

(see for example [1]) is the Sommerfeld coefficient depending on the electronic DOS at the Fermi
level, i.e. on D(EF), EF being the Fermi energy.

For non metallic systems the effect of this contribution is safely negligible. On the opposite,
in metallic compounds sel may play an important role in determining the behaviour of the
system close to the phase transition. Whenever the conduction electrons can be treated as a
Fermi gas of non interacting particles, the DOS at EF is easily expressed in an analytical way
[1] and the entropy takes the form sel (t) = (nel/nmagn) π2kBT0/ (2EF) t, with nel representing
the number of conduction electrons per unit mass.

However, the free electrons approximation is not usually suitable for the description of real
materials and other methods are required to compute the DOS. Among them, we have used
SDFT since it is one of the most powerful tool to reach this aim. Indeed, it can predict the γ
coefficient of a system having conduction electrons, as a metal, both in magnetically ordered
or NM configurations. Moreover we have also assumed the coefficient to vary smoothly as a
function of the magnetization mA in the following way:

γ (mA) = γNM −m2
A∆γ. (8)

∆γ = γNM − γM and γNM, γM are the Sommerfeld coefficients provided by SDFT at mA = 0
and |mA| = 1, respectively. The m2

A dependence of γ has been chosen to preserve the time
reversal symmetry of the magnetization, ensuring that gL must be an even function of mA.
With this assumption the γ coefficient appearing in Eq. (7) is not a constant any more but it
is replaced by Eq. (8), making the electronic entropy a function also of mA: sel = sel (t,mA).
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Magnetic entropy. Finally, concerning the magnetic contribution to the entropy, for local-
ized magnetic moments systems statistical mechanics provides the following result, in which
smagn is expressed as a function of xA = B−1

J (mA) (BJ(xA) being the Brillouin function) [5]:

smagn (xA) = ln

[
sinh

(
2J+1
2J xA

)

sinh
(
xA
2J

)
]
− xABJ(xA). (9)

4 Results
We have applied the multilevel approach introduced in Sec. 1, combining SDTF and MFT
results, to the antiperovskite compounds described in Sec. 2. On the one hand, since these
systems have metallic behaviour, the MFT approach alone is not suitable to fully capture their
thermodynamic properties. On the other hand, MFT allows the evaluation, at different t and
hA, of the magnetic entropy smagn given by Eq. (9). As we will show in Sec. 4.2, this contribution
is unavoidable to properly determine both qualitatively and quantitatively the character of the
magnetic phase transition occurring in the system and its transition temperature Tt.

4.1 System parameters
The Vienna ab-initio simulation package (VASP) code has been used to evaluate the energy
and the DOS of the systems under investigation both in the NM and AFM configurations
[13]. The DOS has been calculated using the Perdew-Burke-Ernzerhof generalized gradient
approximation of the exchange correlation potential [17] and a 18× 18× 18 k-point sampling.
Moreover, same lattice parameters have been considered in evaluating the GS energies ENM

GS ,
EAFM

GS for both the NM and AFM configurations. Therefore, the value obtained for the NM
state may not necessarily be a GS energy but a good approximation of it.

Table 1 reports the values of the GS energy differences ENM
GS −EAFM

GS between the NM and
AFM states, and the GS energy ENM

GS = G0 corresponding to the NM configuration, as provided
by VASP. The energy of the AFM state is representative of the FM state (i.e. |mA| = 1) energy,
evaluated at t = 0, in the thermodynamic model described by Eq. (4) (see Sec. 3). The energy
of the NM configuration has been instead chosen as representative of the disordered PM state
characterized by mA = 0, since in the NM state MA = MB = MC = 0. However, it is known
that the PM and NM states may have different GS energies [20], as it will be discussed later
(see Sec. 4.3). With these choices, we can easily determine, through the SDFT results, the
MFT parameters µ0WM2

0 = ENM
GS − EAFM

GS and G0 = ENM
GS (see Table 1).

Table 1 shows also the values of the γ coefficients for both the NM and AFM states, i.e.
γNM/ρel and γM/ρel, entering the electronic entropy Eq. (7). Since the latter is very sensitive
to the numerical accuracy of the DOS, especially at LT, the γ values here reported are still
affected by an error which is below 10%.

4.2 Magnetization and entropy
After having evaluated the parameters present in Eq. (4) through SDFT, we have numerically
solved Eq. (3), searching for the global minimum of the Landau free energy. In metallic Mn-
based antiperovskites, the magnetic moment is mainly due to the electron spin, so we have
chosen J = S = 1/2. This way we have determined Tt, mA and the total entropy stot =
slatt + sel + smagn (with slatt, sel, smagn given by Eqs. (6), (7), (9), respectively) of the magnetic
sublattice under investigation as a function of t at various applied field hA.
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GaNMn3 InNMn3 NiNMn3 SnNMn3

∆ENM-AFM
GS 0.73 1.32 1.11 0.82

[eV/f.u.]

G0 = ENM
GS −15.23 −12.34 −16.63 −12.78

[×106 J/kg]

µ0WM2
0 0.56 0.89 0.90 0.53

[×106 J/kg]

γNM/ρel 0.097 0.107 0.073 0.096
[J/(kg K2)]

γM/ρel 0.026 0.025 0.026 0.039
[J/(kg K2)]

Table 1: Values of GS energy differences ∆ENM-AFM
GS = ENM

GS − EAFM
GS , of parameters G0,

µ0WM2
0 of Eq. (4) and of γNM/ρel, γM/ρel coefficients of Eq. (8) for the antiperovskite com-

pounds shown in the first row. Energies and γ coefficients are provided by SDFT-VASP code
for the NM and AFM configurations.

We have considered three cases, corresponding to the different contributions to the entropy
that we have included into the free energy Eq. (4): the magnetic one smagn alone, the electronic
one sel alone or both. This way it is possible to clarify how they affect the behaviour of the
thermodynamic quantities describing the system.

Magnetization. The order of the magnetic phase transition and the transition temperature
deeply rely on the various contributions to the entropy included in Eq. (4), as clearly shown
by the magnetization curves reported in Figure 2. At hA = 0, in all cases there is a phase
transition between the LT-FM to the HT-PM state, as encompassed in the drop-off of mA at
tt = Tt/T0. It is worth recalling that the LT-FM state in the chosen sublattice corresponds to
the triangular AFM state in the whole antiperovskite lattice (see Sec. 2). The drop-off occurs
suddenly and in a discontinuous way when considering only sel, while it is smooth when only
smagn or both the entropic contributions are included in Eq. (4). This fact means that in the
former case the phase transition is first order but it slowly becomes more and more continuous
by including spin entropy, being fully second order when smagn is the only contribution to the
entropy. Moreover, the lowest tt value corresponds to the case in which both sel and smagn are
non-zero, while it is enhanced if one of these two terms is neglected. The latter fact must be
taken into account to avoid an overstimate of the transition temperature of a real system.

We can gather the same conclusions by looking at the analytical expression of Tt at hA = 0.
An approximate analytical expression for the transition temperature can be obtained evaluating
explicitly Eq. (3). Indeed, recalling that ∂smagn(mA)/∂mA|t = −B−1

J (mA) and expanding the
inverse Brillouin function at first order as aJB−1

J (mA) ' mA, we end up with the following
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Figure 2: mA vs. t at 0 ≤ hA ≤ 0.05 in steps of 0.01 and J = 1/2 for different entropic
contributions included in Eq. (4): {sel, smagn} (black solid lines), {sel} (red dashed lines)
and {smagn} (green dash-dotted lines). Transition temperatures tm+el

t , telt , tmt are defined in
Eq. (11). Remaining parameters nmagn, µ0WM2

0 , ∆γ/ρel are set considering the values for
GaNMn3 compound (Table 1).

equation of state for hA = 0:

∂gL (t,mA)

∂mA

∣∣∣∣
t

= c(t)mA=0 with c(t) =






t− 1 if sel = 0

2∆γ
ρel

µ0WM2
0

(
aJ

nmagnkB

)2
t2 − 1 if smagn = 0

t− 1 + 2∆γ
ρel

µ0WM2
0

(
aJ

nmagnkB

)2
t2 if sel, smagn (= 0

(10)
where the parameters appearing in Eq. (10) have been introduced in Sec. 3. Since the transition
temperature tt obeys c(tt) = 0, we easily obtain:






Tm
t = T0 = aJ

µ0WM2
0

nmagnkB
if sel = 0

T el
t =

√
ρel

µ0WM2
0

2∆γ if smagn = 0

Tm+el
t = T el

t
2Tm

t

[√
4(Tm

t )2 +
(
T el

t
)2 − T el

t

]
if sel, smagn (= 0.

(11)

It is worth noting that for ∆γ ) 1, i.e. when sel is negligible and the dominant contribution
to the entropy is due to the atomic spins, Tm+el

t → Tm
t . In the opposite limit, ∆γ + 1, when

the electronic entropy drives the system through the transition, Tm+el
t → T el

t . Moreover, it is
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easily shown that Tm+el
t < T el

t and Tm+el
t < Tm

t : therefore, it is also analytically demonstrated
that the combined action of magnetic and electronic entropies lowers the AFM-PM transition
temperature in the antiperovskite compounds here considered. Finally, it is interesting to point
out that T el

t < Tm
t only if ∆γ/ρel > (nmagnkB/aJ)

2/
(
2µ0WM2

0

)
, so that Tm+el

t < T el
t < Tm

t
only when Sel ∝ ∆γ/ρel (see Eqs. (7), (8)) is high enough with respect to the inverse of the
exchange coupling energy. In particular, this is always true for the antiperovskite systems under
investigation, as easily checked by looking at the values reported in Table 1.

Entropy and entropy change. Figure 3 shows the (dimensionless) entropy stot for the same
three entropic contributions considered for the magnetization curves. The entropy behaves
qualitatively as the magnetization, thus having for hA = 0 a discontinuous jump at the first
order AFM-PM transition when the spin entropy is neglected, becoming instead a smooth
change typical of a second order transition when smagn is included.

Figure 3: Total entropy stot vs. t for the same fields hA and entropic contents set in Figure 2
(with slatt also included). Inset shows the case stot = slatt + smagn. The Debye temperature is
TD = 400K [9]. Remaining parameters J , nmagn, µ0WM2

0 , ∆γ/ρel are set as in Figure 2. The
meaning of the lines is the same of Figure 2.

Finally, the entropy change occurring close to the phase transition, i.e. around mA = 0,
depends upon the variation of the magnetic and electronic entropies. Expanding the magnetic
contribution smagn given in Eq. (9) around xA = 0 up to the second order in mA, we obtain
smagn ' ln (2J + 1)−m2

A/ (2aJ) . Adding the electronic entropy (see Eqs. (7), (8)) we end up
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with a total entropy change close to the transition given by:

stot(mA)− stot(0) = −m2
A

(
1

2aJ
+

∆γ

ρel

T

nmagnkB

)
. (12)

It is clear from Eq. (12) that the magnetic and electronic contributions to the entropy change
may either sum or subtract depending on the sign of ∆γ.

4.3 Effective exchange coupling
Eq. (11) links the transition temperature to the parameters ∆γ/ρel and µ0WM2

0 . Substitut-
ing the values evaluated through SDFT for the Mn-based antiperovskite compounds shown in
Table 1, we obtain the transition temperatures reported in Table 2 which are pretty high.

GaNMn3 InNMn3 NiNMn3 SnNMn3

Tm+el
t [K] 1670 2060 2590 1830

T el
t [K] 1995 2300 3100 2160

Table 2: Transition temperatures for the antiperovskite compounds shown in the first row
evaluated through Eq. (11), in the case both smagn, sel (Tm+el

t , second row) or sel alone (T el
t ,

third row) are included in the free energy Eq. (4). The values of µ0WM2
0 and ∆γ/ρel for the

various systems are reported in Table 1.

First of all, we can clearly see that the inclusion of the magnetic entropy contribution in
the free energy of the system (Eq. (4)) lowers for all the compounds under investigation the
transition temperature between the AFM and the NM states, as expected from Eq. (11) (see
also Figure 2). However, the contribution of the spins is not enough to obtain reasonable and
physically sound Tt values. This result may be ascribed to the approximations we have employed
in our model. On the one hand the use of the Heisenberg model to describe exchange interactions
(see Sec. 2) may not be able to capture in detail the thermodynamic and magnetic behaviour
in systems, such as the Mn-based antiperovskites, developing itinerant electron magnetism
close to the transition temperature [23]. On the other hand, we have estimated the exchange
coupling coefficient µ0WM2

0 for the compounds under investigation by considering the GS
energies of the AFM and NM, instead of PM, states. It has been already shown in literature
[14] that approximating the PM state with a collinear AFM configuration instead of a NM
one lowers the AFM-NM energy difference, thus reducing also the value of µ0WM2

0 . For
example, for the GaNMn3 compound, Lukashev et al. [14] have demonstrated that the GS
energy difference ∆EGS ' 300meV/f.u., lower than the 730meV/f.u. we have used here (see
Table 1). Moreover, the coupling between lattice structure and exchange interactions, neglected
in our model, may also contribute to the lowering of ∆EGS. In this sense it is worth mentioning
that recently Gruner et al. [10] have shown that lattice entropy may act cooperatively with the
magnetic contribution, thus promoting a lower phase transition temperature. The inclusion of
magnetoelastic interaction will be the subject of future work.

We have then evaluated the specific heat cV = T∂Stot/∂T for the GaNMn3 compound.
To obtain the resulting curve reported in Figure 4 we have used an effective exchange cou-
pling coefficient

(
µ0WM2

0

)eff
= 4.25× 104 J kg−1. The latter value has been chosen since it

ensures that Tm+el
t = 298K, i.e. the AFM-PM transition temperature experimentally known
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for GaNMn3 [3]. Qualitatively similar behaviours are obtained for the other antiperovskite
systems in Table 1.

Figure 4: Specific heat cV = T∂Stot/∂T , in units of R = NAkB (NA being the Avogadro’s num-
ber), as a function of T for 0 ≤ hA ≤ 0.005 in steps of 0.001. Inset: experimental curve at zero
applied magnetic field adapted from [9]. Parameters set as:

(
µ0WM2

0

)eff
= 4.25× 104 J kg−1;

J , TD, nmagn, ∆γ/ρel as in Figure 3 .

The specific heat exhibits, at hA = 0, the λ-shaped peak characteristic of second order
phase transitions. However, experiments lead to the observation of a first order phase transition
characterized by a sharp peak at Tt ' 298K for the GaNMn3 compound (see Ref. [3] and the
inset in Figure 4). The transition is accompanied by an abrupt change in the unit cell volume of
the compound, although its cubic symmetry is preserved. The fact that magnetoelastic effects
have been neglected in our model may explain the disagreement with the experimental results.

5 Conclusions
We have used a multilevel approach, combining SDFT and MFT, to predict the magnetic
transitions and thermodynamic properties of Mn-based antiperovskite compounds, a class of
promising magnetocaloric materials. We have shown that the inclusion of spin entropy is
important to lower the transition temperature of the systems. However, the fact that the
presence of the magnetic entropy changes the transition from first order to second order and it
does not lower enough the transition temperature, making it not comparable with experiments,
means that several improvements can be done on the theory.

On the one hand, an improvement in the estimate of the energy of the HT state of the system
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would probably bring to a more reasonable value of the MFT exchange coupling parameter, thus
lowering the transition temperature. The approximation of the HT-PM phase with the NM state
that we have employed in our SDFT calculations is probably too rough. Better estimates can
be obtained by representing the PM phase as an AFM arrangement of the magnetic moments
within each sublattice [14] as well as by using the disordered local moment (DLM) theory
[11]. DLM is an alternative ab-initio approach modelling the PM state at finite temperature
as an ensemble of disordered non-zero local magnetic moments with random orientations. The
validity of the DLM picture is guaranteed by the fact that in metals the kinetics governing
moments orientations is much slower than the electronic motions one. It has been recently
applied successfully to simulate AFM-FM transition in FeRh [20].

On the other hand, the size of the overestimate in the transition temperature suggests
that the itinerant electron aspect of the studied magnetic system is not negligible, so the
Heisenberg treatment of the local moments may have limited applicability close to the transition
temperature.

Future developments of the present approach are therefore envisaged, as the better estimate
of the GS energy, the improvement of MFT in its prediction of the spin contribution to the
entropy and the inclusion of magnetoelastic effects to understand in detail the first order nature
of the phase transitions occurring in several Mn-based antiperovskite compounds.
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