Analysis of Internally Shunted Josephson Junctions

This is the author's submitted version of the contribution published as:

Original
Analysis of Internally Shunted Josephson Junctions / Lacquaniti, Vincenzo; Cassiago, Cristina; DE LEO, Maria; Fretto, MATTEO ANDREA; Sosso, Andrea; Febvre, Pascal; Shaternik, Volodymyr; Shapovalov, Andrii; Suvorov, Oleh; Belogolovskii, Mikhail; Seidel, Paul. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - 26:3(2016), pp. 1-5. [10.1109/TASC.2016.2535141]

Availability:
This version is available at: 11696/54570 since: 2021-03-05T17:27:06Z

Publisher:
IEEE

Published
DOI:10.1109/TASC.2016.2535141

Terms of use:
Visibile a tutti

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
IEEE
© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

(Article begins on next page)
Internally shunted Josephson junctions: a unified analysis

Vincenzo Lacquaniti, Cristina Cassiago, Natascia De Leo, Matteo Fretto, Andrea Sosso, Pascal Febvre, Volodymyr Shaternik, Andrii Shapovalov, Olexandr Suvorov, Mikhail Belogolovskii, Paul Seidel

Abstract— Following the ever-rising demand for new functionalities and novel materials in superconducting circuitry, we provide a complete view on the self-shunting problem in Josephson junctions relating it to specific features of a multi-channel weak link between electrodes where averaging over the channels yields a bimodal distribution of transparencies with maxima near unity and zero. We provide two examples of such internally-shunted devices, four-layered Nb/Al-Al oxide-Nb junctions with strongly disordered nm-thick insulating layers where stochastic distribution of transparencies takes place on a local rather than a global scale and MoRe/W-doped Si-Si–MoRe devices with strongly inhomogeneous silicon interlayers partly doped by metallic nanoclusters where the main charge transport occurs across resonance-percolating trajectories. We show how the predicted universal distribution function of transmission coefficients can be verified experimentally without any fitting parameters and analyze some old and new experimental data from this perspective. We believe that our results can form a base for novel four-layered Josephson junctions with enhanced superconducting properties and, at the same time, well-separated metallic electrodes.

Index Terms— Josephson junctions, Current-voltage characteristics, Tunneling, Charge carrier processes, Distribution functions.

I. INTRODUCTION

The use of cryogen-free systems allows superconductive (S) devices to be far superior to other technologies not only for the advantages in speed and accuracy, but also from the viewpoint of energy efficiency. However, in order to exploit this, for instance, for computing and other high-impact applications, one has to develop a high-density technology which can cope with near unity to almost zero and thus are shunted for intrinsic reasons and (ii) junctions where a metallic-to-insulator transition barrier is used, trimming its composition.

In the following, we discuss different types of non-hysteretic devices. Examples of type (i) are certainly double-barrier SINIS heterostructures with almost identical insulating barriers [3,4]. In this case self-shunting appears due to the presence of transmission resonances in the transparency of the I-V characteristics of SNS devices can be hysteretic due to the increase of the normal-metal electron temperature once the junction switches to the resistive state [2]. It means that optimal Josephson junctions should be internally shunted such SNS trilayers but with insulating barriers without conducting electrons which can provide isolation between metallic electrodes.

To overcome this, two classes of junctions can be considered: (i) junctions with a specific transition region between the electrodes which includes a lot of transition channels with a broad spread of transmission probabilities \(D \) from near unity to almost zero and thus are shunted for intrinsic reasons and (ii) junctions where a metallic-to-insulator transition barrier is used, trimming its composition.

In the following, we discuss different types of non-hysteretic devices. Examples of type (i) are certainly double-barrier SINIS heterostructures with almost identical insulating barriers [3,4]. In this case self-shunting appears due to the presence of transmission resonances in the transparency of the platelet link between superconducting electrodes which are separated from the normal interlayer by insulating barriers [5].

Also asymmetric Nb/Al-AlO\(_x\)-Nb Josephson structures with ultra-thin oxide barrier which are not only intrinsically shunted but also possess high temperature stability and good reproducibility are examples of this class [6-8].
over the channels yields a bimodal distribution of transparencies with maxima for D near unity and zero. Thus, intrinsic shunting is directly connected with the presence of a significant number of ‘open’ channels in a weak link between superconducting electrodes.

Besides the S/N-I-S four-layered structures [6-8], we discuss Josephson junctions where barriers are formed by silicon layers with embedded tungsten granules. In such devices the internal disorder of the barrier transparencies is caused by irregularly distributed metallic islands. Related experiments on self-shunted junctions of the two types are resumed and compared to the theory.

II. BIMODAL DISTRIBUTION FUNCTION FOR THE CHARGE TRANSPORT ACROSS DISORDERED NANOMETER-THICK INSULATING FILMS

In the following, we limit ourselves to structurally disordered nano-scaled insulating interlayers with preferably tunneling character of the transport and with a huge number of transport channels. Imagine that the transmission coefficient D in all channels has the same functional form with a single controlling parameter. Moreover, we assume that the parameter can be chosen so that its zero value corresponds to the maximum of the transparency D while D goes asymptotically to zero when the parameter increases infinitely (see the left side of Fig. 1). Next, we suppose that the governing parameter is almost uniformly distributed from very small to very large values. If so, the two flat regions of the curve will lead to two maxima in the distribution $\rho(D)$ of transmission probabilities (the right side of Fig. 1). One of them at $D = 1$ indeed means internal shunting of the sample. Thus, in spite of the evident individuality of the probability density function $\rho(D)$ for each sample, the problem is simplified by its inherent complexity which manifests itself in the large number of degrees of freedom in very strongly disordered dielectric layers and just in this case, as was argued in our previous papers [8,9], $\rho(D)$ may exhibit substantial universality.

In order to avoid shorts in the transport channels with $D \leq 1$ we proposed [6,7] to include an additional dirty normal-metal (N) interlayer with a finite transparency between the disordered ultra-thin insulating barrier and one of the electrodes. When $E_F > U_0$ and $\kappa d \ll 1$, U_0 and d being the average barrier height and thickness, E_F and k_F are the Fermi energy and wave number in conducting electrodes, κ is the decaying length of the electron wave function in the barrier, the local transparency is the Lorentzian $D = 1/(1 + Z^2)$ where the parameter $Z = \kappa d/(2k_F)$ is further supposed to be a uniform random variable distributed from zero to infinity [9]. Then the disorder-averaged macroscopic conductance of the junction equals to $\bar{G} = \int \rho(Z)G(Z) dZ$ with a constant distribution function

$$\rho(Z) = 2\bar{G}/(\pi G_0) = \text{const}$$

(1)

where $G_0 = 2e^2/h$ is the conductance quantum. Note that Eq. (1) does not depend on the complex structure of the tunneling barrier and, hence, is universal.

Yet another example when the universal distribution function (1) can be realized is tunneling across insulating layers doped by conducting nano-scaled clusters. When the dopant concentration is not very small, peculiar resonance-percolation trajectories with periodic arrangement of nanograins with almost coinciding localized levels are formed inside the dielectric [10]. Calculations [11] for elastic tunneling through a single localized site within an insulating layer of comparatively thick barrier $\kappa d >> 1$ leads to the transparency which has a Lorentzian form for the difference between the incident electron energy and that of the resonance state. If the latter is distributed uniformly within a large energy interval we again get the same universal distribution function (1).

III. CHARGE TRANSPORT IN S/N-I-S JUNCTIONS IN THE QUASI-CLEAN LIMIT

Our previous calculations of $I-V$ curves in Nb/Al-Al oxide-Nb junctions [7,8] were based on the inequality $d_{Al} << \xi_{Al}^*$, where d_{Al} is the Al-interlayer thickness, $\xi_{Al}^* = \xi_{Al}/\sqrt{T_{c,Al}/T_{c,Nb}}$, ξ_{Al} and $T_{c,Al}$ are the superconducting coherence length and critical temperature in Al, and $T_{c,Nb}$ is the critical temperature of Nb.

However, junctions with aluminum films more than 100 nm-thick, which are relevant for the increased temperature stability [12], do not fulfill the mentioned inequality and then we need a model valid in the opposite limit when d_{Al} is more than $\xi_{Al}^* = 50-60$ nm [7] and the Al film is non-superconducting. Notice that while the stepwise approximation for the pair potential in superconducting bilayers known as a rigid-boundary condition is not self-consistent, it captures main proximity-induced changes in the electronic density of states $N_\rho(E)$ of a normal metal caused by quasielectron-into-quasihole (and inverse) transformations of Bogoliubov quasiparticles at the N/S interface [13].

The next approximation used in [7,8] is connected with the
Andreev electron-into-hole (hole-into-electron) transformation. Related phase shifts are\(\phi = \pi - \arccos(\Delta) \) in a conventional s-wave superconductor [13] to \(\chi^{(h/e)}(\varepsilon) = \pi - \arccos(\Delta) \) and it is just the effect we are looking for.

The total quasiparticle current-vs-voltage characteristics of S/N-I-S heterostructures can be represented as a sum of independent contributions from individual transverse modes with a known distribution \(\rho(D) \) of their transmission probabilities. Averaging the \(I-V \) curves for fixed parameters \(Z \) with the distribution function (1) we get an expected dissipative current-voltage characteristic for an S/N-I-S four-layered device with ideally disordered insulating barrier. Further, it will be characterized by the ratio of the subgap resistance \(R_N(V) / R_N \), calculated at very low voltages \(V \), to the normal-state resistance \(R_N = 1 / G \) of the junction.

Our numerical result \(R_N(V) / R_N = 1.27 \) should be compared with related experimental data.

Measurements of \(I-V \) characteristics at 1.7 K have been carried out suppressing the critical current of the junctions with applied magnetic field, in an experimental apparatus already described in the previous paper [12]. The S/N-I-S junctions were fabricated as was reported earlier in Refs. 6-8. In order to test the new theoretical approach described above, junctions with an aluminum film as thick as 140 nm have been measured. Representative current-voltage characteristic is shown in the main panel of Fig. 2. Subgap ohmic resistance \(R_N \) was extracted from experimental data as the slope of a best-fit linear regression line for quasiparticle curves in the interval from 0 to 0.2 mV where the subgap current increases linearly with \(V \) (the solid line in the main panel of Fig. 2). The normal-state resistance \(R_N \) was determined from a linear fit to dissipative current–voltage curves at \(\sim 1 \text{mV} \).

In the inset in Fig. 2 we compare experimental data for five different Nb/Al–AlO\(_x\)–Nb samples with the \(R_N / R_N \) ratio values predicted for an N-I-S trilayer as well as for an S/N-I-S junction in the quasi-clean limit, this paper, and in the dirty proximity-effect limit, Refs. 7 and 8. It is evident that the novel model agrees better with experimental data, at least, for comparatively thick Al interlayers.

IV. CHARGE TRANSPORT IN JOSEPHSON JUNCTIONS WITH METALLIC NANOISLANDS EMBEDDED INTO LOW-HEIGHT BARRIERS

As was noted in the second section, superconducting junctions with low-height and, hence, comparatively thick insulating interlayers may be self-shunted by adding metallic nano-scaled drops into the barrier. First results on W-doped silicon (W:Si) interlayers in Josephson junctions formed by MoRe-alloy electrodes were published in Ref. 20. Below we present some new data and their theoretical interpretation valid at 4.2 K which corresponds to \(T = T_c / 2 \) in our samples.
In order to prevent direct transport between superconducting electrodes across regions with the transmission coefficient near unity we used an additional layer of Si with the thickness about 30-40 nm (we have found that neither junction resistance, nor superconducting characteristics were strongly affected by changing the Si thickness within this interval). In most samples, the current-voltage characteristics were non-hysteretic and all of them exhibited an excess current, a constant shift of the superconducting I-V curve towards that measured in the normal state at V exceeding Δ/e (the solid line in the main panel of Fig. 3). The ratio $I_c/I_{exc} \approx 2.4$ was found for the sample shown in Fig. 3. Now we show that just this ratio can serve as an indicator of the internal structure of a weak link in Josephson junctions.

Let us calculate its value at $T \approx T_c/2$. Temperature dependences of the Josephson critical current in SNS and SIS (with strongly disordered I barrier) trilayers were presented in Ref. 12. According to Ref. 21, the excess current for an SIS sandwich can be found by doubling the corresponding result for an NIS junction

$$I_{exc} = 2 \int \left[\frac{G_{NIS}(\varepsilon)}{G_{NIN}} e^{-\frac{\varepsilon}{kT}} f(\varepsilon) \right] d\varepsilon,$$

where $G_{NIS}(\varepsilon)$ and G_{NIN} are related differential conductances, $f(\varepsilon)$ is the Fermi function. In the absence of the barrier, at 4.2 K we get $I_c/I_{exc} \approx 1.3$. In the tunneling limit $D \ll 1$, $I_{exc} \to 0$ hence, $I_c/I_{exc} \to \infty$. Averaging related formulas with the distribution function (1) where we put $D_N = 1$, we have obtained $I_c/I_{exc} \approx 2.4$ at $T = 4.2$ K. In the inset in Fig. 3 we compare theoretical expectations and related experimental data for four samples with different dopant concentrations c_W. It follows from the data shown in the inset in Fig. 3 that the ratio I_c/I_{exc} increases with c_W as a result of the strong enhancement of the number of transport channels. But this conclusion is preliminary and should be confirmed by more detailed measurements.

Note that the product LR_N for the sample shown in Fig. 3 is of a comparatively large magnitude 3.8 mV. Sometimes we have even observed values several times higher. The nature of so large LR_N products still remains unclear.

V. CONCLUSION

The main aim of the paper was to show that internal shunting of Josephson junctions can be achieved using a strongly inhomogeneous insulating weak link with a bimodal transparency distribution $p(D)$ peaked at $D = 0$ and $D = 1$. We have discussed two possible ways to realize it, (i) an ultra-thin amorphous aluminum-oxide interlayer with very strong local fluctuations of the barrier height and thickness and (ii) comparatively thick semiconducting films with embedded metallic granulas. In the first case, the main mechanism of the charge transport is direct quantum tunneling through an inhomogeneous barrier while in the second case it is based on a quantum-percolation process including resonance trajectories with the transmission coefficient near unity.

REFERENCES

