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Abstract. The measurand value, the conclusions, and the decisions inferred from
measurements may depend on the models used to explain and to analyze the results. In this
paper, the problems of identifying the most appropriate model and of assessing the model
contribution to the uncertainty are formulated and solved in terms of Bayesian model selection
and model averaging. As computational cost of this approach increases with the dimensionality
of the problem, a numerical strategy, based on multimodal ellipsoidal nested sampling, to
integrate over the nuisance parameters and to compute the measurand post-data distribution is
outlined. In order to illustrate the numerical strategy, by use ofMATHEMATICA an elementary
example concerning a bimodal, two-dimensional distribution has also been studied.

1. Introduction

Use of Bayesian methods as ways to incorporate the model uncertainty into the data analysis
and the uncertainty budget is often computationally expensive, but advances in computing
technology have allowed to take these methods into account. Consequently, the choice between
two or more hypotheses, for example when we have to the fit the shape of an experimental
curve, can be made by considering different models, each indexed by one or more parameter,
where the Bayesian model selection and model averaging provides the probabilistic framework
to simultaneously treat both the model and data uncertainties.
Let x the list measurement data, (A,B, . . . ,M, . . .) the list of different possible models, θ the

measurand, and (θA, θB , . . . , θM . . .) the relevant nuisance parameters. The joint distribution of
the data, measurand, parameters, and model can be written in terms of conditional probabilities
as

P (x, θ, θM ,M) = L(θ, θM ,M |x)π(θ, θM |M)Π(M), (1)

where we have introduced the likelihood L(θ, θM ,M |x) = P (x|θ, θM ,M), the conditional prior
probability distribution of the measurand and parameters π(θ, θM |M), and the prior probability
of the model Π(M). By conditioning the left hand side of Eq. (1) on the data and the model,
and applying the chain rule, we can write (1) as

P (θ, θM |x,M) =
L(θ, θM ,M |x)π(θ, θM |M)

Z(x|M)
, (2)
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where we introduced the so-called “evidence” Z(x|M) = P (x|M). It is the normalizing factor
of the numerator in (2), i.e. it satisfies the relationship

Z(x|M) =

∫
Θ⊕ΘM

L(θ, θM ,M |x)π(θ, θM |M) dθ dθM . (3)

By applying the Bayes theorem to P (x,M) we obtain the discrete probability Prob(M |x) for
the model M provided by the data

Prob(M |x) =
Z(x|M)Π(M)

P (x)
, (4)

which, by use of the law of total probability, can be rewritten in terms of evidence Z(x|M) of
each model as

Prob(M |x) =
Z(x|M)Π(M)∑
M Z(x|M)Π(M)

. (5)

Eq. (5) gives the probability of a model given the observed data, and a simple way to
select a model is to choose the most probable. However, when the relevant probabilities are
approximately equal and no single model stands out, it is necessary to average over the considered
models.

2. Multimodal, ellipsoidal, nested sampling

Since the evaluation of evidence Z in (3) becomes impractical when the integration space has
20 ÷ 30 dimensions, and, as in the most practical case, the likelihood is different from zero in
a small fraction of the integration domain, we have investigated a nested sampling technique
relating the likelihood values to the prior volume [1, 2].
Firstly, p likelihood samples Lθ1 , . . . , Lθp are sampled in Θ ⊕ ΘM according to π(θ, θM |M).

Next, the smallest, indicated as L1, is removed and replaced by a new sample, Lnew, subject to
the constraint Lnew > L1. The prior volume enclosed by the iso-likelihood surface L = L1 is
estimated as p/(p+1), where p/(p+1) is the mean value of the largest of p uniform samples in
[0, 1], the total volume of Θ⊕ΘM being normalised to 1. The discharge of the lowest likelihood
Ln, sampling of a replacement constrained to Lnew > Ln, and shrinking of the prior volume
of the associated iso-likelihood surface to Vn = pn/(p + 1)n are repeated until some stopping
criterion is satisfied, for example when the contribution to (3) of the surviving likelihood samples,
i.e. Lmaxp

n/(p + 1)n, where Lmax is the maximum sample, is less than some pre-defined value.
By using the sequence of the discarded likelihoods 0 < L1 < L2 ... < LN , and the differences

ΔVn = Vn−1 − Vn of the associated prior volumes V0 = 1 > V1 > V2 > ... VN > 0, Eq. (3) can be
approximated as (rectangle method)

Z(x|M) ≈

N∑
n=1

LnΔVn + Lmax

(
p

p+ 1

)N
. (6)

The challenge in implementing (6) is sampling within the iso-likelihood surfaces L > Ln. As the
Monte Carlo Markov Chain algorithm may be inefficient, improvements have been proposed in
[3]-[6], which we are presently investigating for application to metrology.
Ellipsoidal sampling [3] replaces the iso-likelihood surface L = Ln by a hyper-ellipsoid given by

the covariance matrix of the living samples and centered in their mean value, and the Lnew > Ln
is sampled within the intersection of the domain of integration and this hyper-ellipsoid [7].
When the integrand in (3) is a multimodal function, the hyper-ellipsoid will be often bonded

to the maxima of the integrand and the sampling will result in an unacceptable decrease in the
acceptance rate of Lnew.
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In this case, a possible strategy is partitioning the set of all living points in clusters, and
then enclose each cluster in a “small” hyper-ellipsoid, centered in the mean value of the cluster
points and defined by the covariance matrix calculated with the cluster points.
In [4] is described a method to avoid hyper-ellipsoids to overlap, but we will consider a

method to manage the overlapping according to [5, 6, 8]. At each step of the method the set of
all living points is partitioned in clusters. If the number of hyper-ellipsoids is greater than 1, a
single hyper-ellipsoid is sampled with probability proportional to its volume; then a Lnew > Ln
is sampled and accepted with probability 1/(number of hyper-ellipsoids containing Lnew). If the
point is rejected, a new sampling of a hyper-ellipsoid takes place.

2.1. Bimodal example in R2

By use of MATHEMATICA (Wolfram Inc.), we applied the ellipsoidal nested sampling to this
elementary integral

I = VD

∫
45

30

(∫
44

31

f(x, y) dy

)
1

VD
dx, (7)

where VD = (45− 30)× (31− 44) = 195 is the volume of the integration domain and (see Fig. 1)

Figure 1. Contour plot of the function f(x, y) defined in Eq. 8.

f(x, y) = cos2
(2π
10
(x− 35)

)
UnitBox

(x− 35

5

)(
−(y − 35)2 + 9

)
UnitBox

(y − 35

6

)

+
(
−(x− 40)2 + 9

)
UnitBox

(x− 40

6

)
cos2

(2π
10
(y − 40)

)
UnitBox

(y − 40

5

)
. (8)

The bimodal function f(x, y), which is centered in (x, y) = (35, 35) and (x, y) = (40, 40),
plays the role of a likelihood; 1/VD is the prior distribution and UnitBox(x) is by definition
equal to 1 for |x| � 1/2 and 0 elsewhere. Our goal is to reobtain the value of the analytical
calculation, that is I = 180. Fig. 2 shows an ellipsoid (red dashed curve) calculated after
sampling uniformly 200 points from the domain of integration. The external ellipsoid, red
continuous curve corresponding to hk1, where h = 1.1, enlarge the sampling volume and is
useful to better study the contour lines (iso-likelihood surfaces) of the integrand. It is also
shown the minimum point of the integrand (green large disk). Strictly speaking, the integrand
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Figure 2. Contour plot of the function f(x, y) + l(x, y); are also shown 200 sampled points
(green), a couple of ellipsoids (red curves, corresponding to k1 and hk1, with h = 1.1) containing
the sampled points, the mean value θ1,G (blue) and the minimum point (green disk).

Figure 3. Contour plot of the function f(x, y) + l(x, y); after 1881 steps the 200 living points
(green) shrunk around the maximum points of f(x, y). The internal rectangle indicates the
integration domain [30, 45] × [31, 44].

should be equal to zero outside the support of f(x, y), but in order to implement the nested
sampling it is necessary to add to f(x, y) a little appropriate function l(x, y). In our example with
function (8), after 1881 steps, the set of the 200 living points is totally shrunk in the maximum
points of the integrand f(x, y), see Figs. 3; moreover, a file containing a list of 1881 “minimal
likelihood” values Ln is available to calculate the evidence Z according to Eq. (6). With the
trapezoid rule, the final result is integral= 148.7 with uncertainty= 14.3. The uncertainty has
been assessed by use of one of the equivalent formulae suggested in [9]. The set of the lowest
likelihood points is shown in Fig. 4 and the list of the number of clusters at each step is shown in
Fig. 5 A realization of 100 independent calculations of the integral with 200 points, that is 100
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Figure 4. Set of the lowest likelihood points (green), corresponding to the discharged likelihood
values Ln by which to calculate the integral in Eq. (6). The internal rectangle indicates the
integration domain [30, 45] × [31, 44].

Figure 5. Number of clusters at each step.

Figure 6. Histogram obtained by 100 independent calculations of (7). Mean value = 178.1,
standard deviation of the mean = 1.5, exact value = 180.

different sets of 200 initial points, has generated the histogram in Fig. 6 having a mean value
= 178.1 and a standard deviation of the mean = 1.5, the trapezoid rule having been exploited
again. Obviously, the mean value of the histogram is very close to the analytical calculation,
while the value obtained by a single calculation can be very different from the real value.
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3. Conclusion

The role of the Bayesian approach to the expression of the model uncertainty in measurements
consists of the quantification of both the sampling and model contributions to the post-data
uncertainty. The multimodal nested sampling has been fruitful in astrophysics, but at authors
knowledge has not yet been exploited in metrology. In any case, to develop an algorithm and the
relevant software to tackle numerical integration of multimodal functions over high-dimensional
spaces can be fruitful from a more general point of view.
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