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Density functional theory calculations of the stress
of oxidised (110) silicon surfaces

C Melis1, S Giordano2, L Colombo1 and G Mana3

1Department of Physics, University of Cagliari, Cittadella Universitaria, 09042
Monserrato (Ca), Italy
2IEMN-UMR CNRS 8520 Avenue Henry Poincarè, 59652 Villeneuve d’Ascq
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Abstract. The measurement of the lattice-parameter of silicon by x-ray
interferometry assumes the use of strain-free crystals. This might not be the case
because surface relaxation, reconstruction, and oxidation cause strains without
the application of any external force. In a previous work, this intrinsic strain
was estimated by a finite element analysis, where the surface stress was modeled
by an elastic membrane having a 1 N/m tensile strength. The present paper
quantifies the surface stress by a density functional theory calculation. We found a
value exceeding the nominal value used, which potentially affects the measurement
accuracy.
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1. Introduction

International efforts are on going to make it possible to replace the definition of the
unit of mass by a new one based on a conventional value of the Planck constant, h
[1, 2]. Since the ratio between the mass of the 28Si isotope and h is well known, a way
to put into practice such a definition is by counting the number of atoms in a 1 kg
silicon sphere highly enriched with 28Si [3, 4, 5, 6]. The count is carried out by dividing
the molar volume, VM/m, where the symbols indicate the volume, molar mass, and
mass of the sphere, by the volume occupied by one atom, a30/8, where a0 is the lattice
parameter. The uncertainty associated to the presently most accurate determination
is about 2 × 10−8NA [7, 8]. In order to achieve this accuracy, the lattice parameter
is measured by combined x-ray and optical interferometry to within a 2 × 10−9a0
uncertainty.

Relaxation, reconstruction, and oxidation cause surface stresses without the
application of any external force. Experimental evidences of surface stress effects
on silicon nanostructures have been already reported [9, 10]. This has a twofold effect
on the NA measurement. Firstly, it makes the measured volume different from the
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Figure 1. Combined x-ray and optical interferometer. The crystallographic
orientation of the interferometer crystals are also given.

volume of an unstressed sphere. Density-functional theory calculations showed that
this effect is an order of magnitude smaller than the present uncertainty of the volume
measurements. Therefore, it can be neglected [11]. Secondly, it makes the lattice
parameter of an x-ray interferometer different from that of a sphere.

The lattice parameter measurement assumes that the silicon crystal is strain
free (undeformed configuration). Although the surface stress can be ignored on the
macroscopic scale, it might be important for this extremely accurate measurement.
To estimate the lattice-parameter change caused by the surface stress, a finite element
analysis was carried out, where an elastic film was used to provide a surface load
[12, 13]. A 1 N/m stress of the elastic film was postulated, but this nominal value
was not supported by evidences. This paper aims to fill this gap by focusing on
density functional theory calculations in order to better quantify the surface stress.
Calculations were carried out by using the Quantum Espresso computer package [14].

In section 2 we describe the operation of an x-ray interferometer. Section 3
outlines the way the surface stress was calculated. Next, in section 4, we give
the results of the numerical computations for the oxidised (110) surfaces of the
interferometer crystals. En passant, this study delivered information about the
structure of the SiO2-Si interface, that was not considered in our previous investigation
[11]. The calculated stress is greater than expected and its effect on the lattice
parameter measurement should have been noticed, but it seems it is not so. Possible
explanations and the implications of this result are discussed in section 5.

2. The lattice parameter measurement

As shown in Fig. 1, an x-ray interferometer consists of three crystals – 1.2 mm thick,
50 mm long, and 20 mm high – so cut that the {220} planes are orthogonal to the
crystal (110) surfaces. 17 keV x-rays from a Mo Kα line source are split by the first
crystal and recombined, via a transmission crystal, by the third, called analyser.

When the analyser is moved along a direction orthogonal to the {220} diffracting
planes, a periodic variation of the transmitted and diffracted x-ray intensities is
observed, the period being the diffracting-plane spacing. The analyser displacement
and rotations are measured by optical interferometry; picometer and nanoradian
resolutions are achieved by phase modulation, polarization encoding, and quadrant
detection of the fringe phase. To eliminate the adverse influence of the refractive index
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of air and to ensure millikelvin temperature uniformity and stability, the interferometer
is hosted in a thermo-vacuum chamber.

The measurement equation is d220 = mλ/(2n), where d220 is the spacing of the
{220} planes and n is the number of x-ray fringes in a displacement of m optical
fringes having period λ/2. The crystal temperature is simultaneously measured with
sub-millikelvin sensitivity and accuracy so that the measured value is extrapolated
to 20 ◦C. The most accurate determinations, d220 = 192014712.67(67) am and
d220 = 192014711.98(34) am have relative uncertainty of 3.6 × 10−9 and 1.8 × 10−9,
respectively [7, 8].

The stress of the analyzer (110) surfaces might strain the crystal, thus making
the measured d220 value different from what it was set out to measure. This problem
was investigated by Quagliotti et al. [13] by using an elastic-film model to provide a
surface load in a finite-element analysis. This study showed that, if the film tensile-
stress is 1 N/m, the measured lattice spacing is 6 × 10−9d220 smaller than the value
in an unstrained crystal. Since the literature values of the surface stress are available
only for reconstructed (100) surfaces, do not consider oxidation, and show value and
sign scatters [13], a null stress was assumed and no correction was applied to the
measurement result.

3. Calculation of the surface stress

All the calculations were carried out by means of first principles density-functional
theory (DFT) which allows the Schrödinger’s equation for large and complex
condensed matter systems to be solved by reducing the many-body problem of
interacting electrons to an equivalent one for non-interacting particles. This is achieved
by using the electron density, instead of the electron many-body wave function, as the
fundamental quantity. A short outline for non specialists and the relevant references
are given in [11].

Our calculations were carried out using Quantum Espresso [14], an integrated
suite of Open-Source computer codes for electronic-structure calculations and material
modelling based on density-functional theory, plane waves, and pseudopotentials.
In [11], we reported the calculation parameters giving the highest accuracy as far
as concerns the Si lattice parameter, the benchmark being its best experimentally
determined value. The same parameter-set was used in this work: the PBESOL
exchange-correlation functional [15], which is specifically designed to calculate the
bulk properties of solids, ultrasoft plane augmented wave pseudopotentials (PAW)
[16], (4× 4× 1) k-points mesh of the Brillouin zone of the unit cells, and 35 Ry cutoff
of the kinetic energy of the single electron wave functions.

As a test case to assess the reliability of our DFT calculations, we considered the
silicon (100) 2 × 1 surface, for which several theoretical and experimental estimates
of the surface stress are given in [13]. In detail, we simulated an infinite slab by
using supercells having 8, 12, 16, 20, or 24 layers of 8 silicon atoms, free boundary
conditions for the z direction perpendicular to the (100) surfaces, and periodic
boundary conditions for the transverse x and y directions. The supercell dimensions
were (10.86082 × 10.86082 × 21.16708) Å3, (10.86082 × 10.86082 × 26.45885) Å3,
(10.86082 × 10.86082 × 31.75062) Å3, (10.86082 × 10.86082 × 37.04239) Å3, and
(10.86082 × 10.86082 × 42.33416) Å3, respectively. Relaxation has been taken into
account by force minimization, until the forces on the atoms vanish within 0.005
eV/Å. Fig. 2 shows a representation of the (100) 2 × 1 reconstructed surface with 24
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Figure 2. Stick-and-balls representation of the 24-layer supercell used to
calculate the (100) 2× 1 surface stress.
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Figure 3. Spacing of the {400} lattice planes as a function of the distance from
the center of the 24-layer cell shown in Fig. 2. Each plane is located by sorting the
Si atoms by their distance and by taking the average depth of each subsequent
set of 8 atoms. The error bars indicate the minimum and maximum depth of the
atoms in each set. The red line is the spacing value of an unstrained crystal.

layers of 8 silicon atoms.
Figure 3 shows the spacing of the {400} lattice planes as a function of distance

from the center of the 24-layer supercell. As already observed in [11], we can
distinguish two main regions: i) a bulk-like region where the lattice spacing is not
significantly different from its unstrained value and ii) two surface regions, about 0.5
nm deep, where the reconstruction strongly affects the lattice spacing.

Since no external force acts on the surfaces, the z-components of the stress are
null and a plane-stress condition is established [17]. Therefore, the supercell surfaces
are characterized by an intrinsic two dimensional surface-stress tensor σsurf

0,ij (expressed
in units of N/m), which is defined as

σsurf
0,ij =

1

2A0

∂Esurf

∂ηij
=

1

2A0
(
∂Esc

∂ηij
− N∂Ebulk

∂ηij
) (1)

where the surface energy Esurf is defined as Esurf = Esc − NEbulk where Esc is the
total energy of the supercell containing the surface and Ebulk is the energy per atom
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of a bulk Si system. In Eq.(1) N is the number of atoms in the supercell, ηij is
the surface-strain tensor (where i and j indicate directions in the surface), A0 is the
equilibrium area of the surfaces, and the factor 2 takes the two surfaces into account.

Since we used the equilibrium lattice parameter of the unstrained lattice, we have
∂Ebulk/∂ηij = 0, therefore the intrinsic surface stress provided by Eq.(1) corresponds
to [18, 19]

σsurf
0,ij =

1

2A0

∂Esc

∂ηij
=
h

2
σsc
ij (2)

where σsc
ij = (1/Ω)∂Esc/∂ηij is the supercell stress (expressed in units of N/m2) and

h the supercell thickness. In particular, we calculated the mean stress

σsurf
0,xy =

h

2

(
σxx + σyy

2

)
(3)

(where σxx and σxx are the principal stresses) which, for symmetry reasons, is
isotropic. We remark that the surface stress calculated σsurf

0,xy represents a crucial
quantity entering the constitutive equation of the surface through the expression
σsurf,tot
ij = σsurf

0,xyδij + 2µsηij + λsδijηkk, which furnish the total stress over the surface
in terms of its local deformation. When the deformation is not present (i.e. ηij = 0),

we obtain that σsurf,tot
ij = σsurf

0,xyδij , corresponding to the fact that the intrinsic surface
stress is isotropic. Therefore, Eqs.(2) and (3) are useful to calculate the total surface
stress when no macroscopic deformation is applied to the system. Indeed, the elasticity
of the surface controlled by µs and λs can be only observed when ηij 6= 0.
As regards the σsurf

0,ij sign, if the surface shrinks (expands) with respect to the bulk,
the surface stress is negative (positive) and it is said to be compressive (tensile).
The supercell stresses σsc

ij are obtained directly from the DFT calculation using the
Hellmann-Feynman theorem [20]. In order to use Eqs.(2) and (3), the calculation was
carried out with the x-y lattice constants fixed at the equilibrium values predicted by
a previous bulk calculation done with the same energy cutoff.

Figure 4 (left) shows the surface stress of the silicon (100)2×1 surface as a function
of the number of the supercell layers. When the cell thickness exceeds 16 atomic
layers, the interaction between the opposite surfaces turns off and σsurf

0,xy converges to
a compressive stress of about −0.5 N/m. The red shaded area shows the interval of
the stress values given in the literature [13], which ranges from −0.68 N/m to 0.76
N/m. Our values are well within this interval and, as shown in Fig. 4 (right), converge
to the most recent (and, arguably, more accurate) literature data. This stands for
the reliability of the present computational setup, which is therefore next applied to
predict surface stress in configurations more closely related to the actual experimental
setup described in the Introduction.

4. Results

The x-ray interferometer crystals are slabs whose surfaces are parallel to the {11̄0}
lattice planes. The damage produced by machining was removed by a cupric-ion
etching. Because of the etching anisotropy, the surfaces, though flat and parallel to
the {11̄0} planes on the average, are quite rough: they display a texture with a typical
0.1 mm length scale and a few micrometer peak-to-valley amplitude. In addition, a
native oxide layer grows of the slab surfaces – which is expected from 1 nm to 2 nm
thick, but nothing is known about its stoichiometry [21, 22, 23].
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Figure 4. Left: surface stress of the silicon (100)2×1 surface as a function of the
total number of layers in the supercell. Right: literature values of the (100)2× 1
surface stress as a function of the publication year [13]. The red shaded area
shows the interval of the stress values given in the literature [13], which ranges
from −0.68 N/m to 0.76 N/m.

Figure 5. Stick-and-balls representation of the 20-layer supercell used to
calculate the stress of the relaxed but not reconstructed (110) surface.

In order to investigate the intrinsic surface stress of the oxidized (110) surface, we
started by considering the pristine (110) surface. In detail, we considered a supercell
with 20 silicon layers having dimensions of (7.6797 × 10.7516 × 49.9184) Å3 and a
total of 160 atoms. We took the relaxation into account by force minimization, up
to the forces on atoms vanished to within 0.005 eV/A; Fig. 5 shows a stick-and-balls
representation of fully relaxed supercell. We did not observe any surface reconstruction
during the minimization. Figure 6 shows the spacing of the {220} lattice planes as a
function of distance from the supercell center. As already reported in [11], we observe a
symmetric variation larger than 10% of the distance between the two outermost planes;
we identify the outermost three atom-layers as the surface region. We calculated a
tensile stress of about 1.6 N/m. The difference between the (100) and (110) stresses
is due to the fact that, while in the (100) case we took the surface reconstruction into
account, no reconstruction was considered for the (110) surface.
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Figure 6. Spacing of the {220} lattice planes as a function of the distance from
the center of the supercell shown in Fig. 5. Each plane is located by sorting the
Si atoms by their distance and by taking the average depth of each subsequent
set of 8 atoms. The dots indicate minimum and maximum depth of the atoms in
each set. The red line is the spacing value of an unstrained crystal.

z

Figure 7. Stick-and-balls representation of the 40-layer supercell used to
calculate the surface stress of the oxidized (110) surface. The red balls indicate
the oxygen atoms. The amorphous oxide layer is about 1 nm thick.

Eventually, we considered a supercell where the two (110) surfaces are covered
by a stoichiometric SiO2 layer. The generation of such a chemically and structurally
complex system is computationally very demanding and required a combination of
classical molecular dynamics and first principles DFT calculations.

In detail, we started with a slab of 40 Si-layers and placed, at the top and bottom
boundaries, two SiO2 layers (α-quartz phase, about 1 nm thick) at a distance of 0.3 nm.
In total, the system contained 456 atoms. Next, we considered a SiO2 pseudomorphic
growth, where the substrate, the Si (110) surface, controls the SiO2 in-plane lattice
parameter. Initially, we minimized the total energy of the system by means of a
combination of low temperature molecular dynamics and conjugate gradients using
the LAMMPS code and the Tersoff potential [24, 25]. After the minimization, the
SiO2 layers approached the (110) surfaces at a distance less than 0.15 nm and created
several Si-O covalent bonds. Eventually, the total energy was further minimized by
means of first principles DFT calculations using the same parameters as previously
described. After the minimization, owing to the large mismatch between the SiO2 and
Si lattices, we observed a partial amorphization of the SiO2 layers, which was already
reported in [26]. Figure 7 shows the fully relaxed surfaces.
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Figure 8. Spacing of the {220} lattice planes. Each plane (blue dots) is located
by sorting the Si atoms by their distance from the center of the cell shown in Fig.
7 and by taking the average depth of each subsequent set of 8 atoms. The red
dots indicate the mean spacing of the oxygen atoms, grouped and located eight
by eight. The error bars indicate the minimum and maximum depth of the atoms
in each set. The horizontal (red) line is the perfect-crystal spacing value.

Figure 8 shows the spacing d220 of the {220} lattice planes as a function of distance
from the supercell center. The red dots indicate the spacing of oxygen atoms, grouped
eight by eight. We observe a large d220 variation near the Si-SiO2 interface. The
spacing of the oxygen atoms does not show any significant trend; this is due to the
amorphization of the oxide.

We are interested in the in-plane strain at the equilibrium, that is, when the σsc
ij

stress in Eq.(2) is fully relaxed. To go through the calculation of the mean surface
stress σsurf

0,xy is a convenient way to facilitate the calculation of the equilibrium strain by
using a continuous mechanics model. Therefore, the mean surface stress was calculated
from Eq.(3), where σsc

ij and h are the stress and the thickness of the whole supercell,
including both the Si and SiO2 layers.

We obtained a very large compressive stress of about −10.3 N/m. With respect to
pristine (110) surface, we observed a stress variation by about one order of magnitude,
both in sign – from tensile to compressive – and modulus. This dramatic change is due
to a twofold effect: i) a large distortion of the (110) surface due to the interaction with
the SiO2 layer and ii) the intrinsic stress of the SiO2 layer due to the large mismatch
between the SiO2 and Si (110) lattice parameters. The occurrence of such a large
stress is consistent with the experimental observation that the deposition of only a
single oxygen monolayer on top of a Si (111) surface gives rise to a surface stress of
-7.2 N/m [27].

5. Conclusions

Under isotropy and plane-stress assumptions, the slab strain is

η =
2σsurf

0,xy

2(λs + µs) + (λ+ µ)h
, (4)
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where λs, µs, λ, and µ are the surface and bulk elastic constants (the Lamé’s first and
second parameters), respectively. Eq.(4) can be easily proved by minimizing the total
energy of the slab composed of the energy of the two surfaces and the energy of the
Si layer. In the limit when the slab is ”thick”, this equation simplifies to

η ≈
σsurf
0,xy

Kh
≈ 2× 10−7, (5)

whereK ≈ λ+µ ≈ 100 GPa is the bulk modulus and h ≈ 10−3 m is the thickness of our
interest. As matter of fact, λs and µs are negligible with respect to λh and µh when h
≥ 50 nm (it depends on the fact that the SiO2 thickness is about 1 nm). Although this
value is within the detection capability of combined x-ray and optical interferometry,
a so large strain was never observed. Preliminary measurements carried out by using
a purposely designed two-thickness interferometer might have evidenced some clue,
but, in the case, the observed strain is more than an order of magnitude smaller than
predicted by Eq.(5) [13, 28]. For this reason the density functional computation was
carefully assessed; we are confident that the result obtained is representative of the
idealized model used.

An explanation may be the roughness of the interferometer surfaces. In fact, the
surface stress is sensitive to the mismatch between the oxide and silicon lattices and,
therefore, might critically depend of the oxide structure and stoichiometry, as well as
on the orientation of the underlying Si surface. About this, we observe that, owing to
roughness, the local orientations of the x-ray interferometer facets are quite different
from the average (110). In addition, roughness might help to relax the stress by
smoothing or enhancing ridges and grooves. In other terms, the absence of planarity
of the oxidised surfaces may strongly reduce the effect of the intrisic stress on the
overall induced strain in the sample.

In any case, the result obtained indicates that the surface stress is a potential
problem of the lattice parameter measurement; it deserves further numerical and
experimental investigations to exclude that it is causing a systematic error or to
quantify it.
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