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Abstract: A Bayesian multivariate approach to the evaluation of risks of false decisions on conformity of
chemical composition of a substance or material due to measurement uncertainty is adapted to cases for which
the composition is subject to a mass balance constraint. The constraint means that sum of the actual (“true”)
values of the composition component contents under conformity assessment is equal to 1 (or 100 %) or another
positive value less than 1 (less than 100 %). As a consequence, the actual values of the component contents are
intrinsically correlated. Corresponding measured values of the component contents are correlated also. Any
correlation can influence evaluation of risks of false decisions in conformity assessment of the substance or
material chemical composition. A technique for appropriate evaluation of the relevant risks, including evaluation
of the conformance probability of a subject or material composition, is discussed for different scenarios of the
data modeling, taking into account all observed correlations. A Monte Carlo method is applied in the R pro-
gramming language for the necessary calculations. Examples of evaluation of the risks are provided for con-
formity assessment of chemical composition of a platinum-rhodium alloy, pure potassium trioxidoiodate, a
sausage, and synthetic air.

Keywords: Chemical composition; conformity assessment; correlation; mass balance constraint; measurement
uncertainty; risk of false decision.
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1 Introduction

Conformity assessment of the chemical composition of an item (batch or lot of a substance or material,
environment compartment, entity, etc.) is performed by comparison of measured values of contents of the
item components with their tolerance (specification) limits [1]. Besides the tolerance limits, which are related
to the actual (“true”) values of the content, narrower acceptance limits, leading to more stringent re-
quirements for the measured values, can be applied taking into account measurement uncertainty [2] to the
advantage of the consumer’s interests. When the producer’s interests are dominant, applicable acceptance
limits are wider than tolerance limits due to the same measurement uncertainty. In both cases, the decision
rules (does the test item conform or not?) are based on comparing themeasured contents with the acceptance
limits [3, 4].

In current practice, decision rules are often based on direct comparison of measured values with the
tolerance limits. The reason is that these limits already take into account themeasurement uncertainty. Thus, the
tolerance and the acceptance limits coincide. The measurement uncertainty is constrained for this purpose by a
requirement to use a specific standardized orfit-for-purpose validated chemical analytical/measurementmethod
[5].

Risks as probabilities of false decisions on conformity of chemical composition of a multicomponent
material or object due to measurement uncertainty have been defined using a Bayesian approach in the
IUPAC/CITAC Guide [6]. According to Bayes’ theorem, a prior knowledge of the measurand values (actual
contents of components in the items) and new information acquired during the measurement are combined
in a posterior probability density function (pdf) [1]. Such a posterior pdf accumulates what is known about
the measurands in the items and allows evaluation of the risks of false decisions in their conformity
assessment, caused by themeasurement uncertainty. The probability of accepting the item after comparing a
measured value with the acceptance limit of a content of an item component, when it should have
been rejected, is called the “consumer’s risk,” whereas the probability of falsely rejecting the item is the
“producer’s risk.”

It is shown in the Guide [6] that successful conformity assessment for each particular component of a
material is not always sufficient for a final conclusion on the material quality, as the total probability of a false
decision (total consumer’s risk or producer’s risk) concerning the material as a whole might still be significant.
This relates both to a specific batch or other item of a substance or material (specific consumer’s and producer’s
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risks), and to a population of the items (global consumer’s and producer’s risks). Amodel of the total probability of
false decisions for cases of independent actual (“true”) contents of the components and corresponding measured
values was formulated based on the law of total probability. In such a case, total risk was evaluated as a
combination of the particular risks in conformity assessment of components of the item. For a more complicated
task, i.e., for a greater number of components under control, the total risk increases.

Compositions of an item with actual and measured property values (the components’ contents) correlated
due to natural physicochemical or technological reasons, were modeled by multivariate distributions. Then, a
total global risk of a false decision on conformity of the chemical composition was evaluated by calculation of
multivariate integrals of corresponding joint pdf of actual (true) and measured property values. A total specific
risk was evaluated using the multivariate integral of the posterior density function of property values on the
multivariate specification (tolerance) domain of the item compositions.

When component contents of a substance or material are subject to a mass balance constraint (sum of the
actual contents—mass fractions or amount fractions—is 1 (or 100 %)), measured values of the component con-
tents are called “compositional data.” These data are intrinsically correlated because of the constraint, and the
relevant correlation was named by Karl Pearson in 1897 as “spurious” [7–9]. Spurious correlations are a kind of
mathematical property of the data, not related to physicochemical interdependence of true values of component
contents of a material. Compositional Data Analysis (CoDA) based on an isometric logratio transformation of the
originalmeasured valueswas developed in the 1980s by JohnAitchison [10–12]. Logratios of amalgamations of test
results for pairs of components (parts of the data)—pairwise logratios—were recently used for practical
simplification of CoDA [13–16]. There are several examples of CoDA applications in geochemistry [17, 18], agri-
culture and environmental analysis [19–22], bioinformatics [23, 24], forensic science [25, 26], materials [27], and
other fields [28].

There is also a strong message in the literature (e.g., in refs. [17, 18, 29]) stressing how traditional statistical
techniquesmay produce inadequate results if applied to raw compositional datawithout suitable transformation.
However, the relevant techniques of CoDA are not implementedwidely inmetrology in chemistry and conformity
assessment. Spurious correlations may influence evaluation of measurement uncertainty of compositional data
(e.g., of standard gas mixtures [30, 31]) and quantification of risks of false decisions due to measurement un-
certainty in conformity assessment of a substance or material. A special case is characterization of materials
based on a mass balance [32–35], for example matrix reference materials, as well as evaluation of purity of
substances and corresponding (pure) certified reference materials.

A problem of application of CoDA in this field is that a subset of the actual component contents may not be
related directly to the mass balance, i.e., be outside of the multidimensional simplex; for example, when a sum of
impurities’ actual contents is a member of the mass balance constraint, but contents of individual impurities or a
subset of those impurities also have to undergo conformity assessment. Since each actual component content
participating in conformity assessment has its tolerance/specification limits, the mass balance constraint forms a
multivariate sub-domain of the feasible substance or material compositions in the domain of specification limits.
Moreover, spurious correlation coefficients may be comparable or less (in absolute values) than coefficients of
correlations caused by natural properties of the materials and technological reasons, and in general be not easily
distinguishable from them [36].

In this Guide, evaluation of risks due tomeasurement uncertainty in conformity assessment of a substance or
material with a mass balance constraint is discussed in detail, based on the Bayesian multivariate approach and
Monte Carlo method developed in the R programming language. Examples of evaluation of risks provided in
Annex A are related to conformity assessment of a platinum-rhodium alloy, pure potassium trioxidoiodate, a
sausage, and synthetic air.

1.1 Scope and field of application

This Guide is developed for study of the risks caused bymeasurement uncertainties in conformity assessment of a
multicomponent substance or material with a mass balance constraint. It will be helpful also for correct risk
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management in a factory producing multicomponent materials, for environmental monitoring of several sub-
stances, and for similar tasks.

The document is intended for quality control, measurement and testing chemical analytical laboratories,
metrologists and analytical chemists, specialists involved in the laboratory accreditation activity, laboratory
customers, quality managers, and regulators.

1.2 Terms and definitions

Terms and definitions used in this Guide correspond to JCGM 106 [1], JCGM 200 (VIM) [37], ISO/IEC 17000 [38], ISO
3534 [39], IUPAC Gold Book [40], and IUPAC Recommendations [41].

The term “content” is applied in the Guide [6], Sec. 1.2, for a quantity of a component of an item subject to
conformity assessment expressed per unit mass of the item. In the present document, “content” is used as a
generic term for both extensive and intensive properties [40], i.e., mass, volume, amount of substance, numbers
of entities, and their fractions: mass fraction, volume fraction, amount fraction, and fraction of number of
entities.

The most relevant definitions relating to the risks in conformity assessment of a multicomponent substance
ormaterial due tomeasurement uncertainty are given in the Guide [6]. The definition ofmass balance and related
terms are given below.

1.2.1 Mass balance

1.2.1.1 Mass balance constraint
Constraint (limitation, restriction) of compositions of a substance or material, object or system based on
invariance of mass of a substance or material, object or system which is closed to transfer of matter and energy,
according to the law of conservation of mass.

NOTE 1: The law of conservation of mass has a long history [42, 43].
NOTE 2: Conservation of mass implies conservation of extensive and intensive values of component contents

(mass, volume, amount of substance, numbers of entities, and their fractions). The term mass balance is used to
cover all of these measures.

NOTE 3: Extensive values of component contents can be transformed into corresponding intensive values
(fractions) using a closure operation. This operation consists of dividing a component extensive content value by
sum of the content values of all the components of a substance or material, object or system subject to the mass
balance constraint.

NOTE 4: For any composition, sum of actual values of all component content fractions should be equal to 1 (or
100 %).

NOTE 5: When not all component contents are under consideration, the sum of their actual values can be
equal to a positive fraction, less than 1 (or 100 %).

NOTE 6: The sum of measured values of component contents can differ from 1 (or 100 %, or another positive
fraction set for actual values of the component contents under consideration) because of the associated mea-
surement uncertainty.

1.2.2 Mass balance approach

1.2.2.1 Mass balance method
Application of mass balance for metrology, quality, and conformity assessment purposes.

EXAMPLE 1: Indirect purity evaluation of a substance or material, i.e., evaluation of a content of its main
component, bymeasurement of contents of impurities and subtraction of their sum from 1 (or 100 %); described
as a concept in IUPAC Recommendations [41], clause 3.22. In such a case, the purity uncertainty is calculated
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taken into account the measurement uncertainties of the impurities’ contents at a selected coverage
probability.

EXAMPLE 2: Evaluation of a bias of measured values of the component contents in a substance, material
object or system by calculation of a deviation of the sum of themeasured values from 1 (or 100 %) and comparison
of the deviation with its associated measurement uncertainty at a selected coverage probability.

NOTE: There are also applications of mass balance in chemical engineering [44, 45].

1.3 Symbols

A multivariate region (domain) of acceptable measured values
Ai acceptance interval of measured values cim of i-th component content
ALi lower limit of the acceptance interval of cim
AUi upper limit of the acceptance interval of cim
C normalizing constant
c superscript “complementary”
ci actual (“true”) content of i-th component in an item
c vector of ci, i = 1, 2, …, n
cim measured value of content of i-th component
cm vector of cim, i = 1, 2, …, n
clo closure operation
covij covariance of contents of components i ≠ j
covijclo covariance after closure operation
D subscript meaning “direct”
em vector of errors eim, i = 1, 2, …, n
fi probability density function of truncated normal distribution of i-th component content
ϕ volume fraction
ϕnorm probability density function of normal distribution
Φnorm cumulative normal distribution function
g posterior probability density function
g0 prior probability density function
h likelihood function
i, j subscripts of the components in the range from 1 to n
k mass balance constraint (of a sum of component contents)
m subscript of measured component content
µi theoretical (prior) mean of i-th component content
µ vector of the prior mean values µi, i = 1, 2, …, n
M number of Monte Carlo simulations
n number of components
N number of batches (items)
p coverage probability
Pconf conformance probability
R*ci particular specific risk
R*ci(c) particular specific consumer’s risk
R*ci(p) particular specific producer’s risk
Rci particular global risk
Rci(c) particular global consumer’s risk
Rci(p) particular global producer’s risk
R*total total specific risk
R*total(c) total specific consumer’s risk
R*total(p) total specific producer’s risk
Rtotal total global risk
Rtotal(c) total global consumer’s risk
Rtotal(p) total global producer’s risk
rij correlation coefficient of contents of components i ≠ j
rijclo correlation coefficient after closure operation
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si2 experimental (sampling) variance of i-th component content
σi
2 theoretical (population) variance of i-th component content

Sn simplex of compositional data (of n component contents)
T superscript meaning “transpose” (makes the columns of the new matrix the rows of original)
T multivariate tolerance region (domain)
Ti tolerance interval of i-th component content ci
TLi lower limit of the tolerance interval of i-th component content ci
TUi upper limit of the tolerance interval of i-th component content ci
ui measurement uncertainty of i-th component content
uij covariance term of measurement uncertainties i ≠ j
U covariance matrix of measurement uncertainties ui
v number of components, for which the measured values are out of their acceptance intervals
V covariance matrix of actual component contents
xi amount fraction of component i
x vector of amount fractions xi

1.4 Abbreviations

ANOVA analysis of variance
CITAC Cooperation on International Traceability in Analytical Chemistry
CCQM Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology
CoDA Compositional Data Analysis
D dimension
EP European Pharmacopoeia
Eurachem A Focus for Analytical Chemistry in Europe
HPLC high performance liquid chromatography
IEC International Electrotechnical Commission
ICH The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
JCGM Joint Committee for Guides in Metrology
NMI National Metrology Institute
MC Monte Carlo
pdf probability density function
SOP standard operating procedure
TMN truncated multivariate normal distribution
TN truncated (univariate) normal distribution
VIM International Vocabulary of Metrology

2 Classification of correlations

2.1 Metrologically related correlations

A number of techniques are used during development of a chemical analytical method to overcome possible
correlations between measured values cim of i-th contents of different components, i = 1, 2,…, n (main as well as
impurities) of a substance or material, when their actual (“true”) values ci are not correlated. Some of these
techniques include extraction of target components (analytes) from a sample and chromatographic separation of
an analyte from other components of the sample [46]. Chemometrics software is applied for separation of spectral
signals and multivariate calibrations of spectrometers [47]. Sample digestion [48] and standard additions of an
analyte to a sample [49] are used for calibration of a measuring system to overcomemultiplicative matrix effects,
and so on. There are validation requirements for “analytical selectivity” of a standard operating procedure (SOP),
as a performance characteristic, to prove the procedure’s fitness for purpose. IUPAC Recommendations [50] and
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the Eurachem Guide [5] define that “analytical selectivity relates to the extent to which themethod can be used to
determine particular analytes in mixtures or matrices without interferences from other components of similar
behavior”. This definition is consistent with “selectivity of a measuring system” in JCGM 200 [37]. The corre-
sponding procedure validation parameter in the pharmaceutical industry is termed in ICH Guideline [51]
“specificity.” A procedure not able to answer the requirements of selectivity or specificity is not “fit-for-purpose”
and cannot be applied to the given task. Validation of the SOP, training analysts and proficiency testing, super-
vision and quality control are elements of the quality system of an analytical laboratory that should prevent
human error causing metrologically related correlation, unless, as shown in Fig. 1, the Swiss-cheese model [52]
lines up an error in each element. Therefore, correlations that have arisen in the routine measurement process
should be in general negligible andmeasured content values cim of two ormore components of the same item are
expected to be metrologically independent. In practice, if statistically significant correlation between measured
values of contents of components of the same item is detected, analysis cannot be continued without a thorough
chemical analytical inspection of the reason for the correlation in the laboratory.

For example, when a medication is tested routinely with a pharmacopeial HPLC procedure, correlations
might be related to the resolution of the chromatography column used, not able to separate the analytes
completely, and the column must be replaced by another one. In the IUPAC/CITAC Guide [52], such an event is
rated as a skill-based mistake or omission error (lapse).

2.2 Natural and technological correlations

Measured values cimof component contents of a substance ormaterial are inevitably correlatedwhen their actual
values ci are correlated. Correlations of true component contents ci can be caused by natural physicochemical
properties of substances, such as stoichiometry [53–55], and by technological reasons in a material production
[56, 57]. These correlations are taken into account in conformity assessment using “conventional” multivariate
statistical methods [6].

2.3 Correlations due to mass balance constraint

When n actual component contents ci of a substance or material are subject to a mass balance constraint
(∑n

i=1 ci = 1 or 100 %), measured values of the component contents are called “compositional data.” Compositional
data may be depicted in amultidimensional simplex, as in Fig. 2, in which, in general, Euclidean geometry cannot
be blindly applied.

When two component contents are under themass balance constraint, e.g., content c1 of themain component
and content c2 of the sum of impurities in a pure substance, c1 + c2 = 100 % [58]. The constraint means here that
larger content c2 of impurities leads to lower purity c1 of the substance. The Pearson correlation coefficient,

2) Validation of SOP (analytical selectivity, specificity)

3) Training analysts and proficiency testing

4) Supervision & quality control

Correlated 
test results

Metrologically-
related correlation

1) Development of the method (digestion, extraction, separation,
chemometrics processing spectral data, standard additions)

C

Fig. 1: Metrologically related
correlation arising in a
multicomponent chemical
analysis—a Swiss-cheese model
[36].
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evaluated analytically for purity vs. content of impurities from this constraint is (r12)an = −s22/s22 = −1, where s2 is
the standard deviation of c2 coinciding with s1, the standard deviation of c1. Possible metrologically related,
natural and technological sources of correlation, as well as measurement uncertainties are able to decrease
the absolute value of the correlation coefficient between corresponding measured values, but it usually remains
close to 1.

The correlation coefficients evaluated analytically from the constraint c1 + c2 + c3 = 100 % were described
for a platinum-rhodium (PtRh) alloy in ref. [57], when Pt content c1 was calculated from the mass balance
using Rh content c2 and sum of the eight impurities’ content c3. For Pt vs. Rh contents, the correlation
coefficient was (r12)an =−s22/(s22 + s23) = −0.961, and for Pt vs. sum of eight impurities’ contents it was
(r13)an = −s23/(s22 + s23) = −0.276. The standard deviations si were evaluated from a dataset of compositions of a
sufficient number of the alloy batches to give useful statistics. The absolute values of (r12)an and (r13)an were
found to be even smaller than those of r12 and r13, respectively, calculated directly from the experimental data.
Thus, the observed correlations were caused as much by the natural chemical origin of the rawmaterials used
in the alloy production, as by the mass balance constraint.

There are statistical techniques, mostly for applications in geochemistry, that allow evaluation of correlation
coefficients related to a natural correlation, separately from “spurious” correlation due to a mass balance
constraint, based on logratio transformation and centered logratio transformation of the data [59, 60].

Note that a mass balance constraint (∑n
i=1 ci = 1 or 100 %) is applicable to actual components contents ci,

while sum of measured values cim cannot in general be exactly equal to 1 (100 %) or another constant because of
measurement uncertainties uim associated withmeasured values cim [2]. Application of amass balance constraint
to measured values may lead to a distortion of measurement information. This is critically important for eval-
uation of risks in conformity assessment due to measurement uncertainties. Therefore, measured values cim,
being correlated because of correlation of actual values ci, are not subjected directly to amass balance constraint.

Summarizing the classification of data according to their correlations, the data “cloud” shown as a Venn
diagram on Fig. 3 is divided into a green part of independent (hence, uncorrelated) actual and measured values,
and a blue part of values correlated because ofmetrologically related, natural and/or technological reasons. These
data were analyzed in the IUPAC/CITAC Guide [6] as subject to conformity assessment.

The correlated data containing compositional actual values, highlighted by the dark blue core, are studied for
the purposes of conformity assessment in this Guide.

Orthogonal/Euclidean 4D 3D

c1

c2

c2c12D 1D c1 + c2 = 100 %

c1

c2

c3

c2c1

c3

3D 2D c1 + c2 + c3 = 100 %

c1 + c2 + c3 + c4 = 100 %

c1 c2

c3

c4

Fig. 2: Orthogonal coordinates of Euclidean space and simplices. The variables ci (%) are contents of amaterial components i = 1, 2, 3, and 4;
each simplex vertex corresponds to ci = 100 %; D is dimension. In each case, mass balance constraint reduces the number of dimensions by
one [36].
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3 A Bayesian multivariate approach

The chemical composition of a multicomponent material or object is considered to conform when the actual
content ci of each i-th component under control in the item, i = 1, 2, …, n, is within its tolerance/specification
interval Ti = [TLi, TUi], where TLi and TUi are lower and upper limits of the interval, respectively. To decidewhether
the material or object conforms or not, the measured value cim is compared with the limits of the acceptance
interval Ai = [ALi, AUi], where ALi and AUi are lower and upper limits of this interval, respectively, taking into
account the measurement uncertainty associated with cim. Note that the acceptance interval may be narrower
than the tolerance interval when defending interests of a consumer and wider than the tolerance interval when
defending interests of a producer. The tolerance and acceptance intervals may also coincide as discussed in the
Introduction to this Guide.

3.1 Properties of a composition

The vector of actual (“true”) component contents c = [c1, c2,…, cn] describes the n-component (n-part) composition
of a material or substance. The compositional space is the simplex

Sn = {c = [c1, c2,…, cn]
⃒⃒⃒⃒
ci > 0, i = 1, 2,…,n ; ∑n

i=1ci = k}, (1)

where k is usually equal to 1 (100 %), but might be any other positive constant less than 1 (or less than 100 %).
As ci are positive quantity ratios, a vector of content values cmultiplied by any positive constant contains the

same information as the original one, i.e., represents the same composition and can be considered as an
equivalence class. This property is termed “scale invariance.” In other words, if c is scaled by a constant, e.g.,
content values ci changing from parts-per-unit to percentages, the information which c conveys is completely
equivalent. Therefore, it is natural to select a representative of the equivalence class to facilitate data analysis and
interpretation of corresponding results. This selection is formalized by the closure operation:

clo(c) = [ k · c1
∑n

i=1ci
,…,

k · cn
∑n

i=1ci
]. (2)

Compositional data do not depend on the order of contents ci within vector c. The order does not influence
conclusions of any analysis on c. This is known as the “permutation invariance” property. Another property is
“subcompositional coherence,”whichmeans that analyses concerning a subset of the component contents should
not depend on the remaining part. If a metric is used to compare two compositions on the simplex, the distance
between the two should be greater than or equal to that obtained by comparing any couple of corresponding
subcompositions, a condition called “subcompositional dominance.” This property is used to measure distances
between compositions and subcompositions following the rule of a projection that distances become smaller in a
projection.

Note, ordinary correlations (metrologically related, natural and/or technological) depend on the sub-
composition considered and violate subcompositional coherence. The ordinary Euclidean distance between the
vectors cannot be evaluated here, as both scale invariance and subcompositional dominance are violated [10].
Also, logratio transformations applied in CoDA are not helpful in such cases, since they take into account spurious
correlations only [36].

Compositional ci

Correlated ci and/or cimIndependent ci and cim

Fig. 3: Venn diagram of the data. Independent (uncorrelated)
actual and measured values are shown as the green part of
the data “cloud,” and correlated values as the blue part of the
cloud. The dark blue core represents correlated data
containing compositional actual values.
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3.2 Modeling composition

As vector c = [c1, c2,…, cn] represents the actual (“true”) n-component composition of a substance or material,
component contents ci, i = 1, 2,…, n, are the measurands in conformity assessment, and c is the vector of the
measurands. Using a multivariate Bayesian approach [6], knowledge about a composition c can be modeled
by a random multivariate posterior variable and expressed in terms of its probability density function (pdf).
Such a pdf combines prior knowledge about the measurands and new information acquired during the
measurements:

g(c|cm) = Cg0(c)h(cm|c), (3)

where g(c|cm) is the posterior pdf;C is a normalizing constant; g0(c) is themultivariate prior pdf; and h(cm|c) is the
multivariate likelihood function taking into account the measurement uncertainties and possible covariance
terms.

A large enough dataset of results of testing items of the same material produced at the same factory, or
results of monitoring the same environmental compartment, can be used for modeling the prior pdf g0(c). The
assumption is that the actual content values are approximated by the test/measurement results adequately,
since measurement uncertainty is negligible in comparison with item-to-item (batch-to-batch) variations
caused by changes of conditions of the material production, environmental conditions, etc. Based on this
assumption, theoretical normal and gamma distributions in JCGM 106 [1], as well as normal, lognormal and
Weibull distributions in IUPAC/CITAC Guide [61], were considered as prior pdfs in univariate conformity
assessment. Multivariate normal and lognormal distributions in IUPAC/CITAC Guide [6] were used in con-
formity assessment of multicomponent materials and an environmental object. Adequacy of the prior as the
theoretical distribution of ci to the empirical distribution of cim from the dataset is proved by their goodness-
of-fit testing [62]. When more than one theoretical distribution is adequate, the simplest is preferable as the
prior.

If there is no detailed prior knowledge about distribution of the component content in the tested items, the
prior pdf is vague. According to the principle of maximum entropy, a multivariate normal distribution is usually
considered as the prior pdf for the vector of actual component contents c when the vector of mean values μ and
covariance matrix V constitute the only available information about the vector quantity [63]. In a case of a mass
balance constraint, the data properties need to be taken into account when assigning a corresponding pdf. Since
the vector c is non-negative, and the first two moments of the distribution (the expected value and variance) are
known, themaximum entropy distribution is a truncatedmultivariate normal distribution, not a logarithmic one
[64]. This is also the case for an elliptical truncation region [65], when the pdf is supposed to be nonzero-valued
just for (c − μ)T V−1(c − μ) ≤ k, and superscript T means “transpose” and makes the columns of the newmatrix the
rows of the original.

Therefore, in the present Guide, a truncatedmultivariate normal (TMN) distribution on the nD region [0, k]n is
employed in modeling the prior pdf of c. This is TMN(μ,V), where μ and V are the location and scale parameters,
respectively, of the original normal pdf from which the TMN distribution arises by truncation on [0, k]n. For the
univariate case, for example, the TMN pdf of ci on the interval [0, k] is

fi(ci) =
φnorm(ci−μi

σi
)

σi(Φnorm(k−μi
σi
) − Φnorm(−μi

σi
))

, (4)

where μi and σi are themean and standard deviation (the location and scale parameters) of the normal pdf from
which this TMN distribution arises; φnorm is the pdf of the standard normal distribution and Φnorm is its
cumulative distribution function. Outside the interval [0, k], the pdf fi is equal to zero.
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The likelihood function h(cm|c) is recovered from knowledge about the measurement uncertainty (pdf of the
measured values cim at the actual value ci) available from the understanding on themeasurement process and the
measurement procedure. As the prior pdf, the likelihood function h(cm|c) can be also modeled on the base of a
TMN of the measured values, having location parameter equal to the vector c of actual (“true”) values, i.e., TMN
(c,U), where U is the covariance matrix of measurement uncertainties ui and covariance terms uij whose cor-
responding correlation coefficients are the same as for V. Correlation between measured content values cim and
cjm is the same as between the corresponding actual ones ci and cj, when no other (metrologically related)
correlation arises in the measurement process.

The multivariate truncated distribution accommodates the mass balance constraint of the data to lie on the
region [0, k]n and is promising for overcoming the above-mentioned problems of application of CoDA for eval-
uation of risks of false decisions in conformity assessment.

3.3 Modeling prior distribution

Three scenarios of modeling the prior distribution are considered below for simplicity for the case of a three-
component composition described by the vector c and correspondingmass balance constraint c1 + c2 + c3 = 100 %:
1) Modeling all the actual values of the components’ contents by applying the closure operation clo(c) to cwhich

follow a TMN(μ,V) distribution on the 3D region [0, 100]3.
2) Modeling actual values of two components’ contents and deriving the third: [c2, c3] follows a bivariate

TMN(μ23,V23) distribution on the 2D region [0, 100]2, where subscript “23” indicates that the applied operation
refers just to components 2 and 3. The scale parameter V23 involves the correlation coefficient r23 and c1 is
deterministically calculated as c1 = 100 % − c2 − c3, disregarding possible negative values.

3) Sequential modeling, when c2 follows a TN(μ2, σ2), a univariate normal distribution truncated on the interval
[0, 100]; c3|c2 has a conditional probability distribution following a TN(μ3, σ3) on the interval [0, 100 − c2]; and
again deterministically c1|(c2, c3) = 100 % − c2 − c3.

The constraint equal to 100 % is shown in this modeling for example and can be replaced by 1, when components
contents are expressed in fractions of 1.

Two parameters are considered to assess suitability of the models: 1) the correlation matrix encom-
passing correlation coefficients rij of the multivariate prior pdf, and 2) the pdf coverage probability p,
calculated as its integral over the multivariate tolerance/specification region. By definition, p is the proba-
bility that the prior values of all the three variables lie within corresponding tolerance intervals. Equivalence
or dissimilarity of this parameter’s values from model to model indicate that the multivariate pdfs generated
by the various models are the same or different, respectively. Results of calculating rij and p obtained by 107

Monte Carlo (MC) simulations for each model, are reported for the PtRh alloy in Annex A to this Guide,
Example 1.

In general, modeling 1 is suitable for matrix reference materials, standard gas mixtures, food products, etc.,
i.e., for materials whose composition is tested completely (all component contents are measured). Modeling 2 is
applicable for substances or materials in which the main component content is not measured directly using
physicochemical measurement method(s) but calculated based on a mass balance constraint. Sequential
modeling 3 is more complicated, since the sequence of c2 and c3 can be exchanged and that may lead to different
results as the conditional probabilities are different. Moreover, the number of suchmodels increases significantly
with the number of components n > 3. This modeling does not allow consideration of types of correlation other
than spurious and cannot be implemented adequately when natural (stoichiometric) and/or technological cor-
relations are significant. On the other hand, modeling 3 could be a helpful tool for understanding sources of the
observed correlation, disentangling its spurious part from the rest.

F.R. Pennecchi et al.: Evaluation of risks of false decisions in conformity assessment 1227



3.4 Likelihood modeling

The modeling of the likelihood function for measured content values cm is based on the idea that an appropriate
pdf with zero expectation is chosen for an error vector em and then translated to the vector of actual (“true”)
content values c generated for the prior. Therefore, vector cm is recovered as cm = c+ em. The covariancematrixU
associated with cm contains the squared measurement uncertainties ui and the covariance terms uij whose
corresponding correlation coefficients are the same as for V. The error em pdf, having zero mean, is the same as
that for the likelihood when translated into the vector c. The truncation limits are chosen such that each
component of the vector cm must be between 0 % and 100 %: 0 < cm = c + em < 100, where 0 is a vector with each
component equal to 0 %, and 100 is a vector with each component equal to 100 %. Hence, a vector of errors is
extracted between −c and (100 − c), where c is drawn from the prior pdf. For ease of computation, the c values in
these truncation limits are approximatedwith correspondingmean valuesμ. Thus, themodeling of the likelihood
for a three-component composition follows that of the prior:
1) Modeling the likelihood of all themeasured component contents: em|c ismodeled as a TMN)(0,U) distribution

on the region [−μ1, 100 − μ1] % × [−μ2, 100 − μ2] % × [−μ3, 100 − μ3] %, where c is approximated by μ.
2) Modeling the likelihood of twomeasured component contents and deriving the third: in order to generate c2m

and c3m, [e2m, e3m]|c23 is taken as a bivariate TMN(0, U23) distribution on the region [−μ2, 100 − μ2] % × [−μ3,
100 − μ3] %, where c23 is approximated by μ23, and U23 involves the correlation coefficient r23. Then,
c1m = 100 % − c2m − c3m is calculated directly, disregarding its possible negative values.

3) Sequential modeling the likelihood: in order to generate c2m, e2m|c2 is represented by a univariate TN(0, u2)
distribution on [−μ2, 100− μ2] % interval, where c2 is approximated by μ2, and e3m|c23 by a univariate TN(0, u3)
on the interval [−μ3, 100 − μ3 − c2m] %, for the c3m generation, where c3 is approximated by μ3. Then,
c1m = (100 − c2m − c3m) % is calculated directly, as in the previous modeling.

Thus, themodeling of both prior pdf and likelihood function is based on the experimental data, which contain the
initial knowledge about compositions of the substance ormaterial, ahead of the conformity assessment. However,
the likelihood function characterizes the measurement process with corresponding measurement uncertainties,
mimicked by em = [e1m, e2m, e3m]. Therefore, sum of the measured values cm = [c1m, c2m, c3m] may be not equal to
100 %, and so the closure operation is not applied here.

As previously, when components contents are expressed in fractions of 1, the value 100% above is replaced by 1.

3.5 Modeling posterior probability density function

Once the prior pdf and likelihood function are modeled, the posterior pdf g(c|cm) of the actual content values c at
the measured values of the component contents cm can be calculated by eq. 3 as the normalization of the product
g0(c)h(cm|c).

This posterior pdf contains an updated state of knowledge about the composition of the substance or
material. Since the posterior pdf predicts further actual content values (after accumulation of the dataset used
for modeling the prior pdf) taking into account what may happen during the measurement process via the
likelihood function, the closure operation is not appropriate for the posterior data. In other words, the sum of
the calculated (predicted) actual component content values may differ from 100 % because any predicted value
has its associated prediction uncertainty [66–68].

4 Evaluation of risks of false decisions

When the prior pdf, likelihood function and posterior pdf are modeled, evaluation of the risks as probabilities of
false decisions on conformity of a chemical composition of a substance or material to the tolerance/specification
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limits can be performed by integration of the multivariate posterior or the joint pdf, for calculating total specific
and global risks, respectively, as described in the IUPAC/CITAC Guide [6]. If contents of one only particular
component is under conformity assessment, eqs. 5 and 6 below reduce to the univariate counterparts described in
JCGM 106 [1]. When the contents of the components are independent, eqs. 5 and 6 simply involve the evaluation of
particular risks for each component [6].

4.1 Global risks

Total global consumer’s risk Rc and the total global producer’s risk Rp are, respectively:

Rc = ∫
Tc∫A

g0(c)h(cm|c) dcmdc and Rp = ∫
T
∫
Acg0(c)h(cm|c) dcmdc, (5)

where T is the multivariate tolerance/specification domain T1 × T2 × … × Tn, A is the multivariate acceptance
domain A1 × A2 ×… × An, and the integral symbols indicate multiple integrals. Superscript “c” of T in the formula
for Rc means “complementary” for at least one Ti, whereas the integration with respect to all cim is performed
within A. The superscript “c” of A in the formula for Rp means “complementary” for at least one Ai, whereas the
integration with respect to all ci is performed within T.

4.2 Specific risks

The total specific consumer’s risk R*
c and the total specific producer’s risk R*

p are, respectively:

R*
c = 1 − ∫

T
g(c| cm)dc when cm is inA, and

R*
p = ∫

T1
…∫

Tν
∫
100

0
… ∫

100

0
g(c|cm)dc when cim, 1 ≤ i ≤ ν, are outsideA.

(6)

Here, R*
c is the probability that at least one of corresponding actual content values ci is actually outside its

tolerance interval Ti, when all the measured content values cim are within their acceptance intervals Ai (false
conforming). Thus, R*

c is equal to one minus the probability that all ci are within the tolerance domain Twhen all
cim conform, i.e., are within the acceptance domain A. The integration limits from 0 to 100 (%) can be replaced by
the limits from 0 to 1, when components contents are expressed in fractions of 1.

Symbol ν in eq. 6 for R*
p indicates the number of those components, 1 ≤ ν ≤ n, whose measured content values

cim are outside their acceptance intervals Ai. Hence, the vector cm, being out of the acceptance domain A for those
ν components of the substance or material, is rejected as non-conforming. For simplicity, and without losing
generality, the measured values cim outside their acceptance intervals are the first ν values. Given that these ν
measured values do not conform, R*

p is the probability that all corresponding actual values are inside their
tolerance intervals, hence the item (batch or lot of the substance or material) does satisfy its specifications and
rejection of this item is a false decision.

5 Implementation

5.1 Computational details

To evaluate the total global risks in the case of variables related to a mass balance, prior pdf, and likelihood
function are modeled as in Sec. 3.3 and Sec. 3.4, respectively. Then, a large numberM (M = 107 in the examples
in Annex A) of MC simulations of values drawn from the joint pdf g0(c)h(cm|c) are performed simulating
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prior values from g0(c) and corresponding likelihood values from h(cm|c). The three models for the prior and
likelihood discussed in the previous sections give three ways to obtain the joint pdf. The function
“rtmvnorm” [69] is applied in the first and the second model, and the function “rtnorm” [70] in the third
model. Finally, the joint pdf is numerically represented by M vectors consisting of actual and measured
values [c1, …, cn, c1m, …, cnm] in each MC simulation. Also, the evaluation of the coverage probabilities,
according to the models of prior pdfs, was performed in the R programming language using the library
“compositions” [71].

The total global producer’s risk Rp is evaluated considering the fraction of simulated vectors (among the M
generated) in which all the actual values ci are within the corresponding tolerance region T, while at least one of
the measured values cim is out of its acceptance interval Ai. The total global consumer’s risk Rc is estimated as the
fraction of vectors in which all the measured values cim are within the acceptance region A, while at least one of
the actual values ci is out of its tolerance interval Ti.

For each specified vector of measured values [c1m, …, cnm], the integrals of the posterior pdf in eq. 6 for
calculation of total specific producer’s riskR*

p and consumer’s riskR*
c involve ratio ofmultiple integrals of the joint

pdf of variables [c1, …, cn, c1m, …, cnm] with respect to variables ci (i = 1, …, n) over appropriate domains. The
numerical evaluation of such integrals is performed by simulation ofM random vectors [c1,…, cn, c1m,…, cnm],
generated according to the prior modeling for ci values and the likelihood modeling for cim values.

Codes developed in the R programming language (R codes) for calculations of the risks in Annex A to this
Guide, Examples 1–4, have been published in papers [36, 58, 67, 68]. These examples are related to conformity
assessment of a PtRh alloy, pure potassium trioxidoiodate, a sausage, and synthetic air, respectively. The specific R
codes can be sent upon request to the corresponding author.

5.2 Limitations

This Guide discusses the risks of false decisions as probabilities following JCGM 106 [1] and IUPAC/CITACGuide [6].
It is noted that some guidelines for risk management [72–74] define risk as the product of probability of an event
and severity of its consequences, expressed for each case in a different way, not always quantitatively: examples
include financial loss, safety and/or security changes, quality loss, aesthetic and taste worsening in a product.
However, in this Guide the consequences of false decisions on conformity of a substance or material and their
severity are not considered.

All limitations of the Bayesian approach listed in IUPAC/CITAC Guide [6] are relevant for this Guide also.
These are the use of any model as a simplified reflection of reality; the assumption of negligible definitional
uncertainty of actual component content ci (in particular, inhomogeneity and/or instability of an item of the
multicomponent substance or material leading to an increase of the standard deviation of the prior pdf and its
skewness); adequacy of treatment of a dataset of item-to-item (batch-to-batch) test/measurement results for
modeling a prior pdf; goodness-of-fit of experimental and theoretical distributions, etc.
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Research funding: This work was prepared under project 2019-012-1-500 of IUPAC (cfr. 1.4) (Funder ID: 10.13039/
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Annex A: Examples

Example 1. Risks in conformity assessment of a PtRh alloy

A-1-1 Introduction

The aim of this Example is implementation of modeling and calculation of total global risks in conformity
assessment of a substance ormaterial with amass balance constraint, using the PtRh alloy studied earlier [57] and
described in IUPAC/CITAC Guide [6] as a multicomponent material with a complex nature of correlation among
contents of components. Contents of the following three alloy components expressed in mass fractions, %, are
considered here: Pt content c1, Rh content c2, and content c3 of the eight impurities equal to sum of their mass
fractions. Note that the content of three precious impurities (a part of the eight impurities) is also under control in
conformity assessment. However, this component content is not taken into account as it is not related directly to
the mass balance, c1 + c2 + c3 = 100 % [36].

A-1-2 Experimental and tolerance limits

When X-ray fluorescence method for measurements of Rh content c2, and optical atomic emission spectrometry
for measurements of mass fractions of the eight impurities (and their sum c3) were applied, Pt content c1 was
calculated based on the mass balance: c1 = 100 % − c2 − c3.

The standard specifications for PtRh 92.5-7.5 alloy [75] include the following lower and upper tolerance limits
TLi and TUi of contents ci, respectively:
i = 1) TL1 = 92.2 % ≤ c1 ≤ 92.8 % = TU1;
i = 2) TL2 = 7.3 % ≤ c2 ≤ 7.7 % = TU2;
i = 3) TL3 = 0 % ≤ c3 ≤ 0.18 % = TU3.

A-1-3 Prior probability density function

Themeans μi and standard deviations σi of themarginal theoretical normal distributions, satisfying requirements
of the Kolmogorov–Smirnov test of goodness-of-fit to the dataset on composition ofN = 100 alloy batches produced
during about 2 years at the same plant, are presented in Table 1.

The Pearson correlation coefficients rij, i ≠ j, are also available in Table 1. The critical value of rij forN − 2 = 98
degrees of freedom and level of confidence 0.95 is 0.197 [57].

To assess the suitability of themodels described in Sec. 3.3 of this Guide, two parameters were considered:
(1) the correlation matrix of the multivariate prior pdf, containing rij, and (2) the pdf coverage probability p,
calculated as its integral over the multivariate tolerance region, which is [92.2 %, 92.8 %] × [7.3 %,
7.7 %] × [0 %, 0.18 %].

The calculation of p using theMonte Carlo (MC)methodwas performed in the R programming language using
the library “compositions” [71] and a Monte Carlo method with 107 simulations.

Table : Initial parameters of the prior distribution.

i
j

Component µi, % σi, % rij

Pt Rh 8 impurities
1 2 3

 Pt . .  −. −.
 Rh . . −.  .
  Impurities . . −. . 
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For the first model, where c follows a TMN(μ,V) distribution on the region [0, 100]3, a prior pdf as a three-
variate truncated normal distributionwas generated using the function “rtmvnorm”with truncation limits equal
to [0 %, 0 %, 0 %] and [100 %, 100 %, 100 %]. A non-singular matrix was inserted as an approximation of matrix V.
Then, the function “clo” was applied for performing the closure operation with the constraint equal to 100 %.

For the secondmodel the function “rtmvnorm”was applied to generate a bivariate truncated normal distribution
with truncation limits [0%, 0%]and [100%, 100%]. Then, the third variablewas computedas c1|(c2, c3) = 100%− c2− c3.
Rows [c1, c2, c3] of thematrix of the generated values, containing negative values of the third component content, were
removed.

In the third model, c2 is generated using the function “rtnorm” with the truncation lower limit 0 % and the
upper limit 100 %. Then, variable c3|c2 was given by the same function, “rtnorm,” but with the truncation limits
0 % and 100 %−c2, i.e., for each value of c2, hence the corresponding value of c3 was in the interval [0 %, 100 %−c2].
Finally, the third variable was computed as c1|(c2, c3) = 100 % − c2 − c3.

When the prior pdf was generated in the form of a matrix containing rows of values [c1, c2, c3], the coverage
probability can be evaluated using function “length” to count cases where c1, c2, and c3 values are simultaneously
within their limits. One can also computemarginal coverage probability, taking into account the variables one by
one.

Results of calculating rij and p obtained by means of 107 MC simulations for each model are reported in
Table 2. For comparison, p = 0.979 was obtained when the ordinary multivariate normal distribution was applied
as in ref. [57] and the original/experimental correlation coefficients shown in Table 1 were used.

Correlation coefficients in Table 2 for the prior pdf obtained bymodels 1 and 2 are equal, within the precision
of the MC simulation, to the experimental ones in Table 1, considering that two decimal digits in the coefficient
estimates can be taken as reliable when 107 MC simulations were performed. For both models 1 and 2, coverage
probabilities slightly greater than p = 0.979 were obtained, meaning that the prior pdfs generated by thesemodels
were narrower than the ordinary multivariate normal pdf.

To show the influence of the closure operation on a TMN pdf, boxplots of the marginal pdfs of the three
variables by model 1, before the closure operation (boxplot 1) and after it (boxplot 2), are depicted in Fig. 4.

The closure operation shifts the marginal pdf location toward smaller values, especially for Pt content c1.
More details of this pdf are shown in the histogram of c1 in Fig. 5.

By model 3, the contents c2 of Rh and c3 of the impurities were each drawn from a univariate truncated
normal distribution, one of which depends on the other just in its truncation limits. Pt content c1 values were
deterministically generated to satisfy themass balance constraint. In thismodel, there is no place for a covariance
matrix encompassing the correlation coefficients which reflect different kinds of correlation between the
contents. The correlationmatrix bymodel 3 can reveal only the spurious correlations arising from the truncation
effect and themass balance constraint. In the present example, as the sumof Rh and impurities contents is always
far away from 100 %, correlation between the two due to the truncation effect is negligible. Thus, the correlation
coefficient arising from spurious correlations between Rh and the impurities contents is zero, despite the fact that
the experimental correlation coefficient r23 is 0.288. In addition, the spurious correlation coefficient for Pt and the
impurities contents is different from the observed correlation coefficient, due to both themass balance constraint

Table : Correlation coefficients and coverage probabilities of different prior models.

Parameters Model

1 2 3

r −. −. −.
r −. −. −.
r . . .
p . . .
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and the nature of the raw materials. Nonetheless, the coverage probability obtained for model 3 is very close or
equal to those by models 1 and 2.

A-1-4 Likelihood functions

According to the propagation of uncertainty for correlated input quantities in JCGM 100 [2], the standard
measurement uncertainty u1 associated with the Pt content c1m, calculated based on the mass balance constraint,
was evaluated as u1 = (u22 + u23 + 2u2u3r23)0.5 = (0.0402 + 0.0112 + 2 × 0.040 × 0.011 × 0.228)0.5 = 0.044 (%). Here
u2 = 0.040 % is the standard uncertainty associated with the measured Rh content c2m in its tolerance
(specification) interval, and u3 = 0.011 % is the standard measurement uncertainty associated with the measured
mean of the impurities content c3m = 0.059 % (the relative standard uncertainty being u3/c3m = 0.18) [57]. When
correlation between contents of components 2 and 3 is ignored, e.g., in model 3 where r23 = 0, the measurement
uncertainty associated with the calculated c1m is u1 = 0.041 %.

Further modeling the likelihood functions for vector of measured content values cm is performed according
to the three models described in detail in Sec. 3.4 of this Guide.

Fig. 5: Histogram of the marginal probability density functions of
the Pt content c1. Pink bars show frequencies of the Pt content
(fractions of 1 × 107 MC simulations) before the closure operation,
while blue bars present the frequencies after this operation, i.e.,
after taking into account the mass balance constraint [36]. The
magenta color is the result of overlaying pink bars with blue bars.

Fig. 4: Boxplots of themarginal prior probability density functions of the components’ contents. Boxplot 1 is before closure operation, and
boxplot 2 after it; for (a) Pt content c1; (b) Rh content c2; and (c) content c3 of the eight impurities. The band near themiddle of each box is the
50 % percentile (the median, equal to the mean when the distribution is symmetrical); the bottom and top of the box corresponds to 25 %
and 75 % percentiles, respectively; the distance between upper and/or lower whiskers and the box is equal to the 1.5 box length [36].
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A-1-5 Global risks

For the three discussedmodels, the total global consumer’s risk by eq. 5 of this Guide at the acceptance limits equal
to the tolerance limits (A = T) was the same Rc = 4.7 × 10−3. A similar result Rc = 5.1 × 10−3 was reported in the paper
[57] for a scenario when Pt, Rh and the eight impurities contents only were taken into account: the slight
difference in the risk values is due to different numerical implementations of the risk calculation. For more
details, the Rc dependence on A2 and A3 (at A1 = T1) was also studied, as shown in Fig. 6a for model 1. The arrows
show the acceptance intervals from A2 = T2 and A3 = T3, at the beginning of the axes, to the acceptance intervals
with limits differing from the tolerance limits by three times the relevant measurement uncertainty (3ui), at the
axes’ ends.

Specifically, in Fig. 6a, these are the lower acceptance limit AL2 = TL2 + 3u2 = 7.3 + 3 × 0.04 = 7.42 (%) and the
upper acceptance limit AU2 = TU2 − 3u2 = 7.7 − 3 × 0.04 = 7.58 (%). Since the upper only tolerance limit TU3 is set for
the content of the impurities, at the end of theA3 axisAL3 = 0 andAU3 = TU3 − 3u3 = 0.18 − 3 × (0.059 × 0.18) = 0.15 (%),
where 0.059 % is the value of the content priormean μ3 of the impurities (Table 1). The color columnbar in the plot
gives indication of the risk Rc values between the minimum and the maximum on the surface, from 3 × 10−6 to
4.7 × 10−3. One can see on the plot that the influence of the impurities’ content on the risk is negligible under these
conditions. That is because the content priormean μ3 = 0.059 % is far enough from the tolerance limit TU3 = 0.18 %.

The dependences of Rc on the acceptance intervals for the second and the third models are very similar (Rc
varying from 4 × 10−6 to 4.7 × 10−3 and Rc from 6 × 10−6 to 4.6 × 10−3, respectively). These results show that themass
balance influence on Rc in the small sub-domain of feasible alloy compositions is practically negligible.

The total global producer’s risk by eq. 5 at A = T was Rp = 2.4 × 10−2 for models 1 and 2, and a bit smaller
Rp = 2.0 × 10−2 for model 3. The producer’s risk values were not discussed in ref. [57] but have been calculated, for
sake of comparison, according to the approach proposed there, leading to the same value Rp = 2.4 × 10−2. The Rp
dependence on A2 and A3 (at A1 = T1) is presented for model 1 in Fig. 6b, where, at the end of the axes,
AL2 = TL2 − 3u2 = 7.3 − 3 × 0.04 = 7.18 (%) and AU2 = TU2 + 3u2 = 7.7 + 3 × 0.04 = 7.82 (%), and AL3 = 0 and
AU3 = TU3 + 3u3 = 0.18 + 3 × (0.059 × 0.18) = 0.21 (%), respectively. The color column bar gives indication of Rp values
from 4.9 × 10−3 to 2.4 × 10−2. The influence of the impurities’ content on the producer’s risk is minor at these
conditions, as it is for the consumer’s risk for the same reason.

Fig. 6: Surfaces of the total global consumer’s risk Rc (plot “a”) and producer’s risk Rp (plot “b”). The arrows show the acceptance intervals
from A2 = T2 and A3 = T3, at the axes beginning, to the acceptance intervals with limits differing from the tolerance limits by three times the
relevant measurement uncertainties at the axes end, when A1 = T1 for Pt content. The color column bar in plot 6a gives indication of the Rc
values between theminimumand themaximumon the surface, i.e., from 3× 10−6 to 4.7× 10−3; in plot 6b the bar is for the Rp values between
4.9 × 10−3 and 2.4 × 10−2 [36].
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The dependence ofRp on the acceptance intervals for the secondmodel is very similar aswell, its values being
practically the same: Rp from 4.8 × 10−3 to 2.4 × 10−3. However, the thirdmodel produces smaller values of Rp from
3.7 × 10−4 to 2.0 × 10−3.

The obtained results show that themass balance influence on the consumer’s and producer’s risks, evaluated
with models 1 and 2, is not visible in the small sub-domain of feasible alloy compositions. The plots by these two
models, like in Fig. 6, allow choice of acceptance limits corresponding to the suitable risks of the consumer(s) and
the producer. The departure of results by model 3, with respect to the results obtained with models 1 and 2, is
caused by the fact that model 3 does not take into account correlations other than spurious (natural and
technological). Therefore, this model is helpful not only to separate spurious correlation from the observed/
experimental (cumulative) correlation, but also to indicate how significant the difference between them in a
material conformity assessment is.

Example 2. Risks in conformity assessment of pure KIO3

A-2-1 Introduction

This Example demonstrates an implementation of the Bayesian methodology for evaluation of total specific risks
of false decisions on conformity of a substance or material due to measurement uncertainty, using Monte Carlo
simulations and taking into account amass balance constraint of the data.Measurement results (measured values
and associated measurement uncertainty) obtained for characterization of a specific potassium trioxidoiodate
(KIO3) batch are analyzed and discussed [58].

A-2-2 Experimental and tolerance limits

A purchased batch of synthesized potassium trioxidoiodate, 1.5 kg, was divided in vials of about 10 g and studied
for the batch homogeneity and a year-long stability. The KIO3 content/purity c1 in the batch, expressed as mass
fraction of KIO3, %, was measured in this study by the direct method based on the coulometric titration of
oxidants. Themeanmeasured valuewas c1mD = 99.966 %. The standard deviation of the purity caused by the batch
inhomogeneity, as well as the stability standard deviation, were statistically negligible in comparison with the
standard measurement uncertainty of the direct method u1D = 0.007 % (subscript D means “direct”).

The indirect method was also used for the determination of purity c1, based on the mass balance:
c1 + c2 = 100 %, where c2 is content of the impurities, i.e., sum of their mass fractions, %. The impurities under
control were substances insoluble in water; nitrogen-containing compounds; iodide and diiodine (free iodine);
sulfate, chloride, bromide and trioxidochlorate(1-) (chlorates) ions; sodium, iron, and other metals. Inductively
coupled plasmamass spectrometrywas applied formeasurement ofmass fractions of elements as impurities, and
ion chromatography for measurement of mass fractions of ionic impurities. Mass fractions of seventy-one
impurities were measured. The potassium excess was evaluated using the concept of electroneutrality of an ion
system (the system should maintain equality of positive and negative charges [76]) and the law of conservation of
charge (invariance of the total electric charge in an isolated system [77]). Substances insoluble in water were not
detected, neither iodide ions and free iodine, chlorates and nitrogen containing dioxidonitrate(1-) and
trioxidonitrate(1-) (nitrite and nitrate) ions, were also, and so not taken into further account. Themeanmeasured
content of the impurities was c2mD = 0.025 %. The purity calculated based on the mass balance was
c1mI = 100 % − c2mD = 99.975 %, where subscript I means “indirect.” No correlation was observed between
measured values of the impurities’mass fractions. The combined standard measurement uncertainty associated
with c2mD and c1mI, was u2D = u1I = 0.005 % [58].

The lower tolerance/specification limit of purity c1, required for a candidate reference material of this type,
was TL1 = 99.9 % [78]. The upper tolerance limit of content c2 of the impurities (the sum of their mass fractions)
was, accordingly, TU2 = (100 − 99.9) % = 0.1 %.
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The acceptance limits for a candidate reference material of potassium trioxidoiodate were not set, and the
tolerance/specification limits were used instead. In other words, acceptance limits were coincidental here with
tolerance limits, A = T.

A-2-3 Prior probability density function

The prior purity pdf was approximated by a univariate truncated normal distribution TN(μ1, σ1) on the interval
[0 %, 100 %], where location parameter μ1 = 99.95 % is themean of the tolerance purity interval [99.9 %, 100 %] and
scale parameter σ1 = 0.015 % is the standard deviation of a batch purity, assumed equal to the target (standard)
measurement uncertainty [78, 79]. Note that in this Example the scale parameter does not characterize variability
of conditions of a batch production, but reflects the variability of selection of raw material appropriate for
development of the reference material.

Because of themass balance constraint, for each value c1 of the purity, simulated by randomly sampling from
TN(μ1, σ1), a corresponding content value c2 of the impurities is deterministically evaluated as c2 = 100 − c1. This
approach follows Model 2 for prior pdfs described in Sec. 3.3 of this Guide. Incidentally, for just two involved
variables, this model degenerates into the sequential Model 3. The c2 pdf is the specular reflection of the c1 pdf on
the complementary range of the content values. Hence, the probability for c2 values to be greater than TU2 = 0.1 %
is the same as that for c1 values to be smaller than TL1 = 99.9 %.

A-2-4 Likelihood functions

There are two tasks of the evaluation of specific risks and corresponding two scenarios of likelihood modeling:
1) Both contents of purity and impurities are under conformity assessment. One of the two quantities is

measured directly, while the other is recovered from the former through the mass balance constraint.
1a) Purity c1mD is measured directly, while content of the impurities is evaluated as c2mI = 100 % − c1mD. In

this scenario, the likelihood for c1mD ismodeled by a truncated normal distribution on [0 %, 100 %], with
location parameter equal to the actual value c1 and scale parameter equal to measurement uncertainty
u1D. This modeling follows Model 2 for likelihood functions described in Sec. 3.4 of this Guide.

1b) Purity c1mI is evaluated indirectly from the measured content c2mD of the impurities, i.e.,
c1mI = 100 % − c2mD. The likelihood for c2mD is modeled by a truncated normal distribution on [0 %,
100 %], with location parameter equal to the actual value c2 and scale parameter equal to measurement
uncertainty u2D. This modeling follows also Model 2 as in the scenario 1a) above.

2) Both c1mD and c2mD are measured directly (and independently), and both undergo conformity assessment.
For modeling their likelihood functions, the univariate truncated normal distributions TN(c1, u1D) and
TN(c2, u2D) on the interval [0 %, 100 %] are considered. Note, the measured values c1mD and c2mD are not
mandated to satisfy themass balance constraint, as the sum of c1mD and c2mDmay be less than 100 %, because
not all the impurities are detected, or greater than 100 % due to measurement uncertainties associated with
the measured values.

A scenario when the directly measured purity c1mD is the only quantity under conformity assessment
(a univariate task), is also discussed for further comparison.

A-2-5 Specific risks

When modeling prior g0(c1) and likelihood h(c1mD|c1) was based on truncated normal distributions and followed
scenario 1a, integrals in eq. 6 were simplified according to JCGM 106 [1] for the univariate case with coinciding
lower tolerance and acceptance limits. These integrals were evaluated by means of the R “integrate” function for
adaptive quadrature of c2 [80].

Note that for scenario 1a the total consumer’s risk R*
c coincides with the particular consumer’s risk R*

c1
relevant to the directly measured purity c1mD. Indeed, when c1mD > TL1, corresponding content of impurities

1236 F.R. Pennecchi et al.: Evaluation of risks of false decisions in conformity assessment



calculated as c2mI = 100 % − c1mD is smaller than TU2, and the candidate reference material is conforming. The
total risk that this material is actually not conforming is equal to one minus the probability that both the
posterior values c1|c1mD and c2|c2mI are within their corresponding tolerance limits. However, c1|c1mD > TL1
when and only when c2|c2mI < TU2 by definition of the prior pdf and the likelihood function for content c2 of the
impurities.

The described reasoning holds as well for the total specific producer’s risk R*
p, hence being equal to R*

p1. The
same kind of considerations applies also to scenario 1b. The difference between the risk values in scenarios 1a and
1b is caused just by the difference in uncertainties u1D and u2D associated with the directly measured values of the
components’ contents c1mD and c2mD, respectively.

The particular specific consumer’s risk and producer’s risk are plotted in Fig. 7a and b, respectively.
In the present study, “consumer” is the Regulator defending interests of laboratories which will purchase the

reference material, applying the regulation [78]. The consumer’s risk is the probability of the event when the
measured (and certified later) purity value is c1mD ≥ 99.90 %, while the actual (“true”) value is c1 < 99.90 %. Such
actual purity value is not recommended for verification of measuring instruments by the regulation and may
cause further problems in a laboratory activity. However, this consumer’s risk shown in Fig. 7a is practically zero,
when c1mD > 99.92 %.

The risk of “producer” of the reference material is the probability that the measured purity value is
c1mD < 99.90 %, when the actual value is c1 ≥ 99.90 %. In such case, a false decision of the producer on quality of the
rawmaterial and/or its testing is possible, leading to rejection of the material and unnecessary loss of money and
time. The producer’s risk illustrated in Fig. 7b decreases to very small values when c1mD < 99.87 %: the chance that
actual purity value is not less than 99.90 % is already negligible.

In scenario 1 (a and b) the dependences of the risks on the impurities’ content and the dependences on
purity are symmetric by definition. In addition, the uncertainty of the directlymeasured purity u1D = 0.007 % by
scenario 1a does not differ significantly from the uncertainty of the indirectly-measured purity by scenario 1b,
which is equal to the uncertainty of the directly measured impurities’ content u2D = 0.005 %. Therefore,
dependences of the risks on the indirectly measured purity by scenario 1b, are very similar to those shown in
Fig. 7. Nevertheless, the risks valuesmay be distinguished: themaximum consumer’s risk values on the interval
of purity [99.90 %, 99.95 %], measured directly by scenario 1a and indirectly by scenario 1b, are 0.06 vs. 0.10,
respectively. The maximum producer’s risk values on the interval of purity [99.85 %, 99.90 %], measured
directly by scenario 1a and indirectly by scenario 1b, are 0.92 vs. 0.80, respectively.

Fig. 7: Dependences of the particular specific consumer’s risk R*c1 (a) and producer’s risk R*p1 (b) on themeasured directly purity value c1mD in
the univariate scenario. The ordinates are the risks expressed as probabilities in fractions of one, and the abscissae are measured values, %
mass [57].
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Note, although the measurement uncertainty u2D is smaller than u1D, the consumer’s risk in scenario 1b is
greater than in scenario 1a, whereas the producer’s risk is smaller. The reason is that the posterior pdf depends on
both the likelihood function (in which the measurement uncertainty is involved as the scale parameter) and the
prior pdf. The posterior pdf is characterized by an expectation value lying in between the prior mean and the
measured value. At the same measured purity value, e.g., at c1mD = c1mI = 99.901 % where the consumer’s risk
values are the greatest, the (univariate) posterior pdf of c1 obtained for scenario 1b with u2D = 0.005 % is narrower
than that for scenario 1a with u1D = 0.007 %, as shown in Fig. 8. However, the posterior pdf of scenario 1b is more
shifted toward the measured value 99.901 %, has a larger tail of the distribution to the left of TL1 = 99.90 %, and
therefore, the consumer’s risk is greater here than in scenario 1a.

For scenario 2, where both purity and content of the impurities are measured directly, the total specific
risks are calculated according to eq. 6, as described in Sec. 5.1 of this Guide. For each specified couple of
measured values (c1mD, c2mD), for which the total risk has to be evaluated, integrals of the posterior pdf in eq. 6
involve the ratio of multiple integrals of the joint pdf of vector [c1, c2, c1mD, c2mD] with respect to variables c1 and
c2 over appropriate domains.M = 107 random vectors [c1, c2, c1mD, c2mD] were generated according to the prior
modeling for c1 and c2 in Sec. 3.3 and the likelihood modeling for c1mD and c2mD in Sec. 3.4, Model 2. For a better
rendering, risks values related to scenario 2 were smoothed by means of the “loess” [81] and “loess.surf
functions” [82].

The total consumer’s and producer’s specific risks by scenario 2 are demonstrated in Fig. 9, plots a) and b),
respectively. Each plot containing the risk surface is a transparent cube. The cube is shown in the perspective
where the longest vertical line is its front edge, while the shortest vertical line behind is the back edge (the upper

Fig. 8: Posterior probability density function of actual purity values c1.
Black line is the posterior pdf for scenario 1a; red line is the posterior pdf
for scenario 1b; dotted line is the lower tolerance purity limit TL1 [58].

Fig. 9: Total specific consumer’s
risk R*c (a) and producer’s risk R*p
(b) in dependence on measured
directly purity c1mD and
impurities content c2mD, without
closure operation. The interval of
R*c values in plot (a) is [0, 0.11],
while the interval of R*p values in
plot (b) is [0, 0.76]. Themeasured
purity and impurities content
intervals are as Fig. 7 [58].
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face is visible from inside the cube). In this case the outcomes of themeasurement process, i.e., couples (c1mD, c2mD)
in which c1mD ≠ 100 − c2mD (whereas c1 = 100 − c2), are feasible also. The measurement uncertainty u2D, being
smaller than u1D, influences the risk values here more than in scenario 1. The maximum value of the consumer’s
risk is 0.11, while for the producer’s risk it is 0.76.

Note, themaximumrisks in Fig. 9, aswell as in Fig. 7, are related to the displayed intervals of the variables, i.e.,
measured purity and impurities’ content values. Out of these intervals the risks’ behavior and their maximum
values may change. In particular, the total specific producer’s risk in Fig. 8b is zero when c1mD > 99.90 % and
c2mD < 0.10 %, by definition. However, this risk may increase when, for example, c1mD > 99.90 % and
simultaneously c2mD > 0.10 %, or vice versa, when c1mD < 99.90 % and simultaneously c2mD < 0.10 %.

In general, comparing the discussed univariate and bivariate scenarios of the risks related to determination
of potassium trioxidoiodate purity, one can see that practically the same results are obtained in bivariate
scenarios, transformed de facto into univariate cases by the mass balance constraint. This means that there is
no significant difference between direct and indirect purity test methods if their measurement uncertainties
are approximately equal. It is important that with changes of the measurement conditions, the prior pdf and
likelihood functionmight change from those discussed above. Therefore, the risks of false decisions could change
accordingly. Note also that the “collapse” of multivariate scenarios into univariate scenarios because of the
closure operation, as happens in bivariate scenarios, is impossible for three or more variables.

Example 3. Risks in conformity assessment of a sausage

A-3-1 Introduction

The objective of this Example is evaluation of both global and specific risks in conformity assessment of chemical
composition of a sausage, based on a multivariate Bayesian approach, taking into account measurement
uncertainty, correlation, and the mass balance constraint. As a case study, a dataset of compositions of a summer
(dry) sausage produced from amixture of beef, pork, and bacon with addition of salt and some other ingredients,
was analyzed [67].

A-3-2 Experimental and tolerance domain

Results of testing the chemical composition of a total number of batchesN = 83 of the sausage, produced according
to standardized technical conditions [83] during about 3 years at two similar factories, were studied as a case
study of a dataset for quantification of the total risks. The main components of the tested composition were fat,
protein, moisture, and salt. Each factory tested a sausage batch at its laboratory for conformity assessment before
the product is placed on the market.

The standardmethod formeasurement of a fat content c1 in the sausagewas based onmultiple fat extractions
from the dried sample with a solvent (hexane, diethyl ether, or petroleum ether) in a Soxhlet fat extraction
apparatus. Then, the solvent is removed and the fat dried to constant weight. The standard measurement
uncertainty associated with a measured fat content c1m was u1 = 0.05 c1m.

Protein content c2 was measured by the standard Kjeldahl method. Hot-acid digestion of a sample converts
protein to ammonia, which is then distilled into standardized acid, after which the acid is back-titrated and the
result calculated. The standard measurement uncertainty associated with a measured protein content c2m was
u2 = 0.04 c2m.

The standard measurement method for moisture content c3 consisted of drying a sample with heat-
conducting sand to constant weight at a temperature of (103 ± 2) °C. The standard measurement uncertainty
associated with a measured moisture content c3m was u3 = 0.06 c3m.

Salt content c4 was measured by Mohr’s standard titration method. This method determines chloride ions
extracted from the sample by titration with silver nitrate. As the silver nitrate solution is slowly added, a
precipitate of silver chloride forms. At the end point, additional silver ions react with tetraoxidochromate
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(chromate) ions of the indicator (potassium chromate) to form a red-brown precipitate of silver chromate. The
standard measurement uncertainty associated with a salt measured content c4m was u4 = 0.04 c4m.

Note that a metrologically related correlation of the test results (between measured content values of
different components of the same batch or sample) is impossible here as the applied chemical analytical methods
are based on different principles.

The standard [83] sets the lower and upper tolerance/specification limits, TLi and TUi respectively, of contents
ci as mass fractions (%) of the four main chemical components in the sausage:
i = 1) fat content c1 ≤ 53.0 % = TU1;
i = 2) protein content c2 ≥ 15.0 % = TL2;
i = 3) moisture content c3 ≤ 40.0 % = TU3;
i = 4) salt content c4 ≤ 5.0 % = TU4

Sum of these component contents is constrained by the mass balance: ∑4
i=1 ci = 100 %.

Acceptance limits, which take into accountmeasurement uncertainties, were not applied in the factories, and
measured values cimwere directly comparedwith specification limits. Therefore, in the present study acceptance
limits are taken as to be the same as tolerance/specification limits.

The specification limits of contents of the components, TLi and TUi, form a multivariate specification
domain of permissible sausage compositions. However, there is also the mass balance constraint that leads to a
multivariate sub-domain of feasible compositions. For example, for fat content c1 = TU1 = 53.0 %, moisture
content c3 = TU3 = 40.0 % and salt content c4 = TU4 = 5.0 %, the protein content from the mass balance is
c2 = 100 % − (53.0 + 40.0 + 5.0) % = 2.0 %, which is less than TL2 = 15.0 % and hence not permissible. On the other
hand, a composition such as c1 = TU1, c2 = TL2, c3 = TU3 and c4 = TU4 is within the specification domain but cannot be
realized because it contradicts the mass balance constraint. Therefore, the multivariate sub-domain of feasible
sausage compositions can be imagined as a part of the 3-simplex for the four components, which is the
transparent triangular pyramid (tetrahedron), shown in Fig. 10 with c1, c2, c3 and c4 equal to 100 % in their
vertices.

A-3-3 Prior probability density function

It was shown by analysis of variance (ANOVA) that the data of the two factories are practically homogeneous, and
test results of all the N = 83 batches can be used for further calculations as the unified dataset.

The means μi and standard deviations σi of the marginal theoretical normal distributions, satisfying
requirements of the Kolmogorov–Smirnov test of goodness-of-fit to the dataset on composition of N = 83 sausage

c1

TU4 c2

c4c3

TU3

TL2

TU1
Fig. 10: The sausage compositions. Each vertex of the simplex
corresponds to a component content ci equal to 100 %. The permissible
compositions are the part of the simplex delimited by the tolerance/
specification limits TU1 (the transparent triangle shown by blue
borderlines), TL2 (the transparent triangle shown by green lines), TU3
(the transparent triangle shown by brown lines), and TU4 (the
transparent triangle shown by red lines). The left green border of TL2 is
hidden by the red border of TU4. The facets of the sub-domain of feasible
compositions are marked with the colors of the tolerance limits. Thus,
this sub-domain is seen as the rectangular prism with the left upper
corner cut by the TL2 plane [67].
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batches are presented in Table 3. The Pearson correlation coefficients rij, i ≠ j, are also available in Table 3. The
critical value of rij for N − 2 = 81 degrees of freedom and level of confidence 0.95 is 0.216 [67].

M = 107 Monte Carlo (MC) simulations of the actual sausage compositions c = [c1, c2, c3, c4] were performed
using a multivariate truncated normal pdf, according to Model 1 in Sec. 3.3 of this Guide, having as location
parameter themean vectorμ = [µ1,…, µ4] and as scale parameter the covariancematrix covij = rij σi σj (µi, σi aswell
as rij are in Table 3).

As the sum of actual/“true” values, which have no uncertainties by definition, is to be equal to 100 %,
data drawn from the multivariate normal pdf truncated on the domain [0, 100]4 were subjected to the closure
operation according to eq. 2. The resulting correlation matrix of rijclo is given in Table 4 (subscript “clo” in rijclo
means after the “closure operation”). Comparing the correlation matrices in Table 3 and Table 4, one can see that
the correlation coefficient related to contents of fat and moisture is still negative, but its absolute value is much
larger. Also, the positive correlation coefficient between protein and salt contents is increased due to the closure
operation.

The probability of conformance of the multivariate prior pdf, calculated as the fraction of M of the events
when the obtained (simulated and closed) sausage compositions c = [c1, c2, c3, c4]werewithin the tolerance domain
T, was Pconf = 0.972.

A-3-4 Likelihood functions

Modeling of the multivariate likelihood function for measured values cm = [c1m, c2m, c3m, c4m] was performed
according toModel 1 in Sec. 3.4 of this Guide, using amultivariate truncated normal pdfwith zero expectation as a
model for error em = [e1m, e2m, e3m, e4m]. This error vectorwas then translated to the vector of actual content values
c = [c1, c2, c3, c4] generated from the multivariate prior pdf. Therefore, cm is recovered as cm = c + em.

The covariancematrix, used as the scale parameter of the truncated pdf associated with vector em, is given in
Table 5. The diagonal elements of this matrix are squared measurement uncertainties ui2, obtained from ui
discussed in Sec. A-3-2, and the off-diagonal elements are covariance terms equal to products covijlf = rij ui ujwhose
correlation coefficients rij are in Table 3. Subscript “lf” in covijlf means “likelihood function.”

Table : Initial parameters of the prior distribution.

i
j

Component µi,% σi,% rij

Fat Protein Moisture Salt
1 2 3 4

 Fat . .  −. −. −.
 Protein . . −.  −. .
 Moisture . . −. −.  −.
 Salt . . −. . −. 

Table : Correlation coefficients rijclo after the closure operation.

i Component Fat Protein Moisture Salt

j 1 2 3 4

 Fat  −. −. −.
 Protein −.  −. .
 Moisture −. −.  −.
 Salt −. . −. 
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Thus, modeling of both the likelihood function and the prior pdf was based on the experimental data, which
contain the initial knowledge about the sausage compositions. However, the likelihood function characterizes the
measurement process with corresponding measurement uncertainties, mimicked by em = [e1m, e2m, e3m, e4m].
Therefore, themeasured values cm = [c1m, c2m, c3m, c4m] are no longer required to sum to 100 %, and so the closure
operation is not applied here.

A-3-5 Global risks

The total global consumer’s risk Rc = 0.006 was numerically recovered according to eq. 5 as the fraction of theM
generated vectors of true andmeasured values [c1, c2, c3, c4, c1m, c2m, c3m, c4m] in which all themeasured values cim
were within their Ai but at least one of the corresponding true value ci was outside Ti.

Correspondingly, the total global producer’s risk Rp = 0.017 was evaluated as the fraction of theM generated
vectors [c1, c2, c3, c4, c1m, c2m, c3m, c4m] in which all the true values ciwere within their Ti, while at least one of the
corresponding measured value cim was outside Ai.

That means six only from thousand sausage batches may be falsely assessed as corresponding to the
specifications, whereas 17 conforming batches have a chance to be falsely rejected. This indicates a clear
preference of the consumer’s interests over the producer’s interests. Obviously, a producer is interested in
maintaining the satisfaction of his consumers no less than the consumers themselves.

A-3-6 Specific risks

For each specified vector of measured values [c1m, c2m, c3m, c4m], the integrals of the posterior pdf in eq. 6 involve
multiple integrals of the joint pdf of vector [c1, c2, c3, c4, c1m, c2m, c3m, c4m] with respect to variables ci (i = 1,…, 4)
over appropriate domains.M = 107 random vectors [c1, c2, c3, c4, c1m, c2m, c3m, c4m] were generated, according to the
prior modeling for ci values in Sec. 3.2.1 and the likelihood modeling for cim values in Sec. A-3-3.

The results of calculations of the total specific consumer’s risk R*
c were practically zero (less than 0.001) at the

vector of measured values cm containing cim equal to the prior means µi of the distributions in Table 3. When cim
move away from µi toward the tolerance limits, the R*

c values naturally increase. Themean µ1 of the fat contents is
more than three standard deviations (σ1 in Table 3) away from the tolerance limit TU1. Therefore, the influence of
c1m on R*

c is minor. As the distance of the prior mean µ2 of the protein contents from their tolerance limit TL2 is
greater thanfive standard deviations σ2, the c2m influence onR*

c is also veryminor. The distances of themean µ3 of
the moisture content from the tolerance limit TU3, and of the mean µ4 of the salt content from the tolerance limit
TU4, are less than three standard deviations (σ3 and σ4, respectively), and as a result do have a non-negligible
influence on the risk. For example, R*

c = 0.039 at the measured fat content c1m = µ1 = 40.5 %, protein content
c2m = µ2 = 24.6 %, moisture content c3m = 35.7 % (about 1.5 standard deviations from µ3 toward the tolerance limit
TU3) and salt content c4m = 4.79 % (about 2 standard deviations from µ4 toward the tolerance limit TU4).

Note that even for M = 107 simulations there were certain instabilities (and maybe bias) in the risk values,
increasing when working in the tails of the posterior distribution, where only a few random numbers could be

Table : Covariations covijlf the multivariate likelihood function.

i Component Fat Protein Moisture Salt

j 1 2 3 4

 Fat . −. −. −.
 Protein −. . −. .
 Moisture −. −. . −.
 Salt −. . −. .
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generated. Therefore, in the considered case, theMCmethod proved to be less reliable for calculation of risks than
an analytical approximation method based on normal distributions [67].

Since the marginal distributions of the available data were successfully approximated by normal
distributions and there was no evidence of an effect of truncation in the corresponding marginal distributions
of the joint prior pdf, this pdf was constructed as a multivariate normal function with mean (Table 3) and
covariance covijclo matrix estimated from the random values generated as described in Sec. A-3-3. Because of
the negligible effect of truncation, the multivariate likelihood function described in Sec. A-3-4 was also
approximated by a multivariate normal function having the covariance matrix shown in Table 5. Resorting to
such approximations for the prior pdf (cfr. 1.4) and the likelihood function, a multivariate normal posterior
pdf with parameters calculated as in Eq. (34) of the IUPAC/CITAC Guide [6] was applied for R*

c and R*
p

calculations.
The dependence of total specific consumer’s risk on measured values of fat and protein contents is shown in

Fig. 11a for cases in which measured contents of moisture and salt are constant and equal to their prior means.
The R*

c values are practically zero at the majority of combinations of c1m and c2m on the intervals from their
prior means to the tolerance limits, and increase to 0.004 only, if simultaneously c1m and c2m are equal to their
tolerance limits TU1 and TL2, a case not observed in the raw data. In other words, the influence of fat content and
protein content in the sausage on the total specific consumer’s risk is negligible, as already explained above. The
most influential variables here are contents of moisture and salt. The dependence of R*

c on c3m and c4m on the
intervals from their prior means to the tolerance limits is illustrated in Fig. 11b for cases in which measured
contents of fat and protein are constant and equal to their priormeans. The range of R*

c values in this plot spreads
from practically zero to 0.34. Of these two variables, the measured salt content has the most influence. Again, the
risk is greatest when both c3m and c4m are at their tolerance limits.

The dependence of total specific producer’s risk R*
p on measured values of moisture and salt contents is

shown in Fig. 12 for cases in which the measured contents of fat and protein are constant and equal to their prior
means, as in Fig. 11b.

The interval of themeasuredmoisture contents in Fig. 12a is from the tolerance limit TU3 to 1.18 TU3, i.e., to TU3
plus three standard measurement uncertainties (3 × 0.06 TU3), while the interval of the measured salt contents is
from the prior mean to the tolerance limit. Hence, in this particular case, measured contents of one component
only do not conform. The calculated R*

p values are from 0.69 to 1. Fig. 12b is the other way round with respect to

Fig. 11: Surface of total specific consumer’s risk R*c vs. measured values of the contents of the sausage components. (a) Dependence of the
risk on measured contents of fat c1m and protein c2m from their prior means to the tolerance limits, while the measured moisture content
and salt content are constant and equal to their prior means. (b) Surface of the risk for cases whenmeasured contents of fat and protein are
constant and equal to their prior means, while the contents of moisture c3m and salt c4m are from their prior means to the tolerance limits.
The color column bars code risk values between the minimum and maximum of the surface and refers to its plot only [67].
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Fig. 12a: here the measured salt contents do not conform, being in the interval from the tolerance limit TU4 to 1.12
TU4 (three measurement standard uncertainties being 3 × 0.04 TU4), while the interval of the measured moisture
contents is from the priormean to its tolerance limit. TheR*

P values go frompractically zero at the c4m = 1.12 TU4, up
to 0.77 when c3m = µ3 and simultaneously c4m = TU4. The logic is that there is no producer’s risk if a component
content in the tested batch substantially exceeded its tolerance limit and the batch is rejected. On the other hand,
R*
p can be extremely high when a measured content value is close to its tolerance limit. Correlations complicate

the picture, but do not change it in essence.
In general, although the total global consumer’s risk Rc = 0.006 and producer’s risk Rp = 0.017 are small, the

total specific risks related to a (specific) sausage batch can be much more significant when measured contents of
moisture or salt, or both, are close to, or exceed, their tolerance limits.

Example 4. Risks in conformity assessment of synthetic air

A-4-1 Introduction

The objective of the present Example is evaluation of risks in conformity assessment of synthetic air based on a
multivariate Bayesian approach, taking into accountmeasurement uncertainty, correlation and themass balance
constraint.

Synthetic air is a mixture of nitrogen and oxygen (and some other minor components or impurities) that is
used as “zero gas” in maintenance and calibration of test equipment for environmental monitoring, and as
“balance gas” in calibration mixtures. Other applications are for medicinal purposes as a replacement for
atmospheric air. Therefore, it is also important to understand fitness-for-purpose of the evaluated risks [68].

Two datasets related to synthetic air were analyzed: (1) from an industrial producer of medicinal synthetic
air working according to the European Pharmacopoeia (EP) [84] and (2) from National Metrology Institutes
(NMIs) that participated in the key comparison CCQM-K120 “Carbon dioxide at background and urban level”
[85].

Fig. 12: Surface of total specific producer’s risk R*p vs. measured values of the contents of the sausage components. Both the plots
demonstrate the risk at themeasured fat and protein contents constant and equal to the priormeans. Themeasuredmoisture contents c3m
in Fig. 12a are on the interval of the three standard measurement uncertainties starting from the tolerance limit, while the interval of the
measured salt contents c4m is from the prior mean to the tolerance limit. In Fig. 12b, the interval of the measured salt contents c4m is of the
threemeasurement standard uncertainties starting from the tolerance limit, whereas the interval of themeasuredmoisture contents c3m is
from the prior mean to the tolerance limit. The color bars are as in Fig. 11 [67].
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A-4-2 Experimental and tolerance domain

Medicinal synthetic air
Test results of Nmed = 316 lots of the EP medicinal synthetic air produced during a year at an industrial factory
were used as a dataset for the study (subscript “med” in Nmed means “medicinal”). The dataset includes
measured values of the components’ contents cim in the Nmed lots, expressed as volume fractions of nitrogen
ϕ1m cL/L, oxygen ϕ2m cL/L, and water vapor ϕ3m µL/L, where cL is 10−2 L and µL is 10−6 L. Note that the units of
volume fraction,% V/V and ppm V/V, used in the European Pharmacopeia, are replaced here by cL/L and µL/L,
respectively, to be consistent with IUPAC terminology and SI unit prefixes.

Medicinal synthetic air is defined in the EP as a mixture of nitrogen (i = 1) and oxygen (i = 2) in which the
volume fraction of oxygen is 95.0 %–105.0 % of the nominal value being between 21.0 cL/L to 22.5 cL/L. These
specifications can be interpreted as the acceptance limits of measured oxygen volume fraction ϕ2m, i.e.,
AL(ϕ2m) = 21.0 and AU(ϕ2m) = 22.5 cL/L, while the tolerance limits of actual ϕ2 value are TL(ϕ2) = (95.0/100)⋅21.0 cL/
L = 20.0 cL/L and TU(ϕ2) = (105.0/100)⋅22.5 cL/L = 23.6 cL/L.

Water vapor is specified in the EP as an impurity for which themaximumactual volume fractionϕ3 should
be 67 μL/L. That means the acceptance limits of measured water vapor volume fraction ϕ3m are
AL(ϕ3m) = TL(ϕ3) = 0 μL/L and AU(ϕ3m) = TU(ϕ3) = 67 μL/L. Note that even achieving TU(ϕ3) water volume
fraction ϕ3 is negligible in comparison with the volume fraction ϕ2 of oxygen, being four orders smaller.

Therefore, the mass balance for medicinal synthetic air ∑3
i=1 ϕi = 100 cL/L can be simplified to

ϕ1 + ϕ2 = 100 cL/L, from which nitrogen volume fraction is ϕ1 = (100 − ϕ2) cL/L. Hence, the acceptance limits
of measured nitrogen volume fraction ϕ1m are AU(ϕ1m) = (100 − 21.0) cL/L = 79.0 cL/L and AL(ϕ1m) = (100 − 22.5)
cL/L = 77.5 cL/L. The tolerance limits of actual nitrogen volume fraction ϕ1 are TL(ϕ1) = (100 − 23.6) cL/L = 76.4 cL/L
and TU(ϕ1) = (100 − 20.0) cL/L = 80.0 cL/L.

Note also that water volume fraction ϕ3, although insignificant for the mass balance, is still important for
quality of the air as a product and must be taken into account in its conformity assessment.

Oxygen volume fractions aremeasuredwith a portable gas analyzer ServomexMiniMP 5200 equippedwith a
high-performance sensor which is based on the paramagnetic susceptibility of the oxygen molecule. The
calculated/assumed standard measurement uncertainty was u(ϕ2m) = 0.15/√3 cL/L = 0.09 cL/L.

Water vapor volume fractions are measured with a Shaw Dew Point SADP-Red Spot Meter providing direct
indication in dew point temperature, which can be converted into water vapor volume fraction, µL/L. The
standard measurement uncertainty was u(ϕ3m) = 1/√3 μL/L = 0.6 μL/L.

Standard measurement uncertainty of nitrogen volume fraction calculated as ϕ1m = (100 − ϕ2m) cL/L was the
same as of oxygen volume fraction, i.e., u(ϕ1m) = u(ϕ2m) = 0.09 cL/L.

Synthetic air for CCQM-K120
The CCQM-K120 key comparison was designed to evaluate the level of compatibility of NMIs’ preparative
capabilities for carbon dioxide in air. Synthetic air was used as the balance gas (dry air matrix) for preparation
of the measurement standards of carbon dioxide at background and urban level with the carbon dioxide
amount fraction (380–480) µmol/mol in CCQM-K120.a and (480–800) µmol/mol in CCQM-K120.b, respectively. A
standard containing carbon dioxide (480 ± 10) µmol/mol was applicable for both parts of CCQM-K120, when
requirements/specifications of the synthetic air were satisfied. Thus, in the present workwe refer to the dataset
of the synthetic air properties of the NCCQM = 23 cylinders prepared by 12 NMIs, and the requirements of
CCQM-K120.a for this air.

The air was synthesized at the NMIs gravimetrically by mixing and blending purchased pure gases in the
cylinders. The dataset included acronyms of the 12 NMIs and their measured (assigned) values of components’
contents cim in the NCCQM cylinders, expressed in amount fractions (mol/mol) of nitrogen x1m, oxygen x2m and
argon x3m.

Nitrogen, oxygen and argon were defined in the protocol of the CCQM-K120.a comparison [86] as the main
components of the air with the following tolerance limits of the amount fractions, mol/mol:
i = 1) nitrogen TL(x1) = 0.7804 ≤ x1 ≤ 0.7814 = TU(x1);
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i = 2) oxygen TL(x2) = 0.2088 ≤ x2 ≤ 0.2098 = TU(x2);
i = 3) argon TL(x3) = 0.0089 ≤ x3 ≤ 0.0097 = TU(x3).

Since the tolerance limits were set based on the published measured values of the component amount
fractions in ambient (real) air, the acceptance limits AL(xim) and AU(xim) are considered here equal to the
respective tolerance limits TL(xi) and TU(xi). Amount fractions of the main components corresponded to the mass
balance ∑3

i=1 xi = 1mol/mol.
Details of the gas standard preparation and measurement uncertainties evaluation are described in the

measurement reports of the corresponding 12 NMIs [86, Annex 5]. The standard measurement uncertainties for
nitrogen u(x1m) varied widely in the interval from 0.000002 mol/mol. A similar interval of standardmeasurement
uncertainty values u(x2m) for oxygenwas (0.000002–0.000295)mol/mol, and the interval of u(x3m) values for argon
was (0.000001–0.000015) mol/mol.

A-4-3 Prior probability density function

Medicinal synthetic air
For both oxygen and water vapor volume fractions, the pdf of the theoretical distribution is assumed to be a
mixture f(ϕi) of normal pdfs, f1(ϕi) and f2(ϕi) with non-negative weights wi1 = (1 − wi2) and wi2, respectively, such
that the sum of the weights is equal to 1:

f(ϕi) = wi1 f1(ϕi ; µi1, σi1) + wi2 f2(ϕi ; µi2, σi2), (7)

where the weights and other pdf parameters for the present case study are shown in Table 6. These theoretical
distributions satisfied requirements of the Kolmogorov–Smirnov test of goodness-of-fit to the dataset of com-
positions ofNmed = 316 lots of the medicinal air. R codes for calculations onmixtures of normal pdfs are available,
for example, in ref. [87].

Note that the pdf of the nitrogen volume fraction, being a mirror of the pdf of the oxygen volume fraction,
refers to nitrogen volume fractions that are a complement to 100 cL/L of the corresponding oxygen volume
fractions, according to the mass balance constraint. For example, when oxygen volume fractions
ϕ2 = w21µ21 + w22µ22 = 0.1⋅21.1 cL/L + 0.9⋅21.6 cL/L = 21.6 cL/L, the corresponding volume fraction of nitrogen
is ϕ1 = w11µ11 + w12µ12 = 0.9⋅78.4 cL/L + 0.1⋅78.9 cL/L = 78.4 cL/L, and their sum is 100 cL/L.

The Pearson correlation coefficient between volume fractions of oxygen and nitrogen is r12 = −1 by definition,
sinceϕ1m = (100−ϕ2m) cL/L. The absolute value of the correlation coefficient between volume fractions of nitrogen
or oxygen and water vapor, calculated from the dataset, is |r13| = |r23| = 0.049. It is statistically insignificant, as the
critical value for such coefficient at the 0.95 level of confidence for a sample size of 316 pairs of variables, is 0.110.

The univariate prior pdfs for the components of the medicinal synthetic air were modeled by the mixture
distributions with parameters presented in Table 6. The probability of conformance of the oxygen pdf, calculated as
the fraction of M = 107 MC simulations of the events when the oxygen volume fractions ϕ2 are within the tolerance
intervalT2(ϕ2), was equal toPconf = 0.99997. As expected, this is also equal to the probability of conformance of the prior
pdfmodeling the nitrogen volume fractions ϕ1. The probability of conformance forwater volume fractionsϕ3 is equal
to one, since they are extremely far from their upper tolerance limit.

As the nitrogen volume fractions are calculated from the oxygen ones based on the mass balance, hence any
bivariate pdf modeling for the two components actually degenerates into a univariate one, as in Example 2 of this

Table : Parameters of the theoretical mixture of normal distributions for the medicinal air.a

i Component μi1 σi1 wi1 μi2 σi2 wi2 ij rij

 Nitrogen . . . . . .  −
 Oxygen . . . . . .  −.
 Water . . . . . .  −.

aParameters μ and σ are the means and standard deviations of the theoretical distributions and have the same units as the respective
parameters, i.e., cL/L for volume fractions of nitrogen ϕ and oxygen ϕ, and µL/L for volume fractions ϕ of water vapor; the weights wi and
wi, as well as the Pearson correlation coefficients, are dimensionless.
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Guide. The water vapor volume fractions are not correlated with the oxygen (and nitrogen) volume fractions and
considered as independent from those. For these two reasons, the total probability of conformance for the medicinal
synthetic air as a multicomponent material is equal to the product of that for oxygen and for water vapor, hence
coinciding with the probability of conformance of the oxygen (or nitrogen) volume fractions.

Synthetic air for CCQM-K120
Based on the results of the Kolmogorov–Smirnov test of goodness-of-fit of a theoretical normal distribution and
the empirical distribution (the dataset ofNCCQM = 23 cylinders), the hypotheses of goodness-of-fit were not rejected
at the 0.95 level of confidence. The means µ(xi) and standard deviations σ(xi) of the theoretical normal pdfs are
presented in Table 7.

The distributions of the components’ amount fractions, which parameters presented in Table 7, are
considered as the marginal distributions of a multivariate pdf. Its covariance matrix consists of variances σi2 as
the diagonal elements, and covariances covij = rij σ(xi) σ(xj), i ≠ j, are the off-diagonal elements. The Pearson
correlation coefficients rij between measured components’ amount fractions presented in Table 7 are calculated
from the dataset. The critical value of the correlation coefficients for (NCCQM − 2) = 21 degrees of freedom and 0.95
level of confidence is 0.413. As |ri3| ≤ 0.413 (i = 1, 2) in Table 7, the correlation of the argon amount fractionswith the
nitrogen and oxygen amount fractions was considered insignificant. However, correlation of the nitrogen and
oxygen amount fractions (having a “spurious” origin caused by the mass balance constraint) is statistically
significant, since |r12| = 0.767 > 0.413.

Themultivariate prior pdf of the synthetic air for CCQM-K120wasmodeled usingM = 107 MC simulations of
the actual air compositions x = [x1, x2, x3]. The xi values were drawn from a multivariate normal distribution,
truncated on the domain [0, 1]3, with the location parameter equal to the mean vector μ = [µ(x1), µ(x2), µ(x3)],
and the scale parameter equal to the covariance matrix of covij calculated with the parameters presented in
Table 7.

Actual (“true”) values have no uncertainties and the sum of actual amount fractions of nitrogen, oxygen and
argon prepared in CCQM-K120 must be exactly equal to 1. Therefore, the data drawn from the multivariate
truncated normal pdf were subjected to the closure operation by eq. 2. The resulting correlationmatrix is given in
Table 8.

Table : Parameters of the prior distribution for synthetic air in CCQM-K.

i
j

Component µ(xi), mol/mol σ(xi), mol/mol rij

Nitrogen Oxygen Argon
1 2 3

 Nitrogen . .  −. −.
 Oxygen . . −.  −.
 Argon . . −. −. 

Table : Correlation coefficients rijclo of the component amount fractions in synthetic air for CCQM-K after the closure operation.

i
j

Component Nitrogen Oxygen Argon
1 2 3

 Nitrogen  −. −.
 Oxygen −.  −.
 Argon −. −. 
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Comparing correlation matrices in Tables 7 and 8, one can see that the correlation coefficient r12clo related to
amount fractions of nitrogen and oxygen was increased after the closure operation. The absolute values of the
statistically insignificant correlation coefficients r13clo and r23clo between amount fractions of argon and other
gases were even lower.

The probability of conformance of the multivariate prior pdf before the closure operation, calculated as the
fraction ofM of the events when the simulated synthetic air compositions x = [x1, x2, x3] are within the tolerance
domain T(xi), was Pconf = 0.635. After the closure operation and calculation of corresponding covariancematrix of
covijclo, the probability decreased to Pconf = 0.475. These low values of conformance probability are caused by
nitrogen contents out of the tolerance interval T(x1) in five cylinders (OMH54, FB03747, JJ108862, PSM298266,
PSM266468) and oxygen contents out of the tolerance interval T(x2) in four cylinders (1029047, FB03744,
PSM298266, PSM266468), in the dataset of NCCQM = 23 cylinders. Note that the correlation between nitrogen and
oxygen amount fractions increased (in absolute value) after the closure operation, hence complicating the
multivariate prior pdf and decreasing the conformance probability of the model based on the multivariate
truncated normal pdf.

A-4-4 Likelihood functions

The univariate oxygen and water vapor likelihood functions for the medicinal synthetic air were modeled using,
respectively, a normal distribution and a normal distribution truncated at zero (in order to avoid simulation of
negative water vapor values). The location parameters were equal to actual values ϕ2 and ϕ3 drawn from the
corresponding prior pdfs, and scale parameters were equal to u(ϕ2m) and u(ϕ3m), respectively, described in Sec.
A-4-2.

Modeling themultivariate likelihood function for a vector of amount fraction values xm = [x1m, x2m, x3m] of the
synthetic air for CCQM-K120, was based on xm recovering as xm = x + em, where em = [e1m, e2m, e3m] is the vector of
measurement errors. The vector em was modeled assigning to it a multivariate truncated normal pdf with zero
expectation, while the vector of actual amount fraction values x = [x1, x2, x3] was generated from the multivariate
prior pdf as explained in Sec. 3.4 of this Guide. The covariancematrix, used as the scale parameter of the truncated
pdf associated with the vector em, contained as the diagonal elements the squared standard measurement
uncertainties u2(xim) discussed in Sec. A-4-2. The off-diagonal elements of this matrix were the covariance terms
equal to products covijlf = rij u(xim) u(xjm) whose correlation coefficients rij are in Table 7. Subscript “lf” in covijlf
means “likelihood function.” Since the likelihood function characterizes the measurement process with
corresponding measurement uncertainties, the sum of the measured values in the vector xm = [x1m, x2m, x3m]
should not be equal to 1 exactly, and therefore, the closure operation is not applied here.

A-4-5 Risks of false decisions and their fitness-for-purpose

Medicinal synthetic air
Any total risk for oxygen and nitrogen volume fractions in medicinal synthetic air, similar to the probability of
conformance, simplifies to a particular risk relevant to either one of the two. Since the volume fractions of oxygen
(or nitrogen) andwater vapor are not correlated, the total risks relevant to oxygen andwater vapor are equal to a
combination of their particular risks. The probability of conformance forwater vapor volume fractions is equal to
one, therefore a total risk for the medicinal synthetic air, equal to the product of the particular risks for oxygen
and for water vapor, coincides with the particular risk for oxygen.

The particular global consumer’s risk Rc related to the volume fractions of oxygen (and, therefore, of
nitrogen) is equal to zero, while the particular global producer’s risk is Rp = 0.0926. Both particular global
consumer’s and producer’s risks related to the water volume fraction are zero. Therefore, the total global
consumer’s risk related to oxygen (or nitrogen) and water vapor is zero, according to the IUPAC/CITAC Guide
[6], whereas the total global producer’s risk, coinciding with the particular risk related to oxygen, is
Rp = 0.0926.
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The particular specific consumer’s risks R*
c related to oxygen and water vapor volume fractions, for ϕ2m and

ϕ3m valueswithin the corresponding acceptance intervals, are zero. Hence, also, the total specific consumer’s risk,
related to oxygen and water vapor, is zero [6].

The specific producer’s risks R*
p as a function of the measured oxygen volume fractions on the intervals from

the lower acceptance limit to the corresponding tolerance limit (a) and similarly for the upper limits (b) are shown
in Fig. 13.

It is clear from Fig. 13 that the acceptance limits set in the European Pharmacopoeia are extremely reliable:
the producer’s risk decreases only when the oxygen volume fraction is less than the lower acceptance limit about
0.4 cL/L and greater than the upper acceptance limit about 0.4 cL/L also. In general, the produced medicinal
synthetic air is fit-for-purpose (fit for intended use) as it satisfies the EP requirements completely without any
statistically significant consumer’s risk.

The specific producer’s risk R*
p relevant to water vapor volume fractions greater than 67 ppm, i.e., outside the

acceptance interval, is zero as suchmeasured values are not feasible. Hence, the total specific producer’s risks can
differ from zero only when the measured oxygen volume fractions are outside their acceptance interval, while
the water vapor volume fractions are inside their acceptance interval. In that case, the total specific producer’s
risk coincides with the particular specific risk for oxygen.

Synthetic air for CCQM-K120
The medians of the standard measurement uncertainties obtained from the NMIs were considered as the robust
indicators of the NMIs’ performance. Their values are for nitrogen u(x1m) = 0.0000140 mol/mol, oxygen
u(x2m) = 0.000009 mol/mol, and for argon u(x3m) = 0.000005 mol/mol. Corresponding total global consumer’s risk
Rc = 0.0079 and total global producer’s risk Rp = 0.0081, calculated by eq. 5, are practically equal.

More details are shown in Fig. 14, where plot (a) demonstrates the total global consumer’s risk Rc values,
and plot (b) shows the total global producer’s risk Rp values, as functions of the measurement uncertainties
on the ranges for nitrogen u(x1m) from 0.000002 mol/mol to 0.000235 mol/mol and oxygen u(x2m)
from 0.000002 mol/mol to 0.000065 mol/mol. The measurement uncertainty for argon is kept equal to the
median u(x3m) = 0.000005 mol/mol. These ranges do not include, for simplicity, the outlying values
u(x1m) = 0.001105 mol/mol and u(x2m) = 0.000295 mol/mol of the dataset.

Both risks increase with increasing measurement uncertainties: Rc varies from 0.0014 to 0.0824, and Rp from
0.0015 to 0.1122. The surfaces of the risks are approximate planes twisted by correlations. Each NMI which
declared a standard measurement uncertainty in the plotted ranges, can find its own risks Rc and Rp on these
surfaces.

For the calculation of total specific risks, the prior pdf and the likelihood function in eq. 6 were
approximated by relevant multivariate normal distributions according to the framework of the IUPAC/CITAC

Fig. 13: Dependence of the specific producer’s risk R*p on themeasured oxygen volume fractions ϕ2m inmedicinal synthetic air. The interval
(20.0−21.0) cL/L, from the lower tolerance to the lower acceptance limits, is on plot (a), while the interval (22.5−23.6) cL/L, from the upper
acceptance to the upper tolerance limits is on plot (b) [68].
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Guide [6, Eq. (34)], in order to obtain a closed (normal) expression for the correspondingmultivariate posterior
pdf. The approximation of a truncated normal pdf by a normal pdf is sustainable in this study, since the
distributions of the relevant quantities are very far away from the truncation limits [0, 1]. Moreover,
the matrix in Table 6, rounded to three decimal digits, guarantees a proper full-rank covariance matrix for the
prior pdf.

Total specific risks, evaluated by eq. 6 for the medians of the declared standard measurement uncertainties,
are plotted against the measured amount fractions of nitrogen x1m and oxygen x2m in Fig. 15 at the argon amount
fraction equal to its mean µ(x3) = 0.0093 mol/mol in Table 7.

The surface of the total consumer’s risk R*
c in Fig. 15a was evaluated for intervals of x1m and x2m from the

means in Table 7 to the tolerance limits, taking into account the negative correlation between the two
components: when values of x2m increase toward TU(x2), then x1m tends to decrease. Hence, the chosen intervals
were for x2m from µ(x2) to the upper tolerance limit TU(x2), and for x1m from µ(x1) to the lower tolerance limit

Fig. 14: Dependence of total global risks on standard measurement uncertainties in synthetic air prepared in CCQM-K120. Plot
(a) demonstrates the surface of the consumer’s risk Rc values vs. measurement uncertainties on the ranges for nitrogen u(x1m) from
0.000002mol/mol to 0.000235mol/mol and oxygen u(x2m) from 0.000002mol/mol to 0.000065mol/mol. Plot (b) presents the surface of
the producer’s risk Rp values vs. u(x1m) and u(x2m) on the same ranges as in plot (a). The color column bars code the risk values between the
minimum and maximum of the surface, each bar referring to its own plot [68].

Fig. 15: Dependence of the total specific risks on measured values of the amount fractions of the main components in the synthetic air for
CCQM-K120. Plot (a) is the surface of consumer’s risk R*c vs. the amount fractions of nitrogen x1m from 0.7804 to 0.7809 mol/mol, and oxygen
x2m from 0.2094 to 0.2098mol/mol. Plot (b) is the surface of producer’s risk R*p vs. the amount fractions of nitrogen x1m from 0.780358 to
0.780400mol/mol, and oxygen x2m from 0.209800 to 0.209827 mol/mol. The color column bars are as in Fig. 14 [68].
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TL(x1). The R*
c values on this surface vary from 0 to 0.531. The surface of producer’s risk R*

p on Fig. 15b was
calculated on the intervals of x1m and x2m out of their tolerance limits, taking into account again the negative
correlation between the two components. The chosen intervals were for x2m from the upper tolerance limit TU(x2)
to TU(x2)+ 3u(x2m), and for x1m from the lower tolerance limit TL(x1) to TL(x1)− 3u(x1m), where u(x1m) and u(x2m) are
the median standard measurement uncertainties. The R*

p values vary from 0.033 to 0.894.
Note that the risks R*

c and R*
p specific for each NMI can be calculated at its own measured values of the air

main components and associated measurement uncertainties. These risks are large in some cases, but fit-for-
purpose, as the CCQM-K120 comparison was intended for evaluation of NMIs’ preparative capabilities for carbon
dioxide in air, whereas correspondence of the amount fractions of nitrogen, oxygen and argon to their tolerance
limits was less important in this study.

Summarizing the discussion of the results, note that the developed technique can be helpful for both
producers and consumers for fit-for-purpose conformity assessment of any substance or material, influenced by
measurement uncertainties, correlation, andmass balance constraint. In particular, producers and consumers of
medicinal synthetic air, as well as NMIs and calibration laboratories using synthetic air as the “balance gas” in
standard gas mixtures for calibration of measuring instruments applied in industry and environment
monitoring, can get benefit from application of this technique. Moreover, the proposed approach provides a way
for improving the risks by tuning the involved parameters,mainlymeasurement uncertainties and/or acceptance
intervals, taking in account the interests of both the air producer and consumer.
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