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A mesoscopic system of a few particles exhibits behaviors that strongly differ from those of a
macroscopic system. While in a macroscopic system phase transitions are universal, a change in
the state of a mesoscopic system depends on its specific properties [1], like the number of particles,
to the point that changes of state can be disfavored for specific “magic numbers” [2]. A transition
that has no counterpart in the macroscopic world is orientational melting, in which localized par-
ticles with long-range repulsive interactions forming a two-dimensional crystal become delocalized
in common circular or elliptical trajectories. Orientational melting has been studied extensively
with computer simulations [3–7] and witnessed in a few pioneering experiments [8–11]. However,
a detailed experimental investigation fully revealing its non-universal nature has been missing so
far. Here we report the observation of orientational melting in a two-dimensional ensemble of up to
15 ions with repulsive Coulomb interaction. We quantitatively characterize orientational melting,
and compare the results with a Monte Carlo simulation to extract the particles’ kinetic energy.
We demonstrate the existence of magic numbers [12], and control locally the occurrence of melting
by adding a pinning impurity. Our system realizes a fully-controllable experimental testbed for
studying the thermodynamics of small systems [13], and our results pave the way for the study of
quantum phenomena in systems of delocalized ions, from the emergence of quantum fluctuations
[14] and quantum statistics [15], to the control of multi-shell quantum rotors [16].

Introduction

A system of confined particles with long-range re-
pulsive interactions undergoes crystallization at a suffi-
ciently low temperature, i.e. the particles become local-
ized in a self-ordered structure. Crystallization has been
observed in several mesoscopic physical systems, includ-
ing electrons in quantum dots [17], trapped ions [10, 18],
liquid Helium [19] and atomic clusters [20]. When con-
fined in an isotropic two-dimensional (2D) potential, a
mesoscopic crystal of a few particles can melt in the
angular degree of freedom since there is no preferential
orientation of the crystal. This orientational melting is
triggered by thermal or quantum fluctuations [14], and
results in a delocalization of the particles in concentric
circular trajectories (shells), while the system remains
localized radially [3, 5]. When undergoing orientational
melting, the particles change their state in a process that
resembles a phase transition for a macroscopic system,
but out of the thermodynamic limit. Therefore, ori-
entational melting is a non-universal phenomenon, i.e.
it occurs at conditions that strongly depend from the
specific properties of the system. Orientational melting
has been studied with computer simulations with several
types of long-range interactions, from Yukawa potential
[21] to Coulomb [6, 22] or dipolar interactions [4, 23].
One of the main findings of these studies is that adding
or removing a single particle can result in dramatically
different collective properties, as expected from the non-
universality of the phenomenon. In particular, there exist
special ”magic numbers” of particles for which orienta-

tional melting is particularly disfavoured [12]. Despite
of the vast theoretical literature, the few experimental
observations reported so far [8–11] could not reach the
high level of control of the experimental parameters that
is needed to fully capture the non-universality features of
orientational melting.

Here, we directly observe and characterize orienta-
tional melting in a two-dimensional crystal of Ba+

trapped ions. The main advantages of using trapped ions
are the possibility of precisely setting the number of par-
ticles and of creating two-dimensional crystals by using
external electric fields [24–27]. Moreover, we can observe
the occurrence of the transition in real time by using flu-
orescence imaging. We demonstrate the non-universality
of orientational melting and quantitatively characterize
its occurrence by measuring angular density-density cor-
relations and the angular spread of the single ion density
distribution. We observe that orientational melting oc-
curs under conditions that strongly depend on the num-
ber of particles, and find excellent agreement with the
results of a Monte Carlo simulation. Moreover, we are
able to locally inhibit melting by adding a single impu-
rity with a different mass. Interestingly, in a sufficiently
large ensemble, the presence of a pinning impurity leads
to the creation of a unique structure in which localized
and delocalized particles co-exist. Our system provides a
testbed for exploring the thermodynamics of mesoscopic
systems [1, 13], and the full control on the experimental
parameters that we demonstrate paves the way to access-
ing new groundbreaking quantum regimes for delocalized
strongly-interacting particles [14–16].
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Orientational melting of a two-dimensional crystal

The Hamiltonian that describes N singly-charged par-
ticles in a two-dimensional harmonic potential is:

H =

N∑
i=1
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+
mi

2

(
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i + ω2
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i

)
+

N∑
j>i

α

|ri − rj|


(1)

where N is the total number of ions, mi is the ion mass,
ri = (yi, zi) is the position of the i-th ion in the two-
dimensional y-z plane with trap frequencies ωy and ωz,
pi is the i-th ion momentum, α = e2/(4πε0), e is the
electron charge, and ε0 is the vacuum permittivity. The
Hamiltonian in Eq. 1 is well approximated by the pseudo-
potential created by the Paul trap shown in Fig. 1. So
far we are not considering the presence of micromotion,
whose effects result in a minor correction (see Supple-
mentary Materials). The trap frequencies depend on the
voltages applied to the RF and DC electrodes, VRF and
VDC respectively, and can be expressed in terms of the
Mathieu parameters a and q [28]. Crucially, we can con-
tinuously change the ratio ωy/ωz by varying only the
parameter VDC while keeping the dynamics in two di-
mensions, i.e. ωx � ωy, ωz [29] (see Supplementary Ma-
terials). In this trap, the Doppler cooled ions self-arrange
in a 2D crystal with elliptical shape, as shown in Fig. 1a.
In the image, the ions have a preferred orientation that
originates from the anisotropy of the trap. Fig. 1b shows
the energy of the system as the crystal is rigidly rotated
by an angle θ from its equilibrium position. This energy,
which we evaluate with a Monte Carlo simulation, has for
ωy ' ωz a sinusoidal shape with amplitude VB/2 [12] (see
Supplementary Materials). The ions are localized when
the angular potential barrier VB is much higher than the
ions kinetic energy ET . The potential barrier VB can
be controlled by changing the ratio ωy/ωz, and when VB
becomes comparable to the kinetic energy the ions’ angu-
lar distribution starts spreading (see Fig. 1b-c), i.e. the
crystal starts melting.

In the experiment, we access the melting transition
by varying a and q within the stability diagram, as il-
lustrated in Fig. 2. The experimental images of Fig. 2
are taken with 5 to 7 trapped ions and illustrate how
the variation of the trap parameter a affects the as-
pect ratio of the ion crystal and the angular localiza-
tion of the trapped particles. As |a| is increased, the
ion crystal shape changes from a line to an ellipse (i-ii).
When ωy/ωz = 1, we observe orientational melting as
the ions are completely delocalized along a circular tra-
jectory (iii). Importantly, the ion crystal recovers when
|a| is further increased (iv). This is a clear indication that
the loss of crystallization reflects a change of state of the
system and not a trivial effect caused either by instabili-
ties arising at the edge of the stability diagram [30] or by
the micromotion increase occurring when the ions lie out
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FIG. 1. Sketch of the physical system. a, The ion trap is
composed by 4 RF (gray, only two shown) and 4 DC (yellow)
electrodes. The trap frequency ratio of the weakly confined di-
rections (ωy/ωz) is controlled by changing the applied electri-
cal potentials (see Supplementary Materials). The inset shows
a picture of a two-dimensional crystal of 7 138Ba+ ions in a po-
tential with trap frequencies (ωx, ωy, ωz) = (400, 121, 97) kHz.
b, A reduction of the ωy/ωz ratio towards unity corresponds
to a decrease of the height VB of the potential barrier associ-
ated to the rigid rotation of the crystal. When VB is reduced
(e.g. from dark to light blue in the figure) the particles spa-
tial distribution spreads, as illustrated in the figure by the two
shaded thermal distributions and their corresponding sketches
in c. When the barrier is further lowered, the particles de-
localize along a closed trajectory and the crystal undergoes
orientational melting.

of the trap z-axis [31]. We note that melting occurs for
all the pairs of parameters (a,q) for which ωy/ωz = 1.
These values are represented in Fig. 2 with the yellow
line, which lies within the trap stability diagram. The
curve, which was calculated from the theoretical model
of the trap, is in excellent agreement with the experimen-
tal data (yellow circles) corresponding to the observation
of circular trajectories (see Supplementary Materials).

Characterization of orientational melting

To better characterize the onset of melting, we an-
alyze images taken with different ion numbers, fixed
qy = −0.182, and different trap ratios ωy/ωz in prox-
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imity of the melting transition. Each image records the
fluorescence light, and therefore provides a spatial den-
sity distribution of the particles over the exposure time.
We quantify the loss of angular ordering of the ions by
using the angular correlation function

g(∆θ) =

∑2π
θ=0 n(θ)n(θ + ∆θ)−

∑2π
θ=0 n(θ)2∑2π

θ=0 n(θ)2
, (2)

which reflects the probability of finding two particles at
an angular distance ∆θ along an elliptical trajectory en-
closing the positions of the ions around their center of
mass (see Supplementary Materials). Notably, if the ions
are forming a crystal, g(∆θ) will show a modulation with
period θNT = 2π/NT , where NT is the number of ions in
the elliptical path. We calculate the amplitude C of this
modulation and use it to quantify the degree of localiza-
tion of the ions.

Fig. 3a shows the amplitude of angular correlations C
measured for 4 and 7 138Ba+ ions as a function of ωy/ωz.
The data show that the crystal loses and retrieves lo-
calization as ωy/ωz is changed across 1. The change is
continuous and the onset of melting is dependent on the
ion number, as images (i) and (ii) in Fig. 3b illustrate.
The images provide a clear indication that the transition
has no universal character. The crystal melting is initi-
ated by thermal fluctuations, as the ions’ kinetic energy
and the energy barrier VB become comparable. We com-
pare the measured angular correlation C with the results
from a Monte Carlo simulation in which the ions’ density
distribution is calculated for different temperatures (see
Supplementary Materials). The two curves that provide
the best fit correspond to an angular kinetic energy of
ET4/kB = 102 mK and ET7/kB = 96 mK for 4 and 7
ions, respectively. These values are comparable with the
temperatures of Doppler cooled ion crystals in Paul traps
with a similar geometry [32, 33].

Additionally, we measure the angular spread σ of the
ion density distribution along the elliptical path by fitting
the density profiles for 4 and 7 ions with a multi-gaussian
function (see Supplementary Materials). We perform the
fit only on the data for which the spatial modulation
is non-negligible, corresponding to the values of ωy/ωz
for which C > 4 × 10−4. The data are plotted in Fig.
3c. As expected, the angular spread increases as the
crystal begins to melt. Additionally, we perform the same
analysis on the simulated density profiles calculated from
the Monte Carlo simulation at a kinetic energy ET4 and
ET7 for 4 and 7 ions, respectively. The results from the
simulation are in good agreement with the experimental
data.

Orientational melting in the presence of an impurity

In order to directly observe the existence of magic num-
bers for which orientational melting is disfavoured, we in-
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FIG. 2. Accessing orientational melting by changing
the particles’ confining potential. Left: stability dia-
gram of the ion trap calculated for 138Ba+, expressed as a
function of ay and qy (see Supplementary Materials). Each
combination of Mathieu parameters a and q within the stabil-
ity region (blue area) correspond to different trap frequencies.
The yellow curve corresponds to the condition ωy/ωz = 1, as
expected from the simulation of our trap. The location of
this curve is confirmed by experimental data (yellow dots)
obtained from fitting the ions’ spatial distribution and corre-
sponding to a radially symmetric crystal (see Supplementary
Materials). Right: images of 5 (i) and 7 (ii-iv) 138Ba+ ions
at qy = −0.182 and different values of ay. The images illus-
trate how crystallization and ellipticity change as a function
of ay across the melting transition. The images are taken at
ωy/ωz = (3.9, 1.2, 1.1, 0.9), ωy = 2π × (246, 121, 107, 91) kHz
and qy = −0.182, top to bottom.

crease the level of control over the melting transition by
locally inducing the crystallization of a single shell with
the use of a pinning impurity.

We realize this scenario, which was suggested in a sim-
ilar fashion for electrons in a quantum dot [34], by de-
liberately adding one ion of a lighter isotope of Ba+ into
the crystal. We detect the presence of the impurity as a
dark spot in the crystal, since the impurity is not reso-
nant to the cooling light (see Supplementary Materials),
as shown in Fig. 4a. A lighter isotope is more deeply
trapped than 138Ba+, and experiences a larger value of
ωy/ωz (see Supplementary Materials). As a result, the
energy barrier for the rotation of the shell hosting the im-
purity is increased. Therefore, when ωy/ωz is set at the
crossover of the transition, the impurity inhibits melting
in the shell where it is located, thus controlling, in prac-



4

0.9 1.0 1.1 1.2 1.3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ωy/ωz

/
N
T

�
�

0.9 1.0 1.1 1.2 1.3
0.00

0.02

0.04

0.06

0.08

0.10

ωy/ωz

C

(i)

a
�NT

(ii)
(i)

b

�

4 ions

(i)

7 ions

(i)

4 ions

(ii)

7 ions

(ii)

c

(ii)

7 ions

(iii)

4 ions

(iii)

7 ions

(ii)

(iii)

(iii)

FIG. 3. Characterization of orientational melting for
4 and 7 ions. a, Amplitude C of the angular density-
density correlation function g(θNT ) calculated along the el-
liptic trajectory shown in the inset (see text and Supplemen-
tary Materials). The onset of melting is clearly different for
4 (blue data) and 7 (red data) ions, as shown in the raw im-
ages in b taken in the regions (i) and (ii). The dashed black
(red) line corresponds to the correlation amplitude expected
for a crystal of 4 (7) ions at the best fitting temperature of
ET4/kB = 102 mK (ET7/kB = 96 mK), as calculated from a
Monte Carlo simulation (see Supplementary Materials). The
blue (red) shaded area for 4 (7) ions represents a change of
±10 mK from the best fitting theory curve. c, Increase of the
angular spread σ as the melting transition is approached (see
inset). σ is obtained by fitting the density distribution (see
Supplementary Materials), and the values are normalized by
the angular separation θNT between the ions. The grey cen-
tral area corresponds to trap conditions for which no density
modulation is visible, as illustrated by image (iii) in b. The
dashed black and red lines correspond to the theory curves
from the simulation of 4 and 7 ions, respectively, at temper-
atures ET4/kB and ET7/kB . The error bars in a, c indicate
the standard deviation of the mean over 3 to 10 images.

tice, the degree of localization of all the ions in that shell.
Fig. 4a shows the occurrence of melting in a crystal of
6 to 15 ions at the onset of the melting (ωy/ωz = 1.18)
and in the presence of one impurity. When the impu-
rity is located in the inner shell, the outer shell can still
undergo melting, see for example N = 13 in Fig. 4a.
This is an evidence that the different shells can behave
independently to one another while preserving the total
angular momentum [12, 35]. We exploit the local control
of crystallization to reveal how the melting transition in
a mesoscopic system strongly depends from the number
of particles. In particular, we find that for our parame-
ters melting is suppressed for N = 7 and N = 14, thus
confirming the presence of ”magic numbers” for which
melting is disfavored [3, 6]. The difference between the
N = 13 and N = 14 cases is particularly striking, as
adding just one particle in the system changes the whole
collective behaviour.

We calculate the height of the energy barrier VB for
the rigid rotation of the un-pinned shell around a pinned
inner shell by using a Monte Carlo simulation (see Sup-
plementary Materials). The results of the simulation are
shown in Fig. 4b. The trend of the energy barrier height
is consistent with our observation: the barrier height VB
is larger for the ”magic numbers” N = 7 and N = 14
which correspond to the most stable crystalline configu-
rations among the ion numbers we explored [12, 22].

Conclusions

In conclusion, our results illustrate the direct observa-
tion of orientational melting in a 2D mesoscopic system
of charged particles with repulsive Coulomb interactions.
We observe evidence of the non-universality of the tran-
sition, and find excellent agreement with the results of a
Monte Carlo simulation. Moreover, we use a single impu-
rity to locally control the crystallization of the particles,
and create new structures in which a crystal and a ring
of delocalized particles co-exist. Our system represents
an ideal platform for studying thermodynamics in small
systems in which the thermodynamic limit is not valid
[1, 13, 36]. Interestingly, if the system is brought to suf-
ficiently low temperatures (e.g. in a static trap [29]), the
role of quantum fluctuations prevails [14], and fundamen-
tal quantum phenomena like the emergence of quantum
statistics in a system of charged particles [15] could be
observed. Moreover, by achieving further control on the
rotation of an individual shell, the control of multi-ring
rotors at a quantum level could be achieved [16], with
applications in sensing [37] and in fundamental physics
[38]. Finally, we note that in the presence of at least two
shells and an impurity, the melting transition can also be
interpreted as an effect of friction between the two inde-
pendent concentric shells. This system could lead to a
new approach for studying friction between two rotating
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FIG. 4. Orientational melting in the presence of a pinning impurity. a, Images of a crystal of 6 to 15 ions in the
presence of an impurity ion of a different isotope. The data are taken at the onset of melting ωy/ωz = 1.18 and qy = −0.182,
corresponding to (ωx, ωy, ωz) = (401, 116, 98) kHz. The impurity appears as a dark ion (red circle), as it is not resonant to
the cooling light. The upper (lower) images correspond to the impurity located in the outer (inner) shell. The impurity ion
experiences a different trapping potential than the other ions. As a result, it suppresses melting in the hosting shell, and it is
located typically along the trap z−axis (see Supplementary Materials). The images where the impurity is in the inner shell
show that different shells can have independent behaviours. In particular, a crystal and a ring of delocalized particles can
co-exist, see e.g. N = 13. The strong dependence of the transition from the number of particles is shown by comparing the
images in the red box (N = 13, 14). Adding a single ion changes the periodicity of the density distribution and, therefore, the
degree of localization. b, Height of the energy barrier for different ion numbers calculated with a Monte Carlo simulation. The
barrier corresponds to the rigid rotation of the outer shell in the presence of a pinned inner shell (if present) (see Supplementary
Materials). The cases of crystallized outer shells (N = 7, 14) correspond to the highest barriers.

periodically-rugged surfaces [39] with no edges [40, 41].
In this context, the number of ions in each shell could be
additionally controlled by producing isomeric excitations
of the crystal [42].
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a deterministic melting transition of two-ion crystals in
a paul trap, Phys. Rev. A 48, R1757 (1993).

[31] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M.
Itano, and D. J. Wineland, Minimization of ion micro-
motion in a paul trap, Journal of Applied Physics 83,
5025 (1998).

[32] L. L. Yan, W. Wan, L. Chen, F. Zhou, S. J. Gong,
X. Tong, and M. Feng, Radial two-dimensional ion crys-
tals in a linear paul trap, Sci. Rep. 6, 21547 (2016).

[33] A. Kato, A. Goel, R. Lee, Z. Ye, S. Karki, J. J. Liu,
A. Nomerotski, and B. B. Blinov, Two-tone doppler
cooling of radial two-dimensional crystals in a radio-
frequency ion trap, Phys. Rev. A 105, 023101 (2022).

[34] V. Golubnychiy, P. Ludwig, A. Filinov, and M. Bonitz,
Controlling intershell rotations in mesoscopic electron
clusters, Superlattices and Microstructures 34, 219
(2003), proceedings of the joint 6th International Confer-
ence on New Phenomena in Mesoscopic Structures and
4th International Conference on Surfaces and Interfaces
of Mesoscopic Devices.

[35] M. Bonitz, V. Golubnychiy, A. Filinov, and Y. Lozovik,
Single-electron control of wigner crystallization, Micro-
electronic Engineering 63, 141 (2002), 5th International
Symposium on New Phenomena in Mesoscopic Structure.

[36] C. Jarzynski, Equalities and inequalities: Irreversibility
and the second law of thermodynamics at the nanoscale,
Annual Review of Condensed Matter Physics 2, 329
(2011).

[37] W. C. Campbell and P. Hamilton, Rotation sensing with
trapped ions, Journal of Physics B: Atomic, Molecular
and Optical Physics 50, 064002 (2017).

[38] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac,
Hawking radiation from an acoustic black hole on an ion
ring, Phys. Rev. Lett. 104, 250403 (2010).

[39] M. Hirano and K. Shinjo, Atomistic locking and friction,
Phys. Rev. B 41, 11837 (1990).

[40] A. Bylinskii, D. Gangloff, I. Counts, and V. Vuletić, Ob-
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and T. Mehlstäubler, Probing nanofriction and aubry-
type signatures in a finite self-organized system, Nature
Communications 8 (2017).

[42] F. Bolton and U. Roessler, Classical model of a wigner
crystal in a quantum dot, Superlattices and Microstruc-
tures 13, 139 (1993).

[43] P. Richerme, Two-dimensional ion crystals in radio-
frequency traps for quantum simulation, Phys. Rev. A
94, 032320 (2016).
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SUPPLEMENTARY MATERIALS

The Paul trap

The linear Paul trap (Fig. 1a) is composed by four elec-
trodes fed with a radio-frequency (RF) voltage VRF at a
frequency ΩRF = 2π × 4.7 MHz providing confinement
in the x-y plane, and by four DC electrodes fed with
a voltage VDC providing confinement along the z axis,
which is also the micromotion-free axis [29]. In the adi-
abatic approximation, the time-averaged harmonic sec-
ular potential is parameterized by the trap frequencies

ωl = ΩRF

2

√
al +

q2l
2 with l = (x, y, z), derived from the

Mathieu parameters of our trap geometry a, q, which
are, most generally, a = (ax, ay, az) and q = (qx, qy, 0),
with qy = −qx, |a| ∝ VDC/m, |q| ∝ VRF /m and where
m is the particle mass [28, 29]. The value qy = −0.182,
used for extracting the data of Figs. 3 and 4, corresponds
to VRF = 802 Vpp. Due to the design shown in Fig. 1a,
the trapping potential is never three-dimensional in the
whole stability diagram for the chosen ion numbers. This
is due to the fact that the ratio ωx/ωy in the perfectly
round configuration is fixed at 4.1 for any q parameter.
As a result, the planar configuration would be lost with
about 130 ions [43], well above the number of ions we
load.

The micromotion is compensated for by minimizing
photo-correlation signals [31], while trap frequencies are
independently measured by parametric heating. The
measured resonances relevant for the graphs of the main
text are shown in Fig. S1a as a function of VDC . From
these data and their fit, we extract the trap parameters
al and ql, as well as the trap frequencies of the other iso-
topes since al ∝ VDC/m and ql ∝ VRF /m [29]. We find
ωy/ωz = 1 at a different VDC for different isotopes, as
shown in the inset plot of Fig. S1a.

The trap frequency calibration is also cross-checked by
calculating the ion crystal aspect ratio Ry0/Rz0 from the
images with 4 and 7 ions used for extracting the data of
Fig. 3. The data in Fig. S1b are obtained from the ellipse
fitting of the experimental images described in the Image
analysis section. Data are fitted with a linear model (not
shown) from which we extract the voltages correspond-
ing to Ry0/Rz0 = 1: -12.93(6) V and -12.93(7) V for 4
ions and 7 ions, respectively. These values agree with the
one obtained from the fits in Fig. S1a which is -12.9(1)V,
corresponding to ωy/ωz = 1.00(4). The measured as-
pect ratios are also compared with the ones obtained by
Monte Carlo simulations (solid lines in Fig. S1b), which
agree with the data. The agreement between aspect ra-
tio, simulations, and trap frequency calibration rules out
large systematic errors on trap depth due to micromo-
tion and any additional interparticle interaction terms in
the relative equations of motion, not considered in our
modelling. This correction is not observed within our

uncertainties on trap frequencies, and we estimate it to
be on the order 1% of ωy/ωz by calculating the correc-
tion on the trap depth for 2 ions at a and q for which
ωy/ωz = 1 [44].

Ions production and cooling

138Ba+ ions are produced by a two-photon photoion-
ization process with a 413 nm light that addresses the
3D1 transition of neutral Barium [45] emitted by a resis-
tive oven. The photoionization laser beam is orthogonal
to the direction of the atom beam produced by the oven.
Given that the smallest isotope shift of this transition
is 101 MHz between 138Ba and 137Ba [46] and that our
power broadening of the transition is around 30 MHz,
the process has a small but non-negligible probability to
photoionize other isotopes like 137Ba and, less probably,
136Ba. We post-select images with one or no dark ions
for extracting the data shown in this paper.

After production, 138Ba+ ions are Doppler cooled
by two orthogonal beams close to resonance with the
6S1/2 → 6P1/2 transition, and repumped by addressing
the 6P1/2 ↔ 5D3/2 transition. 137Ba+, instead, is sym-
pathetically cooled by the rest of the crystal [47]. The
beams’ waist at the ions position is about 300 µm so
that the Doppler cooling force is homogeneous across the
whole crystal and there is no force imbalance that can
initiate rotation.

Imaging system

The images of the ions are obtained by collecting
their fluorescence with a first lens of numerical aperture
NA=0.17 and a magnification setup of x20. The ions’
fluorescence is integrated for 1 s by the camera to ob-
tain the spatial distribution of photons emitted by each
ion. As a result, images need to be considered as prob-
ability density plots rather than as images of individual
particles. Additionally, a similar imaging setup is used
to monitor the ions’ florescence with a photon counter to
count the ion number during the experimental sequence,
even in the melted phase.

Image analysis

The ions’ arrangement in a certain shell has, most gen-
erally, an elliptical shape. Therefore, we convert the im-
ages to elliptic coordinates to correctly evaluate and com-
pare angular correlations and particle’s spread at differ-
ent ωy/ωz. We define the relationship between the Carte-
sian coordinates (z, y) and the elliptic coordinates (r, θ)
corresponding to the De La Hire representation as

z = Rzr cos θ (3)
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FIG. S1. Trap frequencies calibration. a, ωy and ωz trap frequencies measured via parametric heating. Data are plotted
with fitting curves in the range of VDC relevant for the data shown in the main text. Errors are below 1% therefore not shown.
The symmetric trap is obtained for VDC = −12.9(1)V . Inset shows ωy/ωz calculated for different isotopes of Barium. Clearly,
the symmetric case (dashed line), happens at different VDC for different Ba+ isotopes. b, Aspect ratio Ry0/Rz0 of the ion
cluster obtained from the elliptical fits of the ions’ position for images with 4 (blue) and 7 (red) ions. The circular cluster is
compatible with the VDC value from a: we extract -12.93(6)V and -12.93(7)V for 4 and 7 ions. Errors are standard deviations
of the mean of 2 to 9 images. Solid lines are the values obtained from the Monte Carlo simulations of the ions’ positions.

y = Ryr sin θ, (4)

where

Rz =

√
2Rz0√

R2
z0 +R2

y0

(5)

Ry =

√
2Ry0√

R2
z0 +R2

y0

. (6)

Rz0 and Ry0 are the two semi-axes along z and y of the
ellipse that encloses the positions of the ions in a cer-
tain shell of the cluster. To find the ellipse that best
encloses the ions in an image, and to analyze the data,
we must define an elliptical region of interest (ROI), see
Fig. S2. An elliptical ROI is formed by the points with
coordinates (z, y) that satisfy the condition:

(z −Oz)2

(Rz0 + δ)2
+

(y −Oy)2

(Ry0 + δ)2
< 1 <

(z −Oz)2

(Rz0 − δ)2
+

(y −Oy)2

(Ry0 − δ)2
,

(7)
where (Oz, Oy) are the coordinates of the center of the
crystal and δ is the half width of the ROI. In case the
crystal structure has an ion at the center, we also define
a circular ROIc that encloses it. This is defined by the
condition: √

(z −Oz)2 + (y −Oy)2 < δ. (8)

In the image analysis, we first subtract from each im-
age a background image taken with the lasers on but
without ions. Then, we identify the parameters Oz, Oy,

Rz0, and Ry0 corresponding to the ellipse that better in-
scribe the ions’ positions. To this end, we define δ = 5
and find the optimal parameters of the ROI for which
the total number of photon counts in the 4δ2N brightest
pixels enclosed in the ROI is maximized. We use these
parameters to extract the aspect ratio of the ion crystal
Ry0/Rz0. The yellow data in Fig. 2 correspond to the
trap parameters for which Ry0 = Rz0.

After finding the elliptic trajectory enclosing the ions’
positions (see Fig. S3a), we project the image from carte-
sian coordinates to elliptical coordinates, see Fig. S3b.
The conversion of the images to elliptic coordinates is
done with a bilinear interpolation method to correctly
convert the pixels values in the new frame. Once the
image has been transformed in elliptical coordinates, we
select a single shell by considering an area of width 40
pixels enclosing the shell in the radial direction r. In
order to obtain the angular density n(θ) we integrate
the 40-pixels-wide area along r, see Fig. S3c. The ions’
spread plotted in Fig. 3c is obtained by fitting n(θ) with
a multi-gaussian fit from which we extract the standard
deviation σ representing the angular spread of the parti-
cles, see Fig. S3c. In the fits, we impose that all gaussians
have the same σ, and that they are centered around the
positions expected for a zero-temperature crystal (e.g.
for 4 ions θ = 0, π/2, π, 3π/2).

The angular correlation function calculated to extract
the data of Fig. 3a is defined as

g(∆θ) =

∑2π
θ=0 n(θ)n(θ + ∆θ)−

∑2π
θ=0 n(θ)2∑2π

θ=0 n(θ)2
, (9)

which describes the probability of finding an ion at an
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FIG. S2. Trajectory selection. a, The trajectory describing the ions’ positions is found by maximizing the photon counts of
the 4δ2 ×N brightest pixels inside an elliptical ROI. In b, the pixels that are considered are shown.

FIG. S3. Image analysis and correlation measurement. a, An image of a crystal in Cartesian coordinates. The ions’
positions in a certain shell are parameterized by the elliptical path shown in figure (dashed ellipse). b, Same image in elliptical
cylindrical coordinates (r, θ) shows the periodic structure of the shell with the ellipse transformed into a line (dashed line).
c, Photon counts after integrating the pixel counts in b along r. A modulation along the trajectory can be seen when the
particles form a crystal. The multi-gaussian fit of the peaks provides the spread σ of the angular distribution of the individual
ions. d Top, angular correlations calculated by applying the formula in eq. 9 to the data in c. In case the ions form an ordered
crystal structure, the correlation function shows a modulation (upper plot). We extract the amplitude of this modulation from
the Fourier transform of the correlation function (bottom plot), which shows a peak at the periodicity corresponding to the
number of particles NT in the shell under consideration, 6 here (red line). In the melting phase no modulation is visible.

angle ∆θ relative to an other particle along the elliptical
path parameterised by θ. When the ions are localized,
g(∆θ) has a non-negligible periodic modulation with a
periodicity that depends on the number of particles in
the shell under consideration (see Fig. S3d). In order to
find the amplitude of this modulation, we first perform
the Fourier transform of g(∆θ). The Fourier transformed
data present a peak at the frequency corresponding to the
angular spacing θNT between the ions inside the shell,
e.g. θNT = π/2 for 4 ions. The amplitude C of this peak
is reported for different values of ωy/ωz in Fig. 3c.

Monte Carlo simulations

We find the equilibrium position of the ions by us-
ing a Monte Carlo simulation. In this simulation, each
ion is initially placed stochastically inside an area of size
100 µm×100 µm, which is divided in unit cells of size
25 nm×25 nm. In order to find the positions of the ions
that minimize the total energy, we displace one ion at a
time within an area of 81 × 81 unit cells, and calculate
the total energy for each position. After this calculation,
the ion position is changed to the one that minimizes the
energy. Afterwards, a new ion is randomly chosen and
the energy minimization protocol is repeated. If the en-
ergy is not minimized after 10 × N steps in a row, the
energy minimization protocol is repeated one last time
for all the ions. If no other minimum in energy is found,
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FIG. S4. Monte Carlo simulation. a, Ground state configuration found for a crystal of N = 14 ions in which the outer
shell (red points) is rotated by an angle θ. The ions in the inner shell (blue points) are kept fixed in the absolute ground state
position, which was calculated separately, while the other ions are free to move in the plane. In order to simulate the rigid
rotation of the outer shell, one of the free-to-move ions is bounded to a motion on a line at an angle θ from the absolute ground
state configuration. b, plot of the energies of the system as a function of θ as found from the Monte Carlo simulation (blue
points). The fitting function (blue line) is V (θ).

the procedure is stopped. In order to make sure that we
are not lying in a local minima, the whole procedure is
repeated at least 5 times and the ions’ positions mini-
mizing the energy are assumed to constitute the ground
state of the crystal configuration.

In order to estimate the height of the energy barrier
VB , we calculate the energy associated to a rigid rotation
of the crystal. To this end, we repeat the same Monte
Carlo simulation, but we impose that one ion can only
move along a line at an angle θ from the z−axis (see Fig.
S4a). In case of a multi-shell simulation as for the data
of Fig.4b, the position of the ions in the inner shell are
not varied, and the energy of the crystal is minimized by
moving the ions of the outer shell, with one ion moving
along the line at an angle θ.

The potential V (θ) associated to the rigid rotation of
the crystal has, for ωy ' ωz, a sinusoidal shape with am-
plitude VB/2 (see Fig. S4b) [12]. However, when the
ion crystal has a larger ellipticity, V (θ) is not longer
well fitted by a sinusoidal function. For this reason, we
perform a change of variable through the transformation
tan (θ) = η tan (θE) and adapt the parameter η in order
to make the data periodic in θE . Then, we use a power

expansion of the cosine to find the potential V (θE):

V (θE) = a+ b cos(NT θE + φ) + c cos3(NT θE + φ)

+ d cos4(NT θE + φ) + e cos5(NT θE + φ)
(10)

where NT is the number of ions in the shell.
After that we model V (θE) for all the values of ωy/ωz

that we consider, we derive the angular density of the
particles by using a Boltzmann thermal distribution at
a temperature T , and then change the angular variable
back to θ. In defining the angular density, we include the
effects of the spread due to the limited resolution of the
imaging system.

Once the densities are extracted, we perform the same
procedure as for the data in Figs.3a and c to derive
the theoretical model. In particular, we calculate C in
Fig. 3a for different temperatures from T = 1 mK to
T = 120 mK at steps of T = 1 mK. We then perform a
least squared error analysis to find the curves that better
describe the data, corresponding to ET4/kB = 102 mK
and ET7/kB = 96 mK for 4 and 7 ions, respectively. We
perform the same analysis for the 7 ions crystal of Fig.
4a with the impurity ion at the center (bottom panel).
We find a temperature that is lower than ET7 by a fac-
tor of 3. We attribute this difference to an improvement
of the high voltage amplifiers feeding the DC electrodes
that was implemented after that the data in Fig.3 were
taken.
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