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Abstract
Purpose: To investigate whether the risk of peripheral nerve stimulation
increases in the presence of bulky metallic prostheses implanted in a patient’s
body.
Methods: A computational tool was used to calculate the electric field (E-field)
induced in a realistic human model due to the action of gradient fields. The
calculations were performed both on the original version of the anatomical
model and on a version modified through “virtual surgery” to incorporate knee,
hip, and shoulder prostheses. Five exam positions within a body gradient coil
and one position using a head gradient coil were simulated, subjecting the
human model to the readout gradient from an EPI sequence. The induced
E-field in models with and without prostheses was compared, focusing on the
nerves and all other tissues (both including and excluding the bones from the
analysis).
Results: In the nerves, the most pronounced increase in the E-field (+24%)
was observed around the knee implant during an abdominal MRI (Y axis
readout). When extending the analysis to encompass all tissues (exclud-
ing bones), the greatest amplification (+360%) occurred around the knee
implant during pelvic MRI (Z axis readout). Notable increases in E-field
peaks were also identified around the shoulder and hip implants in multiple
scenarios.
Conclusion: Based on the presented results, further investigations aimed at
quantifying the threshold of nerve stimulation in the presence of bulky implants
are desirable.
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1 INTRODUCTION

In MRI procedures, peripheral nerve stimulation (PNS)
refers to the sensation of an activation of the nervous sys-
tem due to gradient switching. This switching induces an
electric field (E-field) in body tissues.1 PNS is triggered
when the E-field surpasses a certain threshold. Depending
on its intensity, PNS might become uncomfortable, or even
painful,2 potentially compromising patient cooperation.
The mechanism behind this type of stimulation has been
analyzed extensively,3 leading to the development of the
standards presented in the International Electrotechnical
Commission Standard 60601-2-33.1 Various aspects of this
issue have been investigated in recent years, including the
optimal design of coil geometry4–6 and sequences.7–9

The interaction between a metallic object implanted
in a patient’s body and MRI gradient fields has been ana-
lyzed in several papers, specifically dealing with the risk of
heating.10–17 Conversely, the possibility that such an inter-
action might alter the E-field distribution in native tissues
surrounding the object, and its possible effects on PNS, has
received little attention. Some authors published on inves-
tigations involving spinal fusion devices,18,19 generic active
implant electrodes,20 and infusion pumps.21,22 However,
the problem has not been investigated for large orthope-
dic implants. This is concerning given the rising number
of patients with prostheses who undergo MRI exams.23–25

This study aims to quantify the potential increase in
E-field magnitude around some of the most common bulky
orthopedic prostheses such as shoulder, hip, and knee
implants. These implants introduce a marked disconti-
nuity of electrical conductivity with respect to the native
tissues. To achieve this, we have performed several numer-
ical simulations, which describe the interaction between
the field produced by standard gradient systems and an
anatomical human model that has undergone a “virtual
surgery” of prosthetic implants.

2 METHODS

2.1 Body model and orthopedic
implants

The simulation of patient exposure to gradient fields uti-
lized the Korean female body model, Yoon-sun, (height:
1.52 m, weight: 54.6 kg) belonging to the Virtual Popula-
tion (Sim4Life, Zurich MedTech, Zurich, Switzerland).26

This model, initially used to calculate the E-field in the
absence of implants, is composed of 71 native tissues,
which have electrical conductivity values set according
to the database of low-frequency conductivities provided
by the The Foundation for Research on Information

Technologies in Society Foundation.27 The corresponding
human model with orthopedic prostheses was also simu-
lated by integrating CAD models of the following implants
into the body model.

• Knee implant: This implant, designed for total arthro-
plasty, is composed of femoral and tibial metallic parts,
separated by an insulating liner. The overall size of
the implant is 68 mm in the left–right direction, 58 mm
in the anteroposterior direction, and 96 mm in the
head–foot direction. It was implanted in the left leg.

• Hip implant: Also for total arthroplasty, this prosthesis
includes a metallic acetabular cup and femoral compo-
nent (femoral head and stem) separated by a polyethy-
lene liner. This prosthesis, used to replace the left hip
joint of the model, has a stem length of 125 mm and a
spherical head diameter of 28 mm.

• Shoulder implant: The last implant is a fully metal-
lic shoulder prosthesis designed for hemiarthroplasty,
composed of a stem connected to a hemispherical head.
Implanted in the right shoulder, this prosthesis has a
stem length of 105 mm and a head diameter of 40 mm.

The metallic parts of the prostheses are composed of
a cobalt-chromium-molybdenum alloy (conductivity: 1.16
MS/m), without porous or ceramic coating. The distance
between the three prostheses, implanted together in the
same body, is large enough to avoid any mutual electro-
magnetic interaction (the validity of this assumption has
been verified, a posteriori, in the results).

The model prostheses were integrated in the correct
anatomical positions through a “virtual surgery.” Sections
of bones (e.g., the head of the femur) that would typically
be removed in real surgeries were excised. To maintain
model consistency, voids created during the virtual surgery
were filled in three different ways. In the first approach
(surgery 1), the voids were entirely filled with synovial
fluid. Because the conductivity of the synovial fluid is
not available in the adopted tissue database,27 the con-
ductivity of the CSF, that is, 1.78 S/m, was used. As with
other biological fluids (e.g., bile, plasma, aqueous humor,
urine), this is much greater than the conductivity of solid
tissues (e.g., bones, fat, muscles). The second approach
(surgery 2) replaced the voids with connective tissue (con-
ductivity: 0.37 S/m). A third, simplified version (surgery
3) directly overlaid the three CAD implants on the origi-
nal body model without manipulating the geometry of the
surrounding native tissues.

To perform the numerical computations, the original
and the modified versions of the human model were seg-
mented into 0.5 mm cubic voxels. This high resolution
ensures an accurate anatomical description.
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F I G U R E 1 The regions investigated, illustrating relative sizes of implants, bones, nerves (yellow), and body contours. Left-to-right:
shoulder prosthesis (right shoulder), hip prosthesis (left hip), knee prosthesis (left knee). The hip and knee implants include polyethylene
liners (red).

Emphasis was placed on the implants’ effects, and
E-field analysis was limited to specific regions surrounding
the prostheses. The dimensions of these regions ensured
that the E-field on their boundaries remained unaffected
by the inclusion of the implants. The three implants
and corresponding investigation regions are illustrated in
Figure 1.

Recent investigations using neurodynamic models28

have shown that large motor nerves are more susceptible
to PNS, and a significant (even if not perfect) correla-
tion exists between the location of the peaks of E-field
and the location of PNS onset. Given these findings,
an analysis of the E-field magnitude induced in the
nerves of the human model was conducted. Following the
approach recommended by the International Commission
on Non-Ionizing Radiation Protection,29 analysis of the
induced E-field was also performed in all tissues, assuming
the potential presence of small nerves almost everywhere
in the body. Because the E-field tends to concentrate in
bones (due to the low conductivity), obscuring effects in
other tissues, an additional analysis excluding bone tissues
(cortical, cancellous, and marrow) was conducted.

2.2 Gradient systems and gradient
signal

A realistic body coil gradient system (internal diameter:
720 mm, axial length: 1500 mm), designed to model a
cylindrical MRI scanner, was simulated. The gradient field
it produces is compatible with traditional 1.5 T, 3 T, and
7 T MRI scanners.30 An asymmetric, high-performance
head gradient coil (internal diameter: 420 mm, axial
length: 920 mm), primarily for neuroimaging, was also

considered. Both systems’ virtual models were created by
discretizing their wires into 1D current-carrying elements,
facilitating magnetic field calculations through numerical
integration.

For the body gradient coil, five longitudinal positions
of the human model (roughly corresponding to MRI exams
of the head, thorax, abdomen, pelvis, and femur) were
simulated. For each position, the magnitude of the E-field
induced in the three investigation regions was recorded.
For the head gradient coil, only one position (i.e., MRI
at the head) was investigated, limiting the analysis to the
region around the shoulder joint (the magnetic field pro-
duced by such a coil in the hip and knee regions is almost
negligible). Following the standard notation adopted in
MRI, the gradient axes will be identified as X (left–right), Y
(anteroposterior), and Z (head–foot) for both sets of coils.
The positions of the human model with respect to the coils
are depicted in Figure 2.

According to the scientific literature, the features of the
EPI sequences are particularly relevant concerning PNS.
Experimental tests link PNS onset during EPI sequences
to the pulse train used in frequency encoding.31,32 In addi-
tion, the EPI sequence is one of the most popular tech-
niques in functional and diffusion-weighted DWI, useful
to perform brain imaging.33 Thus, in our simulations, the
gradient axes were fed with bipolar, symmetric, trape-
zoidal current waveforms, emulating an EPI sequence’s
readout signal.

2.3 Computational approach

To perform the electromagnetic simulations, a recently
developed computational approach was adopted.34 This
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F I G U R E 2 Position of the human model with respect to the gradient systems. On the left, the body is placed in five imaging positions
(head, thorax, abdomen, pelvis, and femur, respectively) within the body gradient coil. On the right, the head gradient coil is used.

approach belongs to the family of integral formulation
methods, which have been used and validated for many
large-scale electromagnetic problems in both biomedical35

and nonbiomedical36 applications. The method identifies
electric current density and scalar potential as unknown
variables. Drawing parallels with the MARIE computa-
tional tool,37 this approach exploits the regularity of vox-
elized human models to minimize computational burden.
Moreover, it makes use of model order reduction tech-
niques to expedite time domain analyses.

In principle, the presence of a bulky metallic object,
with very high electrical conductivity, might modify the
gradient field experienced by the body during a scan. This
alteration can be attributed to the eddy currents induced
in the metallic components. These currents generate an
additional magnetic field that combines with the field gen-
erated by the coil, potentially disrupting its spatial distri-
bution and temporal waveform. Consequently, the E-field
induced in tissues might diverge from what would be pre-
dicted based on an unperturbed gradient magnetic field.
To account for this complexity, the adopted computational
approach solves the full set of Maxwell’s equations (i.e., the
total gradient field is an unknown to be determined).

3 RESULTS

3.1 Preliminary analysis of the effect
of the slew rate

In the biological tissues of the body, without any implant
present, the trapezoidal waveform of the gradient field
induces rectangular E-field pulses. These pulses are syn-
chronized with the trapezoidal waveform’s ramps. The
amplitude of these rectangular pulses is proportional to the

slew rate and is not influenced by the duration of intervals
between the ramps. However, as mentioned in section 2.3,
when implants are present, eddy currents induced in the
metallic objects have the potential to modify the gradient
field. This could, in turn, distort the E-field pulses induced
in the surrounding tissues. To assess the importance of
this effect, which gets stronger as the slew rate increases,
preliminary simulations were repeated multiple times by
increasing the slew rate of the applied gradient field up
to 400 (T/m)/s. In these examined cases, the peak magni-
tudes of the E-field pulses induced in the tissues deviated
by less than 1% with respect to the value that would be
obtained by disregarding the perturbing effect of the eddy
currents.

Given these observations, subsequent results will be
presented for a standard unit slew rate of 1 (T/m)/s. A
simple linear scaling can be applied to obtain the E-field
amplitude relevant to any other slew rate value.

3.2 Preliminary comparison of the
different versions of the virtual surgery

To evaluate the consistency of the results across the differ-
ent “virtual surgery” modifications made to the Yoon-sun
model, some simulations were repeated using each version
of the human model with implants. In general, surgeries
1 (CSF used as a filler) and 2 (connective tissue used
as a filler) showed highly congruent results. In contrast,
the results obtained with surgery 3 (overlap between the
CADs of the body and the implants) diverged more signifi-
cantly from the other two models. An illustrative example
is provided in Figure 3. It presents the maximum intensity
projection of the E-field magnitude on a coronal plane sur-
rounding the shoulder implant during a head MRI using
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402 ZILBERTI et al.

F I G U R E 3 Maximum intensity projection (coronal) of the magnitude of the E-field induced in the shoulder region tissues by the X axis
of the body gradient coil, during head imaging. Left to right: body model without the implant, surgery 1 (CSF used as a filler), surgery 2
(connective tissue used as a filler), surgery 3 (overlap of the CADs of the body and the implant). Upper row: results in the nerves; middle row:
results in all tissues, excluding bones; bottom row: results in all tissues, including bones. The implant is depicted by its footprint. The data
refer to a slew rate of 1 (T/m)/s.

the body gradient coil (X axis readout). The maximum
intensity projection is reported for the nerve class only,
for all tissues excluding bones, and for all tissues includ-
ing bones. The peak E-field magnitudes in the no-implant
model and the models from surgery 1, 2, and 3 are as
follows:

• In nerves: 7.16, 6.30, 6.06, 6.06 mV/m

• In tissues, excluding bones: 52.4, 129, 129, 204 mV/m

• In tissues, including bones: 91.6, 129, 129, 357 mV/m.

Given the congruence between the results obtained
with surgeries 1 and 2, and considering that surgery 3 is
less realistic, section 3.3 will focus on the results of the
simulations derived from the model of surgery 1.
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T A B L E 1 Comparison of the results obtained for a unit slew rate of 1 (T/m)/s in the models without and with the implants (surgery 1),
in the body gradient coil, for the shoulder investigation region.

Gradient
axis

Imaging
target

Peak of E-field
without implant
(mV/m)

Peak of E-field
with implant
(mV/m) Peak ratio Rp Ne

New
peak

Max dB/dt
(mT/s)

X Head 7.16 (52.4) [91.6] 6.30 (129) [129] 0.88 (2.45) [1.40] 0 (401) [25] No 463

Thorax 7.03 (40.8) [76.7] 7.20 (44.8) [128] 1.02 (1.10) [1.66] 1 (4) [106] Yes 301

Abdomen 6.85 (48.3) [111] 7.15 (136) [136] 1.04 (2.81) [1.22] 1 (1354) [10] No 463

Pelvis 7.60 (51.2) [57.5] 7.52 (86.5) [86.5] 0.99 (1.69) [1.50] 0 (38) [67] No 431

Femur 1.70 (7.25) [10.2] 1.70 (7.25) [14.0] 1.00 (1.00) [1.37] 1 (1) [195] Yes 79.2

Y Head 20.3 (123) [237] 20.4 (128) [240] 1.01 (1.04) [1.01] 3 (1) [1] No 318

Thorax 9.12 (71.8) [149] 9.34 (61.3) [150] 1.02 (0.85) [1.01] 2 (0) [1] No 229

Abdomen 20.5 (132) [266] 20.7 (137) [269] 1.01 (1.04) [1.01] 3 (1) [1] No 316

Pelvis 15.0 (79.3) [142] 15.1 (81.0) [144] 1.00 (1.02) [1.01] 2 (2) [1] No 268

Femur 0.791 (5.91) [8.33] 0.791 (5.91) [8.42] 1.00 (1.00) [1.01] 0 (1) [1] No 35.7

Z Head 10.8 (61.1) [61.1] 10.9 (62.8) [130] 1.01 (1.03) [2.12] 1 (1) [967] Yes 381

Thorax 4.95 (40.3) [62.0] 5.07 (78.0) [78.0] 1.03 (1.93) [1.26] 1 (63) [13] No 236

Abdomen 9.49 (67.7) [67.7] 9.52 (80.8) [131] 1.00 (1.19) [1.94] 1 (7) [439] Yes 379

Pelvis 7.98 (39.0) [43.2] 7.98 (40.1) [81.8] 1.00 (1.03) [1.89] 0 (1) [657] Yes 289

Femur 1.89 (7.88) [10.4] 1.88 (7.87) [11.9] 1.00 (1.00) [1.15] 0 (0) [2] Yes 45.2

Note: Ne indicates the number of voxels where, when the implant is present, the magnitude of the E-field exceeds the peak value found in the model without the
implant (the size of each voxel is 0.5 mm× 0.5 mm× 0.5 mm). Column “New peak” indicates if the presence of the implant creates a new concentration of
E-field that was not present in the model without the implant. The values refer to the nerve class only, to all tissues with the exception of the bones (values
between round brackets), and to all tissues including the bones (values between square brackets).
Abbreviations: E-field, electric field; max dB/dt, maximum time derivative of the magnetic flux density; Ne, number of voxels; Rp, ratio between the two peak
values.

3.3 Effect of implant, gradient axis,
and body position

The results calculated for the body gradient coil are sum-
marized in Tables 1–3 for the shoulder, hip, and knee
implants, respectively. Table 4 provides the same com-
parison for the head gradient coil but references to the
shoulder implant and the head imaging position only. All
results are based on a slew rate of 1 (T/m)/s.

From this point forward, each configuration will be
denoted using a specific code. For example, shoulder/
body-X/head indicates the results obtained in the shoulder
region, when the readout is performed by the X axis of the
body gradient coil, during head imaging.

Each table reports the maximum peak of the E-field
magnitude induced in the nerves within the investiga-
tion region both in the absence and in the presence of
the implant. The location of the peak calculated in the
two cases in general may be different. Additionally, the
tables provide the ratio between the two peak values (with-
/without implants), indicated as Rp, and the number of
voxels (Ne) in which the E-field magnitude computed in

the presence of the implant exceeds the peak computed
without the implant. The same quantities, determined by
extending the analysis to all tissues except for the bones,
are indicated in round brackets. The quantities determined
for all tissues including bones are given in square brack-
ets. A “New peak” column indicates instances where the
presence of the prosthesis gives rise to a new E-field con-
centration within the area of consideration.

For the body gradient coil, the strongest increase
of the E-field magnitude induced in the nerves is
obtained in the knee/body-Y/abdomen setup, where the
primary peak increases from 7.47 mV/m to 9.25 mV/m
(Rp = 1.24, Ne = 40). A similar amplification is noted in the
knee/Z-body/head setup, albeit for a significantly weaker
field intensity. In the nerves of the shoulder and hip
regions, the Rp value is always notably close to (or lower
than) 1. In the cases that produce, for each region, the
highest peaks of the E-field magnitude (∼25 mV/m in
hip/body-Y/thorax and hip/body-Y/femur, ∼20 mV/m in
shoulder/body-Y/abdomen and shoulder/body-Y/head, and
∼14 mV/m in knee/body-Y/pelvis), the field magnitude
amplification is always negligible. For the head gradient
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T A B L E 2 Comparison of the results obtained for a unit slew rate of 1 (T/m)/s in the models without and with the implants (surgery 1),
in the body gradient coil, for the hip investigation region.

Gradient
axis

Imaging
target

Peak of E-field
without implant
(mV/m)

Peak of E-field
with implant
(mV/m) Peak ratio Rp Ne

New
peak

Max dB/dt
(mT/s)

X Head 4.66 (23.2) [44.9] 4.59 (22.8) [43.6] 0.98 (0.98) [0.97] 0 (0) [0] No 111
Thorax 19.9 (53.8) [165] 19.7 (85.3) [160] 0.99 (1.59) [0.97] 0 (10) [0] No 373
Abdomen 15.4 (51.3) [74.1] 14.1 (49.8) [117] 0.92 (0.97) [1.58] 0 (0) [49] Yes 366
Pelvis 12.2 (64.1) [112] 12.0 (63.1) [108] 0.98 (0.98) [0.96] 0 (0) [0] No 250
Femur 19.9 (53.8) [165] 20.0 (86.1) [160] 0.99 (1.60) [0.97] 0 (10) [0] No 374

Y Head 5.46 (16.9) [42.5] 5.08 (27.5) [55.7] 0.93 (1.63) [1.31] 0 (13) [168] No 62.6
Thorax 25.9 (107) [224] 23.9 (143) [356] 0.92 (1.34) [1.59] 0 (4) [108] Yes 297
Abdomen 13.7 (48.0) [94.0] 13.0 (62.0) [255] 0.95 (1.29) [2.71] 0 (4) [2927] Yes 285
Pelvis 15.1 (45.8) [93.6] 13.7 (67.6) [137] 0.91 (1.48) [1.47] 0 (10) [1431] No 179
Femur 25.8 (107) [224] 23.8 (143) [354] 0.92 (1.34) [1.58] 0 (4) [108] Yes 297

Z Head 4.17 (20.7) [36.8] 3.91 (20.2) [36.1] 0.94 (0.98) [0.98] 0 (0) [0] No 71.6
Thorax 23.0 (96.5) [181] 21.5 (94.7) [174] 0.94 (0.98) [0.96] 0 (0) [0] No 323
Abdomen 14.6 (36.8) [76.3] 14.4 (37.9) [74.1] 0.99 (1.03) [0.97] 0 (2) [0] No 315
Pelvis 6.26 (34.7) [58.1] 5.76 (34.0) [57.1] 0.92 (0.98) [0.98] 0 (0) [0] No 182
Femur 23.1 (96.5) [182] 21.6 (94.7) [175] 0.94 (0.98) [0.96] 0 (0) [0] No 323

Note: Ne indicates the number of voxels where, when the implant is present, the magnitude of the E-field exceeds the peak value found in the model without the
implant (the size of each voxel is 0.5 mm× 0.5 mm× 0.5 mm). Column “New peak” indicates if the presence of the implant creates a new concentration of E-field
that was not present in the model without the implant. The values refer to the nerve class only, to all tissues with the exception of the bones (values between
round brackets) and to all tissues including the bones (values between square brackets).
Abbreviations: E-field, electric field; max dB/dt, maximum time derivative of the magnetic flux density; Ne, number of voxels; Rp, ratio between the two peak
values.

T A B L E 3 Comparison of the results obtained for a unit slew rate of 1 (T/m)/s in the models without and with the implants (surgery 1),
in the body gradient coil, for the knee investigation region.

Gradient
axis

Imaging
target

Peak of E-field
without implant
(mV/m)

Peak of E-field
with implant
(mV/m) Peak ratio Rp Ne

New
peak

Max dB/dt
(mT/s)

X Head 0.322 (1.25) [3.85] 0.338 (3.28) [4.40] 1.04 (2.62) [1.14] 4 (2711) [26] No 9.47
Thorax 0.711 (7.00) [7.69] 0.739 (8.90) [8.90] 1.04 (1.27) [1.16] 3 (4) [4] Yes 95.3
Abdomen 8.62 (32.0) [91.1] 8.98 (79.8) [105] 1.04 (2.49) [1.15] 3 (2034) [33] No 319
Pelvis 10.6 (48.2) [160] 12.1 (125) [175] 1.14 (2.60) [1.09] 11 (3299) [11] No 336
Femur 7.09 (24.8) [60.4] 7.48 (79.8) [79.8] 1.06 (3.21) [1.32] 2 (266) [3] Yes 288

Y Head 0.352 (1.30) [2.77] 0.411 (3.36) [3.36] 1.17 (2.60) [1.21] 27 (1426) [7] Yes 8.73
Thorax 1.19 (5.87) [7.85] 1.16 (6.93) [7.54] 0.97 (1.18) [0.96] 0 (5) [0] No 53
Abdomen 7.47 (30.5) [64.4] 9.25 (72.4) [72.4] 1.24 (2.37) [1.13] 40 (1136) [6] No 239
Pelvis 13.8 (50.3) [93.2] 14.7 (143) [143] 1.06 (2.84) [1.53] 9 (916) [10] Yes 275
Femur 7.83 (33.0) [44.6] 7.89 (65.5) [65.5] 1.01 (1.99) [1.47] 1 (60) [5] Yes 240

Z Head 0.0935 (0.703) [1.29] 0.116 (1.51) [2.01] 1.24 (2.15) [1.56] 92 (426) [40] Yes 5.91
Thorax 1.19 (8.08) [13.9] 1.33 (14.5) [19.0] 1.12 (1.79) [1.37] 22 (155) [21] Yes 67.2
Abdomen 3.77 (23.4) [48.4] 4.57 (60.4) [79.5] 1.21 (2.58) [1.64] 53 (1623) [57] Yes 241
Pelvis 9.35 (24.3) [75.4] 10.6 (112) [151] 1.14 (4.60) [2.01] 3 (33861) [131] Yes 291
Femur 4.36 (23.7) [43.2] 5.08 (44.3) [65.7] 1.17 (1.87) [1.52] 6 (205) [31] Yes 245

Note: Ne indicates the number of voxels where, when the implant is present, the magnitude of the E-field exceeds the peak value found in the model without
the implant (the size of each voxel is 0.5 mm× 0.5 mm× 0.5 mm). Column “New peak” indicates if the presence of the implant creates a new concentration of
E-field that was not present in the model without the implant. The values refer to the nerve class only, to all tissues with the exception of the bones (values
between round brackets) and to all tissues including the bones (values between square brackets).
Abbreviations: E-field, electric field; max dB/dt, maximum time derivative of the magnetic flux density; Ne, number of voxels; Rp, ratio between the two peak
values.
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ZILBERTI et al. 405

T A B L E 4 Comparison of the results obtained for a unit slew rate of 1 (T/m)/s in the models without and with the implants (surgery 1),
in the head gradient coil, for the shoulder investigation region.

Imaging
target

Gradient
axis

Peak of E-field
without implant
(mV/m)

Peak of E-field
with implant
(mV/m) Peak ratio Rp Ne

New
peak

Max dB/dt
(mT/s)

Head X 1.20 (8.24) [22.1] 1.25 (21.2) [29.0] 1.05 (2.57) [1.32] 2 (1673) [4] Yes 131

Y 1.83 (12.7) [26.0] 1.96 (13.4) [26.4] 1.07 (1.05) [1.02] 7 (1) [1] No 55.4

Z 3.94 (35.3) [48.4] 4.48 (64.7) [64.7] 1.14 (1.83) [1.34] 5 (52) [25] No 436

Note: Ne indicates the number of voxels where, when the implant is present, the magnitude of the E-field exceeds the peak values found in the model without
the implant (the size of each voxel is 0.5 mm× 0.5 mm× 0.5 mm). Column “New peak” indicates if the presence of the implant creates a new concentration of
E-field that was not present in the model without the implant. The values refer to the nerve class only, to all tissues with the exception of the bones (values
between round brackets) and to all tissues including the bones (values between square brackets).
Abbreviations: E-field, electric field; max dB/dt, maximum time derivative of the magnetic flux density; Ne, number of voxels; Rp, ratio between the two peak
values.

coil, the strongest E-field amplification in the nerves of the
shoulder region is produced by the Z axis (Rp = 1.14). This
axis also results in the highest E-field peak in the nerves
(3.94 mV/m and 4.48 mV/m without and with the implant,
respectively).

When the analysis is extended to all tissues exclud-
ing bones, pronounced amplifications are observed around
the knee implant for almost all scan configurations. The
strongest amplification occurs in the knee/body-Z/pelvis
configuration, where the E-field peak increases from
24.3 mV/m to 112 mV/m (Rp = 4.60, Ne = 33 861). Some
configurations also show notable amplifications near the
hip and shoulder implants, including those involving the
head gradient coil.

If the analysis includes bone tissues, some amplifica-
tion is observed for all implants. The strongest increase
is seen in the hip/body-Y/abdomen setup, where the
peak of the E-field increases from 94 mV/m to 255 mV/m
(Rp = 2.71, Ne = 2927).

We point out that Rp and Ne were determined indi-
vidually for each set of results (in the nerves, or in the
tissues excluding the bones, or in all tissues together). Con-
sequently, when considering all tissues including bones,
the values of Rp and Ne may be smaller compared to those
derived by excluding the bones. Generally, E-field peaks
occurring within the nerves are approximately one order of
magnitude lower than the peaks observed when all tissues
are included in the analysis. Typically, the highest E-field
peaks manifest within the bones, apart from a few excep-
tions in skin or fat. However, whenever bones are excluded
from the simulation, peaks predominantly arise within the
skin and fat.

In addition to the data related to the E-field, the tables
report the maximum value of the time derivative of the
magnetic flux density (max dB/dt) produced in the region
of investigation. For the body gradient coil, the highest
values are generated by the X axis in all investigation
regions. With a 1 (T/m)/s slew rate, these values are

463 mT/s in the shoulder region (shoulder/body-X/head
and shoulder/body-X/abdomen), 374 mT/s in the hip
region (hip/body-X/femur), and 336 mT/s in the knee
region (knee/body-X/pelvis). For the head gradient coil, the
max dB/dt in the shoulder region is produced by the Z axis,
and its value is comparable to the maximum generated by
the body gradient coil (436 mT/s).

A visual inspection of the results, for a selection of
the investigated configurations, is provided in Figures 4–6.
The figures show the maximum intensity projection (on
a coronal plane) of the E-field magnitude induced in the
nerves and in all tissues (excluding and including bones
in the analysis), comparing models without and with
implants. Figure 4 reports the case in which Rp is max-
imized in the nerves (knee/body-Y/abdomen, Rp = 1.24).
Figure 5 reports the case in which Rp is maximized in the
tissues, ignoring the bones (knee/body-Z/pelvis, Rp = 4.60).
Figure 6 reports the case in which Rp is maximized in
the tissues, including the bones (hip/body-Y/abdomen,
Rp = 2.71). To provide a comprehensive overview, these
figures present the results across all gradient axes. In the
reported cases, the knee implant tends to concentrate the
E-field in the upper part of the knee, whereas the hip
implant tends to concentrate the E-field around the stem
of the prosthesis.

4 DISCUSSION

4.1 The role of the slew rate and of
the virtual surgery

As indicated in section 3.1, we have verified the scaling
law of the results when implants are present. This means
that there is a directly proportional relationship between
the slew rate and the amplitude of the E-field induced in
tissues. This was tested up to a slew rate of 400 (T/m)/s for
selected cases. Notably, this outcome could not be assumed
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406 ZILBERTI et al.

F I G U R E 4 Maximum intensity projection (coronal) of the magnitude of the E-field induced in the knee region tissues by the X axis
(upper row), Y axis (middle row), and Z axis (bottom row) of the body gradient coil, during abdominal imaging. First column: results in the
nerves only; second column: results in all tissues, excluding bones; third column: results in all tissues, including bones. The implant is
depicted by its footprint. The data refer to a slew rate of 1 (T/m)/s.
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ZILBERTI et al. 407

F I G U R E 5 Maximum intensity projection (coronal) of the magnitude of the E-field induced in the knee region tissues by the X axis
(upper row), Y axis (middle row), and Z axis (bottom row) of the body gradient coil, during pelvic imaging. First column: results in the nerves
only; second column: results in all tissues, excluding bones; third column: results in all tissues, including bones. The implant is depicted by
its footprint. The data refer to a slew rate of 1 (T/m)/s.
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408 ZILBERTI et al.

F I G U R E 6 Maximum intensity projection (coronal) of the magnitude of the E-field induced in the hip region tissues by the X axis
(upper row), Y axis (middle row), and Z axis (bottom row) of the body gradient coil, during abdominal imaging. First column: results in the
nerves only; second column: results in all tissues, excluding bones; third column: results in all tissues, including bones. The implant is
depicted by its footprint. The data refer to a slew rate of 1 (T/m)/s.
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ZILBERTI et al. 409

a priori due to the perturbing effect of the eddy currents
induced in the metallic parts. However, this finding sim-
plifies our analysis. It means that we can estimate E-field
magnitudes for any slew rate (at least up to 400 (T/m)/s)
through simple linear scaling.

Concerning the different versions of the body model
with prostheses, the induced E-fields are consistent
between models 1 and 2. This is despite the different val-
ues of electrical conductivity adopted for the material that
fills the void made during the virtual surgery (1.78 S/m
compared to 0.37 S/m). This consistency arises because,
for all prosthetic models, the filler is surrounded by fat,
which has a much lower conductivity (0.057 S/m). Thus,
the choice of the conductivity assigned to the filler has a
weak influence on the result, provided that it is substan-
tially higher than the conductivity of fat. However, no void
was created in surgery 3, where a simple overlap between
the CADs of the body and the implants was performed.
This means the model includes some unrealistic residual
of the original bones, and these remnants have a conduc-
tivity similar to the conductivity of the surrounding fat.
The electromagnetic behavior of surgery 3 therefore devi-
ates from the behavior of surgeries 1 and 2. Given that the
local distribution of the E-field can substantially impact
PNS, these results underline the importance of model-
ing orthopedic surgeries in an accurate way. Conversely,
uncertainties regarding the choice of filler conductivity
have a lesser impact.

4.2 Field distribution in the model
without implants

For the human model without implants, some preliminary
discussions and comparisons with previously published
investigations are possible.

Despite the use of different coils and body models, our
results, when adjusted for slew rate, align well with recent
comparable calculations.28 Notably, echoing reports from
other authors,38 the highest peaks of E-field magnitude are
produced by the Y axis of the body gradient coil. This is
observed both in the hip region (when imaging the tho-
rax or the femur) and in the shoulder region (when the
abdomen is the target of the MRI exam, although strong
values also arise for other scan positions).

When, at the same slew rate, the head gradient coil
is used to image the patient’s head, the E-field induced
in the shoulder region is weaker with respect to the field
obtained with the body gradient coil. This is in line with
previous analyses,33 which have highlighted how coils of
this kind have a higher PNS threshold (by virtue of their
reduced size) with respect to body gradient coils. For the
head gradient coil, the Z axis induces the strongest E-field

in the shoulder region. Interestingly, previous investiga-
tions found that the Z axis tends to present the lowest
PNS threshold in the shoulder when associated with head
gradient coils.39,40

Previous experimental investigations41 found a poor
correlation between the location of the max dB/dt and
the location of the PNS perception. With the body gradi-
ent coil, the present analysis indicates that, in general, the
highest dB/dt values do not correspond to the strongest
E-field peaks. With the head gradient coil, the max dB/dt
in the shoulder region is produced by the Z axis (which
also produces the strongest E-field). Its value is compara-
ble to the max dB/dt produced by the body gradient coil;
however, as previously mentioned, the peaks of the E-field
magnitude are lower.

4.3 Effect of the implants

The results put in evidence that, in some cases, the pres-
ence of bulky metallic implants may produce a significant
perturbation in the distribution of the induced E-field. If,
to some extent, this outcome was predictable, the pro-
posed analysis shows such an effect in quantitative terms,
identifying the anatomical points where it takes place.
Concerning this, in about one half of the investigated
cases, new peaks of the induced E-field originate from the
introduction of the implants in the investigated regions.

Recent investigations based on neurodynamic mod-
els28 have identified the primary subbranches of the major
nerves (which exhibit relatively large diameters, combined
with sharp kinks) as main candidates for the stimulation.
Therefore, a prominent position has been given to the anal-
ysis of the E-field in the nerves of the human model. Focus-
ing the attention on the nerve class, significant amplifica-
tions of the E-field magnitude are observed for the knee
implant only. Arguably, considering that significant ampli-
fications are observed also in the other tissues surrounding
this prosthesis, the presence of the knee implant creates
conditions that may facilitate PNS, lowering the threshold
for the onset of the stimulation in this part of the body.

In the main motor nerves that surround the shoulder
and hip implant, the amplification of the E-field is always
feeble. However, if the analysis is extended to all tissues,
it becomes significant, in many cases, also around these
prostheses. This situation is well illustrated by Figures 4–6,
which show that the amplification of the E-field peaks
produced by the implants changes significantly based on
the group of tissues included in the analysis. If, on the
one hand, this outcome complicates the interpretation
of the results, on the other hand it suggests that the
effect of implants on PNS is worth deepening. Indeed,
the amplification of the E-field is not detected exclusively
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410 ZILBERTI et al.

in the bone voxels (which are in direct contact with the
implants but should give a minor contribution to PNS
due to the paucity of motor nerves). Significant ampli-
fications have been also observed in the voxels assigned
to other tissues (in particular in skin and fat), which
are accounted for in traditional dosimetric assessments of
PNS.29 Hence, because smaller nerves may be “hidden”
within voxels assigned to other tissues, the magnitude
of the E-field induced in the other materials around the
implants has been considered as well. Interestingly, a good
correlation has been found between parameters Rp and Ne
(see Tables 1–4). For instance, the highest amplification
observed in the analysis that involves all tissues except the
bones occurs in knee/body-Z/pelvis (Rp = 4.60). This is also
the case in which the largest Ne value has been obtained
(Ne = 33 861). This coincidence corroborates the idea that
the E-field amplification may involve nerves that are not
represented in the adopted human model.

In principle, based on the value of parameter Rp, the
following rationale could be formulated to identify poten-
tially risky situations. If a given MRI exam does not pro-
duce PNS in the absence of implants, it is reasonable to
assume that the same exam can be safely applied to a
patient bearing an implant, provided that the correspond-
ing value of Rp is close to (or lower than) 1. This is par-
ticularly true if the introduction of the implant does not
produce a significant modification of the spatial pattern of
the induced E-field, and conversely, cases in which Rp > 1
would require a note of caution (especially if the value of
Ne is relatively large) because the increase of the E-field
could trigger the PNS sensation. Nevertheless, this kind of
analysis would not be feasible in clinical practice, where
more general rules are required. Indeed, at the state of the
art, the MRI scanners do not perform any patient-specific
assessment of PNS but rely on general safety measures.
According to the International Electrotechnical Commis-
sion standards,1 the scanners shall be designed to mini-
mize the occurrence of PNS in normal operating mode.
This condition is obtained by limiting the gradient output
(e.g., the time derivative of the gradient field in the volume
taken up by the patient’s body) below suitable reference
values (80% of the conventional PNS threshold, in normal
operating mode). The latter were deduced from calcula-
tions and experimental investigations and did not con-
sider the possible presence of an implant inside the body.
Because the proposed analysis indicates that the pres-
ence of bulky implants may change the E-field distribution
and amplify its magnitude, new investigations would be
desirable to check whether condition Rp > 1 (that is not
dangerous per se) turns out to be really associated with
an increased PNS risk. Such investigations should clarify
whether the presence of an implant in one side of the body
reduces the PNS threshold with respect to the other side of

the same body, where the implant is not present. Moreover,
the investigations should assess whether the variation of
the PNS threshold ascribed to the implants is significant
with respect to the intersubject variation observed in the
absence of implants. If needed, suitable limits could be for-
mulated for patients carrying implants and the standards
could be updated accordingly. To mitigate the increase of
the E-field magnitude during the MRI exam, two strate-
gies could be applied: a reduction of the slew rate, and an
optimal choice of the gradient axis that performs the read-
out. To be feasible in clinical practice, both strategies shall
comply with imaging requirements.

4.4 Limitations

When using the results of our proposed analysis to eval-
uate the increase in the risk of PNS in the presence of
an implant, some limitations must be considered. From
the technical viewpoint, the calculated E-field values may
be affected by the so-called staircasing artifacts (especially
at tissue interfaces with strong contrast, in terms of con-
ductivity) and other sources of numerical outliers.42 To
mitigate these anomalies, the International Commission
on Non-Ionizing Radiation Protection guidelines29 recom-
mend the use of the 99th percentile. However, this strategy
has been widely questioned43 and, even if other techniques
have been proposed in the literature,44–46 this issue has not
yet been completely settled. Thus, in this paper, the raw
results have been provided under the tacit assumption that
they must be considered affected by some uncertainty (as
always in computational electromagnetic dosimetry). Nev-
ertheless, the good correlation between parameters Rp and
Ne can be used to corroborate the trustworthiness in a case
that exhibits a significant increase in the E-field.

In terms of the interpretation of the results, the use
of the E-field magnitude as a metric to quantify the risk
of PNS is the main limitation of the work. Indeed, PNS
originates from the interaction between the E-field and
the nerves (an interaction that involves their relative spa-
tial orientation), and therefore the stimulation does not
necessarily occur where the E-field is stronger but where
a good coupling between the E-field and the nerve track
takes place. Future investigations based on neurodynamic
simulations of a human model carrying implants are
therefore seen as the natural development of the present
analysis.

As already mentioned, the validity of the linear pro-
portion between the E-field magnitude and the slew rate
has been verified up to 400 (T/m)/s. With the continuous
development of the technology, higher slew rates might be
involved in the clinical practice, requiring an update of this
aspect of the investigation.
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5 CONCLUSION

The presence of bulky orthopedic implants can substan-
tially modify the distribution of the E-field induced by
gradient coils in the body of a patient undergoing MRI,
leading to an appreciable increase in the E-field magni-
tude. Our proposed analysis has investigated the problem
quantitatively, emphasizing a realistic model of orthopedic
surgery.

While an increase in the E-field magnitude does not
necessarily imply the onset of PNS, the results suggest that
subjects carrying orthopedic implants should be included
in future experimental surveys aimed at determining
PNS thresholds. Parallel to this, the E-field distributions
obtained during this study can provide the starting point
for further investigations aimed at predicting the onset of
PNS events in the presence of implants, through neurody-
namic models.
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