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ARTICLE

Dynamical equilibration across a quenched phase
transition in a trapped quantum gas
I.-K. Liu 1,2, S. Donadello3, G. Lamporesi 3, G. Ferrari3, S.-C. Gou 2, F. Dalfovo 3 & N.P. Proukakis 1

The formation of an equilibrium state from an uncorrelated thermal one through the dyna-

mical crossing of a phase transition is a central question of quantum many-body physics.

During such crossing, the system breaks its symmetry by establishing numerous uncorrelated

regions separated by spontaneously generated defects, whose emergence obeys a universal

scaling law with quench duration. The ensuing re-equilibrating or “coarse-graining” stage is

governed by the evolution and interactions of such defects under system-specific

and external constraints. We perform a detailed numerical characterisation of the entire

non-equilibrium process associated with the Bose–Einstein condensation phase transition in a

three-dimensional gas of ultracold atoms, addressing subtle issues and demonstrating the

quench-induced decoupling of condensate atom number and coherence growth during

the re-equilibration process. Our findings agree, in a statistical sense, with experimental

observations made at the later stages of the quench, and provide valuable information and

useful dynamical visualisations in currently experimentally inaccessible regimes.
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The quenched crossing of a continuous second-order phase
transition has been investigated both theoretically and
experimentally in many physical systems. The prevailing

scenario to date, known as the Kibble–Zurek mechanism (KZM),
describes the crossing under the assumption that, in the critical
region, the dynamics of the system order parameter is frozen1,2

(see ref. 3 for a recent review). A common formulation of KZM
relates the number of defects generated between regions of dif-
ferent (approximately constant) phases to the rate of external
quenching. In condensed matter, such a mechanism has been
experimentally studied in superfluid helium4,5, superconducting
Josephson junctions6,7, liquid crystals8,9, multiferroic crystals10,11,
ions12–14 and ultracold atoms15–22. Ultracold atoms facilitate a
controlled study of the non-equilibrium processes and the
Bose–Einstein condensation (BEC) phase transition, and recent
experiments have already provided strong evidence for KZM
through measurements of the number of spontaneously generated
defects in three-dimensional (3D) harmonic traps15,17,21 or
winding numbers in ring traps18,22, with correlation function
measurements in a 3D box-like potential used to extract critical
exponents19, building on an extensive body of literature for con-
densate growth dynamics23–34 (see refs. 35,36 for recent reviews).
Related quenched studies include soliton generation37–39, ring-
trap geometries40, spinor41–43, multi-component44,45 and
Josephson-coupled46 gases and optical lattices16,47,48.

An emerging question is the extent to which the defect for-
mation process described by KZM can be decoupled from the
dissipative evolution expected to occur when defects co-exist
within a finite region, which is crucial to the modelling of any
experiment. Previous work on purely one-dimensional (1D)
evaporatively cooled gases has indicated the spontaneous emer-
gence of dark solitons, whose number gradually decreases during
thermalisation, with the coherence length of the final post-quench
thermal state being set by the average distance between defects39.
Decoupling these two dynamical features is not a trivial task, as
one does not a priori know exactly when to count the defects;
moreover, at the time at which one is supposed to count them, the
system is so disordered that it is not even clear whether any
counting would be possible. Nonetheless, numerous experiments
with ultracold atoms have provided evidences of the emergence of
the predicted power-law scaling of defect number with respect to
quench rate, raising the question of why this scaling should
survive after such a prolonged dynamical evolution. The Cam-
bridge group19 insightfully avoided such issues by looking instead
at correlation functions, which enabled them to extract critical
exponents, without the need for direct defect counting.

In this work, we offer a unified analysis of quenched growth
dynamics in a finite elongated 3D inhomogeneous system,
incorporating the dynamical evolution, for different induced
quench rates, from an equilibrium thermal state above the BEC
transition temperature to a near-equilibrated, low-temperature
phase-coherent Bose–Einstein condensate. By demonstrating the
emergence of symmetry breaking in our simulations, we perform
a detailed analysis of both the spontaneous emergence and
complex nonlinear dynamics of defects, and the related evolution
of coherence. The defects are vortex filaments of different lengths
and shapes: while their initial positions and orientations are
random, and they can be highly “tangled”, they gradually relax,
through nonlinear evolution, to the lowest-energy excitations in
the given geometry. The insight provided by our numerical
visualisations, which extend beyond experimentally accessible
time intervals, provides a natural framework for addressing the
still unresolved interplay between KZM and coarse-graining
dynamics. We address subtle questions in the condensate for-
mation process, and show that coherence and condensate atom
number growth dynamics are in general decoupled, due to

competing growth mechanisms following a quench, except for
cases of adiabatically slow growth which exhibit broadly similar
timescales. We further demonstrate that the KZM power-law
scaling for the defect number is not significantly affected over a
prolonged evolution time after the transition. These findings are
consistent with previous simulations in homogeneous
systems49–52, which revealed the gradual dissipation of small
spatial scales in favour of longer defects, as well as with late-time
experimental measurements performed within our group17,21,53.

Results
Quench protocol. Our experiment is conducted in a cigar-
shaped trap with ωx/2π= 13 Hz and ω⊥/2π= 131.4 Hz, where
23Na atoms in the F;mFj i ¼ 1;�1j i state are evaporatively
cooled across the BEC phase transition at different rates17,21,53.
The system has a finite size and is inhomogeneous and aniso-
tropic; hence, the phase transition process is position dependent,
with the condensate first emerging in the central trap regions,
where the phase-space density is maximum. We also perform full
3D numerical simulations of the same system using the stochastic
(projected) Gross–Pitaevskii equation15,29,45,46,54–57. To faithfully
mimic both the changing temperature and the atom number
observed in the experiments, our simulations are based on linear
quenches (Fig. 1a) over a finite quench duration τR, both in
temperature (T= 790 nK → 210 nK) and chemical potential (μ=
−22ħω⊥ → μ=+22ħω⊥). Consistently, the atom number goes
down from N= 22 × 106 to N= 6.6 × 106. Our parameters have
been chosen such that t= 0 corresponds to the time when the
system crosses the ideal gas critical temperature (μ= 0). Exam-
ples of simulations are given in Fig. 1. For each quench rate, the
results are analysed over 3 to 7 individual realisations, which are
sufficient for understanding the underlying physics. Our analysis
is based on the characterisation of the emerging condensate,
defined in our simulations as the mode with the largest eigenvalue
of the one-body density matrix, based on the usual
Penrose–Onsager definition54,58. We also note that at early evo-
lution times there are a number of approximately equally largely
populated modes, before one becomes randomly dynamically
favoured by the system. Details of our experimental configuration
have been reported elsewhere17,21, while the stochastic numerical
method and data analysis scheme used to model such non-
equilibrium dynamics are summarised in Methods.

Figure 1b shows that for a very slow quench (top), the system
grows to its final equilibrium state remaining close to the
corresponding equilibrium phase-coherent BEC during its
evolution, except in a narrow time window within the region of
critical fluctuations. Such slow evolution corresponds to the
evaporatively cooled condensate growth scenario, in which both
condensate atom number and correlation function grow
gradually, on the ramp, with a small phase-coherent condensate
present shortly after the phase transition. As the ramp speed is
increased (middle and bottom images), we observe a rather
violent falling out of equilibrium when crossing the phase
transition, resulting in the spontaneous production of multiple
defects in the form of a tangle of vortex filaments.

The underlying physical picture here is that coherence only
forms in local patches of constant—but random—phase, and the
defects separate such regions of different phases. Faster quenches
(bottom) lead to a faster growth of quantum-degenerate states
and to a larger number of defects than slower quenches (middle);
for such rapid quenches, most of the condensate (and also
coherence) growth occurs after the removal of the external ramp.
As the system grows, the vortex filaments are stretched out while
also undergoing complicated nonlinear dynamics in the inho-
mogeneous background. As a result, their number decreases
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gradually, allowing phase coherence to spread to the entire
system. For the set of parameters considered here, the final
equilibrated state—obtained asymptotically for the case of near-
instantaneous ramps—consists of a fully phase-coherent defect-
free finite-temperature BEC with condensate fraction N0/N ≈ 0.75
(characteristic single-realisation growth sequences are shown in
Supplementary Figs. 1 and 2 and Supplementary Movies 1 and 2).
In the following, we analyse in detail the distinct stages in the
dynamical equilibration.

Dynamical crossing of the phase transition. The dynamics near
the transition is naturally incorporated within our numerical
approach. As the system is cooled at a finite rate, with its atom
number decreasing (as in experiments), it cannot instantaneously
acquire coherence across its entire spatial extent, and so a
dynamical symmetry breaking occurs over a relatively short
temporal range; this allows the system to become infilled by a
densely packed random network of vortex filaments, signalling a
stark deviation from equilibrium. An example is shown in Fig. 2

for a quench time τR= 84 ms. Consistent with experiments, our
simulations clearly show the gradual emergence of a higher-
density condensate region (green region, t ≥ 31 ms) which gra-
dually grows towards the trap edges. The origin of this is asso-
ciated with the lowering of the system temperature, the
incorporated atom loss and the presence of the harmonic con-
finement, all of which lead to a centre-peaked position-dependent
increase in local phase-space density. However, looking at the
finer level during such evolution, we find the defects also interact,
coalesce and decay. Such processes, which are not included in
KZM, are crucial to the growth of the phase-coherent regions. In
the early stages, while numerous defects are present, the system
can be classed as a quasi-condensate23,59 in the sense that dif-
ferent regions of coherent density exhibit no common phase
between them, such that the observed coherence length is con-
siderably smaller than the system size, consistent with the large
population of a number of modes.

As the phase transition is crossed, the system enters into a
rather complex dynamical regime, in which the physics is

Fast

Typical

TimeVery slow (quasi-adiabatic)

Time

Time

~

�R/2–�R/2 t= 0 Time

T= 790 nK > Tc

N= 22x106

Thermal gas

Equilibrated T>0 BEC

T= 210 nK < Tc
N= 6.6x106

N0/N~75%

600 ms400 ms200 ms0
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b

Fig. 1 Simulation of quench-induced dynamical equilibration. a Quench protocol: starting from a purely thermal state, with a given atom number, we linearly
quench temperature to lower values and chemical potential to positive values over a ramp duration τR to mimic experimental conditions. b Dynamical
response of an equilibrium thermal gas subjected to different cooling quench rates (τR= 1440, 144, 18 ms, from top to bottom), demonstrating the
equilibration route towards a finite temperature phase-coherent condensate. The characteristic regions depicted here refer to density isosurfaces of the
highest-populated mode, chosen such that n(t)/n(t→∞)= 0.1% (yellow), or 3% (green), where n(t→∞) describes the final equilibrated peak
condensate density for N= 6.6 × 106 atoms. Different rows correspond to different durations of the constant applied external cooling ramps, from the very
slow, quasi-adiabatic (top) to the very fast, nearly instantaneous ones (bottom), with the intermediate case representing typical quenches used in
experimental studies of phase transitions. For rather slow ramps, most condensate formation happens during the external cooling. For shorter quench
duration, the condensate appears around the end of the ramp, and there is a small number of spontaneously generated defects (vortex filaments), depicted
in purple. In a fast quench, most condensate growth dynamics occurs after the end of the ramp, with the system at the end of the ramp being in a highly
non-equilibrium state exhibiting large occupation of a handful of modes, and consisting of a dense random vortex tangle. Such a tangle unravels in time into
a phase-fluctuating condensate, or quasi-condensate, with numerous well-formed interacting filaments, whose presence perturbs the phase and opposes
the formation of long-range coherence; after further evolution, at most few long-living vortices may survive, and they are experimentally observed after
expansion
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dominated by a combination of (i) defect stretching due to the
growing condensate size; (ii) defect propagation in an inhomo-
geneous environment; (iii) occasional but rather violent defect
interactions, including vortex reconnections, bouncing and
“ejection” from the condensate60; and (iv) additional forced
relaxation in cases of slow cooling. All of them lead to the gradual
equilibration of the system, which evolves from a defect-filled
condensate to a state at T � Tc defined by the final quench
parameters. Our numerical visualisation reveals the complexity of
attempting to extract, whether numerically or in actual experi-
ments, the early physics of defect formation. This is of particular
relevance for addressing the interplay between the bare KZM and
the “coarse-graining” dynamics governing the defect evolution
and decay. Our analysis shows that one cannot decouple the two
processes—at least not in the context of inhomogeneous systems.

Condensate growth dynamics. Early condensate growth experi-
ments25,33,34 and their numerical modelling26,28,30 revealed a
number evolution N0(t) well described by an S-shaped curve.
However, slower quenches31 and elongated geometries61 were
observed to feature a pronounced region of critical fluctuations,
leading to a “time delay” or “onset time” for condensate growth
and a slower initial growth rate31; although the presence of such
features is well documented and broadly attributed to the initial
emergence of the quasicondensate, there has been little quanti-
tative discussion of this issue, which becomes particularly relevant
for dynamically driven quenches.

To address this point, we firstly compare our numerical and
experimental condensate growth curves for different character-
istic temperature quench rates dT/dt, as shown in Fig. 3a, d.
Consistent with earlier numerical studies of condensate growth
(including KZM15,45), the constant γ appearing in our theoretical
model (see Methods) is treated as a free parameter, choosing its
value such that it reproduces the experimental growth rate for dT/
dt= 5.6 μK s−1 (Fig. 3b). Although the maximum N0 in the
experiments depends on quench rate21, our simulations are
conducted for a fixed final N0—defined as the largest eigenvalue
of the one-body density matrix—because such a choice minimises

numerical uncertainties and allows for an unequivocal numerical
demonstration of the decoupling of number and coherence
growth (see later). With this in mind, our numerical results are
shown to accurately reproduce experimental growth curves near
the transition for the entire range of quenches probed.

The precise determination of the phase-transition crossing and
associated critical temperature is a rather challenging problem,
both numerically and experimentally, particularly in the presence
of inhomogeneous confinement. Experiments typically identify
the critical region as the time at which a clearly detectable
condensate emerges. As in the experiments, in our numerical
simulations we identify a condensation “onset time”, tbec, as the
time at which the condensate atom number, N0, reaches 5% of the
total final atom number for our chosen final equilibrium
parameters. Shifting our numerical growth curves by the “onset”
time tbec enables a direct comparison to experimental growth
curves, with the good agreement shown in Fig. 3a–d (see also
Supplementary Fig. 4). All curves are well fitted by an S-shaped
curve with a single free parameter, corresponding to the
quenched growth timescale, τG (fits shown in Supplementary
Fig. 5). The dependence of τG and condensate onset time tbec on
ramp duration is shown in Fig. 3e, f. For τR ⪅ 300 ms, we find a
practically constant growth timescale τG= 15.8 ± 0.7 ms, which is
consistent with the finding of overlapping condensate growth
curves once these are plotted against shifted time (t− tbec). Note
that the condensate onset time tbec is a linear-like monotonically
increasing function of τR. This behaviour is qualitatively robust to
changes in the exact definition of the condensate number/fraction
chosen to mark such transition, as demonstrated by the small
error bars in Fig. 3f.

Defect number dynamics and visualisation. Next, we discuss the
number (Fig. 4) and nature (Fig. 5) of the emerging defects
restricting our analysis to times t ≥ tbec, with a qualitative analysis
at earlier times prohibited by the densely packed defect config-
urations present at early post-quench evolution times.

Focussing initially on defect generation and evolution, we note
that the number of defects present at tbec varies significantly with

a t= 0 ms b t= 28 ms c t= 29 ms

d t= 30 ms e t= 31 ms f t= 32 ms
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Fig. 2 Dynamical crossing of the BEC phase transition. We show here a 3D visualisation of characteristic density profiles of the highest-occupied
(Penrose–Onsager) mode during the condensation process, for the case of quench time τR= 84ms. Depicted images show respectively snapshots at times
t corresponding to a the time t= 0 (when μ= 0), and b–f times t= 28, 29, 30, 31 and 32ms, respectively. Above the transition temperature (a, b), we see
low-amplitude random density fluctuations (yellow) within our entire simulation grid. As the density begins to condense in real space, reflecting the
underlying elongated trap geometry, the system breaks its symmetry spontaneously (c, d), leading to the appearance of defects (purple), which evolve
within a growing (green) high-density region (e,f), signalling the emergence of a highly fluctuating condensate. Such defects undergo their own evolution
dynamics, violently perturbed by interactions with other defects (see Supplementary Fig. 3 and Supplementary Movie 3)
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ramp duration, being higher for faster ramps, as such ramps
create more non-equilibrium initial configurations. Despite the
difference in absolute numbers, all defect-number curves exhibit a
similar time evolution, as evident in Fig. 4a. During the first
≈30 ms, they exhibit a rather rapid initial decrease associated with
defect interactions, followed by a period of slower decrease with
just a few defects present in the system. Such defects are vortex
filaments which interact only occasionally, and mostly in pairs,
because their average distance is relatively large; they can also
produce sound waves, or be ejected from the condensate (details
of such mechanisms are discussed in ref. 60). Consistent with
previous observations53, for which the defect number could only
be reliably measured after about a 100 ms of in-trap evolution,
we find the decay in the number of defects to be significantly
slower once only two defects are left in the system in any
given individual run; in that case, their dynamics becomes largely
decoupled, dominated by free propagation in the inhomogeneous
condensate. This latter evolution stage is consistent with
exponential decay, on a timescale of one hundred to few
hundred ms.

Next, we address the relation of our findings to the KZM.
Specifically, we investigate (Fig. 4b) the mean number of defects
(vortices) as a function of ramp duration (top axis) or,
equivalently, inverse temperature evolution (bottom axis).

According to the idealised KZM for defect generation, one
expects a power-law decay. However, such Kibble–Zurek
predictions are specific for a relatively early evolution time
within the critical region, whereas experiments typically count
defects after a significant in-trap evolution time. Our simulations
have already shown (Fig. 4a) that the defect number significantly
changes during the in-trap evolution; nonetheless, the power-law
scaling of the defect decay (i.e., the slope of the decaying region in
Fig. 4b) appears to be roughly insensitive to the post-quench
timing of the measurement. A detailed analysis of defect number
vs. quench rate for two different evolution times (t− tbec) ~50 ms
(red diamonds) and 200 ms (blue squares), reveals an evolution
broadly consistent with the experimental measurements con-
ducted at 250 ms, with a power-law exponent of the same order.
Our simulations also recover the experimentally observed plateau
region for fast quenches, a behaviour which we find to set in
already at early post-quench times. This is attributed to a
combination of the maximum defect counting resolution of a
tangled configuration in a restricted (inhomogeneous) volume,
and the quench rate exceeding internal system timescales,
implying that the assumption of a well-defined local temperature
starts to break down. The occurrence of a plateau for fast
quenches has also been discussed in recent work in the context of
(2+ 1)-dimensional holographic superfluids62.
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time for the condensate atom number to reach 3% (lower bound) or 7% of the total final atom number
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Finally, we discuss the nature and visualisation of defects.
Typical experimental measurements made after an evolution time
of about 250 ms and based on integration over different (radial or
axial) directions after time-of-flight (TOF) expansion are shown
in Fig. 5a, b for cases corresponding to different defect numbers.
The experimental images after TOF are in qualitative agreement
with our numerically generated images of the in-situ condensate
at the same evolution times (Fig. 5c, d); the simulations also
enable direct visualisation of the condensate phase (Fig. 5e),
which is crucial for probing the nature of the emerging defects.

Numerical analysis of the phase evolution and corresponding
density plots indicates a gradual evolution from the random
distribution of tangled vortex filaments (already seen in Fig. 2),
into few vortices preferentially stretched along the transverse
directions. Such evolution is consistent with the accelerated decay
of small-scale features in favour of longer, more relaxed,
defects50–52. In an elongated geometry, the lowest-energy
configuration of a quantised vortex corresponds to a vortex line
lying in a transverse radial plane with squashed 2π phase winding,
also known as a solitonic vortex63,64. In our simulations, we
indeed find such structures appearing after a typical time
(t− tbec) ~100 ms (Supplementary Fig. 6 and Supplementary
Movie 4). This also agrees with the experiments, where the
solitonic vortex nature of the defects has been checked with
different techniques, including the characterisation of the free
expansion of the condensate in TOF, which produces a peculiar
twisted-stripe feature in transverse imaging65,66. It is also worth
noticing that a comparable timescale was found in refs. 67,68 for
the decay of phase-imprinted dark solitons into solitonic vortices
in superfluid Fermi gases in a very similar elongated geometry.

Coherence and equilibration dynamics. Having demonstrated
solid agreement with experimental observations in appropriate
regimes, and the ability to further interpret those through our
simulations, we now use our numerical scheme to provide a
deeper insight into the complicated nonlinear dynamical evolu-
tion and equilibration of quenched systems, covering also regimes
where no experimental measurements are available.

In our quenched evolution of an initially equilibrium thermal
gas, we have seen the system falling out of equilibrium around the
critical region, and identified a subsequent time, tbec, associated
with the onset of condensation. Here we investigate the re-
equilibration dynamics of such a system to a final state dictated
uniquely by our final quench parameters (μfinal, Tfinal). We show
that this relaxation process depends on τR in a nontrivial way: in
particular, while the condensate-number growth dynamics
depends solely on the growth timescale, τG (which is itself a
function of τR, see Fig. 3e), the coherence growth is additionally
sensitive to details of the defect-filled state of the system following
the quench. This points directly to the link between relaxation of
quench-induced defects on the one hand and coherence growth
and final system equilibration on the other.

From the condensate-number growth fits, we have identified
two distinct dynamical regimes: for slow enough quenches
(τR≳ 300 ms), the growth timescale is a monotonically increasing
function of the quench duration, whereas faster quenches
(τR≲ 300 ms) all exhibit a similar number growth timescale
(Fig. 3e). Nonetheless, such rapid quenches lead to a notable
increase in the number of spontaneously generated defects, whose
subsequent (“coarse-graining”) dynamics is crucial for the
evolution of coherence.

To study the growth of coherence, we follow the procedure of
the Cambridge group19 by numerically shifting the wavefunction
by a fixed amount and autocorrelating this with the unshifted
copy of itself. This method provides an estimate of the coherence
length of the system, lcoh. Due to geometrical considerations, we
focus here on the axial coherence length, obtained by transversal
integration (see Methods). In all cases we find that the integrated
coherence length only starts increasing noticeably about 30 ms
after tbec, consistent with the end of the previously identified rapid
defect decay stage (Fig. 4a). The amount of vorticity present in the
system sets a maximum limit to the dynamical system coherence
length. This is to be expected, and has already been noted, for
example, in 1D39,69 and 2D70. Importantly, however, we see that
for the slowest quenches, the coherence length grows much more
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rapidly (when normalised to the corresponding quenched growth
timescale) than for faster ones, also saturating at higher values.
This observation points to the importance of a system expelling
practically all of its defects before it can acquire a coherence
length comparable to the system size.

Starting from the same initial thermal condition, whose rapidly
decaying correlation function is shown in Fig. 6a, the subsequent
Fig. 6b, shows how the dynamical correlation functions (solid
lines) evolve in cases of fast (left), intermediate (middle) and slow
(right) ramps, comparing them to the corresponding equilibrium
functions (dashed lines). Our analysis here focuses on the re-
equilibration dynamics, and so all dynamical data presented here
correspond to times t > 0 (with μ(t) > 0) after the system has
crossed the ideal-gas transition temperature, with times scaled to
the quenched growth timescale τG in order to suppress
corresponding differences in condensate number growth
dynamics. In the context of our adopted definition for the
correlation function19, this implies that the correlation function
approaches a diagonal straight line as the coherence length
approaches/exceeds the system size, which is always the case for
the equilibrium systems considered here, due to their large atom
numbers: this is decoupled from the fact that the equilibrium
coherence length is increasing in absolute terms as the condensate
size grows. Looking at times 0 < t < tbec we see that although the
corresponding equilibrium correlation functions already exhibit
near-perfect coherence across the probed central region, the
corresponding dynamical behaviour at (t− tbec)/τG ≈−1.2 devi-
ates noticeably: in the case of the faster ramp (left column of
Fig. 6b), the dynamical correlation function has only mildly
increased from its incoherent thermal state initial value, contrary
to a much stronger increase for the slower (quasi-adiabatic) ramp,
which nonetheless also exhibits a phase coherence length
significantly smaller than the quantum-degenerate system size
(right column of Fig. 6b). Figure 6c shows the dynamical
coherence length as a function of the rescaled timescale (t− tbec)/
τG. For all ramps, the coherence length increases with time, but it
does so in a much slower manner for the faster quench. As a
result, significant coherence has already built up for the slower

ramp already at our identified condensation onset time, tbec,
highlighting that such a system approaches the equilibrium state
rapidly in the early stages after crossing the phase transition, even
before significant number growth takes place; this is in stark
contrast to the faster ramp, which still exhibits hardly any
coherence. The images shown in Fig. 6b highlight the emerging
difference in the dynamical phase correlation function, g int1 dxð Þ
(defined, at a general time, t, in Methods), in a most pronounced
way, with the slow ramp becoming phase coherent already for
(t− tbec)/τG≳ 1.5, when the system is still only at the initial part
of its number growth curve, as opposed to the faster ramp whose
coherence length remains smaller than the system size even at the
much later time (t− tbec)/τG= 12.7.

To quantify such re-equilibration dynamics further after the
system has fallen out of equilibrium upon entering the critical
phase-transition region, we introduce here the scaled deviation,
δlcoh, of the dynamical correlation length, ldyncoh ðtÞ, from the
corresponding equilibrium one, l equilcoh ðμðtÞ;TðtÞÞ, defined by

δlcohðtÞ ¼
lequilcoh ðμðtÞ;TðtÞÞ � ldyncoh ðtÞ

lequilcoh ðμðtÞ;TðtÞÞ
: ð1Þ

Despite similar condensate growth rates (Fig. 6d) the
corresponding coherence growth dynamics shown in Fig. 6e
exhibit starkly distinct features, remaining strongly dependent on
the quench rate: in such relative timescales, slower ramps lead to
much more rapid equilibration than the faster ramps; the latter
are slowed down by the detrimental role of the defects persisting
within the system. Contrary to this, slow ramps which perturb the
system less lead to the emergence of a nearly defect-free and
therefore phase-coherent condensate already around t ≈ tbec. The
inset in Fig. 6d highlights the rapid emergence of a single
macroscopically occupied mode for the slower ramps (600 and
1440 ms), consistent with the rapid monotonic decrease of
δlcoh(t), indicating the rapid crossover to a phase-coherent
condensate. The vertical error bars arising solely from our
numerical averaging are significantly larger in the case of fast
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quenches, which is a measure of the deviation between different
trajectories for the same ramp. This is easy to understand, since
the more vortices there are in the system, the more likely their
configuration is to be significantly different from shot to shot.

Discussion
Motivated by recent experiments with dilute ultracold atomic
gases, we have investigated numerically the dynamics of an
equilibrium thermal gas quenched over a finite timescale across
the BEC phase transition to deep in the phase-coherent con-
densate regime. Monitoring the entire evolution, we have pre-
sented an insightful graphical representation of the critical region
dynamics, during which the dynamical system falls out of

equilibrium with the corresponding parameter equilibrium sys-
tem, through the dynamical symmetry-breaking spontaneous
emergence of defects. The emphasis of our analysis has been on
the less-studied re-equilibration dynamics, addressing the inter-
play between defect emergence and dynamical evolution, and
growth of coherence.

Depending on the quench duration we have identified different
emerging dynamical regimes: for fast quenches, we observed a
saturation in the number of detectable defects, associated with
detrimental defect interactions and the inherent difficulty in
counting randomly oriented defects within a very tight volume.
Rescaling the condensate number growth for all quench rates by
the characteristic growth timescale for each ramp, we
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demonstrated the decoupling of coherence and number growth
dynamics arising from the detrimental effect of defect emergence
and propagation on system coherence. Although the overall
growth timescale might be longer for systems undergoing slower
external cooling quenches, in such cases the dynamical system
quickly re-approaches the corresponding equilibrium configura-
tion, as the slow evolution enables it to mimic local equilibration
during its growth, falling out of equilibrium only in a relatively
small time window upon entering the region of critical fluctua-
tions. In cases where the quench induces numerous defects, we
have observed, as expected, enhanced shot-to-shot variability.

Our numerical analysis has also shed more light into the
dynamical crossover from quasicondensation to true
Bose–Einstein condensation, studied here in the context of an
elongated geometry; such a geometry is known to lead to an
enhanced decoupling of characteristic temperatures for the onset
of density and phase fluctuations59,71; this, in turn, effectively
translates into different growth rates for the phase-coherent and
density-coherent parts of the system, and so different growth
rates for coherence and quasicondensation. Quasicondensation
here refers to a defect-filled phase-fluctuating state with a
coherence length smaller than the quantum-degenerate system
size exhibiting suppressed density fluctuations and spanning
many largely populated modes; this is directly contrasted to
“true” condensation, which refers to a phase-coherent condensate
with little, or no, defects and a single emerging macroscopically
occupied mode, a definition which holds even if the system is
growing in time. Even though the quasicondensate stage in the
critical region pre-empts all phase-coherent condensate growth
due to the decoupling of the two corresponding characteristic
temperatures, the dynamical quasicondensate regime is enhanced
both in parameter space and in the temporal domain by the
prolonged survival of the defects, thus being critically dependent
on the quench rate responsible for their initial spontaneous
generation. For slow quenches and large enough atom numbers
considered here, the system may already be largely phase
coherent, i.e., a “true” condensate, as soon as it has grown to a
size which makes it experimentally detectable. We note however
that such findings are sensitive to the details of the system, and
specifically here to both the system geometry and the chosen final
state of the system, with reduced dimensionality enhancing such a
distinction by enhancing the role of phase fluctuations59,61,72.

Our findings are consistent with experimental measurements
in the appropriate limits, and for the relevant quantities, where
those exist. Moreover, the detailed numerical visualisation of the
defect-filled quenched phase-transition dynamics allows access to
a broad temporal range of dynamics not accessible in typical
experiments. We expect our generic conclusions to persist across
different geometries and dimensionalities, with precise details and
the nature of the defects depending on system configuration. Our
results can be of relevance to a broad range of future investiga-
tions with quantum-degenerate systems, and could also have
technological implications for dynamical control and state-
engineering of a quantum system. Given that our numerical
scheme has demonstrated good qualitative description also of the
much-harder-to-model approach to the phase transition, we
believe that our method could in the future offer further insight
into delicate features of non-equilibrium condensate dynamics,
including a critical assessment and extension of the inhomoge-
neous Kibble–Zurek mechanism.

Methods
Experiments. We produce ultracold samples of sodium atoms in the internal state
F;mFj i ¼ 1;�1j i in a cigar-shaped harmonic magnetic trap with trap frequencies
ωx/2π= 13 Hz and ω⊥/2π= 131.4 Hz. The thermal gas is cooled down via forced
evaporative cooling and pure BECs of typically 107 atoms are produced. The part of

the evaporation ramp in the vicinity of the transition is performed at different rates,
from 50 kHz s−1 to 2MHz s−1. The quench ramp is followed by a variable wait
time, during which a radio frequency shield is kept on to prevent from heating.
After that, the atoms are released from the trap and are observed in two possible
ways: either we take simultaneous absorption images of the full atomic distribution
along the radial and the axial directions21,65 or we extract, uniformly, a small
amount of atoms from the trapped sample and image it after a short time of
flight53,60. The protocol is such that images are taken, and vortices are counted,
after a fixed overall time interval from the BEC transition point, which is clearly
identifiable for each quench ramp. As discussed in detail in ref.21, we are also able
to precisely identify the frequency ν of the RF field at the critical temperature Tc,
which lies in the range 600–800 nK, as well as to control the temperature variation
in time via the speed of the evaporation ramp (∂ν/∂t), with (∂T/∂t) found to vary,
to good approximation, linearly with frequency. The defects that we observe at the
time of imaging are quantised vortex lines which are seen as dark stripes when
looking at the BEC from a radial direction after time-of-flight. The natural size of
the defects in the trapped BEC, at the end of the cooling ramp, is of the order of the
in situ healing length ξ, which is of the order of 200 nm. After a long TOF, the
defect size becomes larger than our imaging resolution of 3 μm. The presence of a
levitating magnetic field gradient makes it possible to achieve long TOF preventing
the BEC from falling. The measured vortex number is averaged over many
experimental realisations in order to get good statistical samples for each experi-
mental condition.

Numerical model. Out study is performed by means of the (simple growth)
stochastic projected Gross-Pitaevskii equation (SPGPE)54 (see also related model
without projector29,55–57), already demonstrated as a useful tool for the quenched
crossing of the BEC phase transition15,29,38,45,46,51,52. In brief we simulate the
low-lying highly occupied modes of the system, denoted by the classical field (or
c-field54) ΨCðr; tÞ through the dynamical equation

dΨCðr; tÞ ¼ PC � i
�h
L þ γ

�h
μðtÞ � L½ �

� �
ΨCðr; tÞdt þ dWγðr; tÞ; ð2Þ

where PC is the projection operator truncating the modes above the c-field regime
(so above an appropriately identified energy cutoff), γ is a constant determining the
condensate growth timescale, μ(t) is the time-dependent chemical potential, and
L=��h2∇2=2mþ VðrÞ+ g ΨCðr; tÞj j2 with V(r)= (m/2) ω2

xx
2 þ ω2

? y2 þ z2ð Þ� �
.

Fluctuations are included through the complex white noise, dWγ, defined by
dW�ðr; tÞdWðr′; tÞh i= ð2γkBT=�hÞδCðr� r′Þ where δCðr� r′Þ=P
n2C ψ

�
nðrÞψnðr′Þ in the chosen orthogonal basis set, {ψn(r)}. The constant γ can

be analytically approximated (at least for near-equilibrium cases) as54,55,73

γ � 2
m

2π�h2

� �3 g2

kBT

Z
dE2

Z
dE3ð1þ N1ÞN2N3 � few ´

4mkBT

π�h2
a2; ð3Þ

where g= 4πħ2a/m is the interaction strength, corresponding to the s-wave scat-
tering length a. Although the above formula indicates the leading functional
dependence of γ, the factor of “few” conceals within it the fact that this is an
effective scaling, and so one should only rely on this for order-of-magnitude
estimates. Consistent with earlier related analysis15, here we treat γ as a
fitting parameter. Comparing to experimental condensate growth data for dT/dt=
5.6 μK s−1 (Fig. 3b), we identify an “optimal” value γ= 0.005, which is about
10 times the analytically predicted value for the initial temperature (the effect of
changing γ on condensate growth dynamics can be seen in Supplementary Fig. 4).
To mimic the experimental cooling process, the chemical potential μ(t) and tem-
perature T(t) are quenched linearly within a ramp duration τR. The initial and final
values of (μ,T) are set as (−22ħω⊥, 790 nK) and (22ħω⊥, 210 nK), corresponding to
a change of total equilibrium atom number (when also including above cutoff
atoms under the usual assumption that they are static) from 22 × 106 to 6.6 × 106

with a 75% final condensate fraction. In our simulations, which start from a highly
incoherent equilibrium state well above Tc, the time t= 0 is chosen as the time
when μ(t)= 0, since most interesting dynamics occurs after this time; this
implies that, in any given simulation, the initial (equilibrium) configuration is at a
time t=−τR/2.

We solve the SPGPE with 4th-order Runge–Kutta in a plane-wave basis using a
grid size Lx= 54aho,x along the x and Ly= Lz= 6aho,x along the transverse
directions, where aho,x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mωx

p � 5:8 μm is the characteristic harmonic
oscillator length in the long direction (x-axis); we use a temporal discretisation
dt= 10−3/ωx and an energy cutoff fixed at 2.5 times the value of the final chemical
potential (22ħω⊥) in a grid consisting of Nx= 1170 and Ny=Nz= 130 points.
Simulations are run on Newcastle University’s High-Performance-Computing
cluster, Topsy, using 20 to 24 nodes. A single dynamical run takes between 120 and
300 CPU hours with an additional ≈40 CPU hours for the Penrose–Onsager
diagonalisation of the selected snapshots. We estimate the total amount of
presented simulations to have taken over 10,000 CPU hours.
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Identification of the condensate. The one-body density matrix is defined as

ρðr; r′; tÞ � Ψ�
Cðr; tÞΨCðr′; tÞ

	 
 ¼
XNsample�1

j¼0

Ψ�
C r; t þ jδtð ÞΨC r′; t þ jδtð Þ

Nsample
; ð4Þ

where Nsample is the number of samples for the short-time average number and δt is
set as Δt/Nsample with an appropriately short time-interval Δt (so that the system
dynamics is not masked). Such short-time averaging mimics the ensemble aver-
aging based on the ergodicity hypothesis54. The notation h¼ i used in this and the
next subsections denotes short-time averaging. In our simulations, Nsample= 101,
and the tests of probing Δt provide a value of around 8ms for our simulations,
which is smaller than the characteristic timescale of the harmonic trap τho=
1/ωx ≈ 12.2 ms. The condensate, or Penrose–Onsager (PO) mode58 at a given time
t is identified as the eigenmode of the one-body density matrix ρðr; r′; tÞ with
the largest eigenvalue. To assess the degree of fragmentation of the condensate, in
the sense of competition between different highly occupied modes, we evaluate the
ratio, rPO, of the largest to the second largest eigenvalues of ρðr; r′; tÞ.

Correlation function analysis. We follow the procedure of the Cambridge
quenched-dynamics experiment19, which measured the correlation function by
interfering a displaced copy of the system with itself. Specifically we define the
function

gH1 ðdx ; tÞ ¼
ZZ

dydz
Z L

0
dxΨyðr; tÞΨðrþ dxbx; tÞ ð5Þ

where L is a chosen length. In ref.19, the correlation length lcoh was extracted by
fitting the experimentally-measured (integrated) correlation function with
1� dxj j=Lð Þexp � dxj j=lcohð Þ, in which the triangular-shape function in the bracket
arises from the integration. Here we probe the spatial coherence of our c-field
wavefunction ΨC within a region [−L/2, L/2] with L ~ 54 μm, and numerically
evaluate this through the phase–phase correlation function by

g1 dx ; y; z; tð Þ ¼
Z L=2

�L=2
dxH eiϕðr;tÞ½ �

* +
; ð6Þ

where the operation H[f] is defined as

H½f � dxð Þ �
Z L=2

�L=2
dx f �ðrÞf ðrþ dxbxÞ; ð7Þ

and ϕ(r, t) is the argument of ΨCðr; tÞ. To obtain transversal averaging we use the
integrated version,

g int1 dx ; tð Þ ¼
ZZ ′

dydz wPO dx ; y; z; tð ÞgH1 dx ; y; z; tð Þ� �
; ð8Þ

where the prime integration is performed over the yellow region (i.e., density
isosurface at values of 0.1% of the final peak condensate density). To take finite-size
effects into account we have also introduced into the above definition a density-
dependent weighting function wPO(dx, y, z;t) which assigns higher weighting to the
large-density regions. This is defined here through wPO(dx, y, z;t)=

H nPOðrÞ=nPO;peak
h i

=N , where N ensures the normalisation conditionRR ′dydzwPO dx ; y; z; tð Þ ¼ 1 is satisfied at any given dx (the second-order correla-
tion function shown in Supplementary Figs. 6 and 7 and Supplementary Movie 4 is
defined as the onsite correlation function g2(r) ≡ g2(r, r, r, r)=

ΨCðrÞj j4	 

= ΨCðrÞj j2	 
h i2

).

Dynamical timescales. Consistent with typical experimental measurements, in
which Tc is identified as the time of emergence of an observable condensate, we
define here the “onset” or “delay” time for condensate growth, tbec, as the moment
that the number of atoms in the condensate, N0, reaches 5% of the final total
particle number (including in our considerations the particle number above the c-
field region, which is assumed to be static). We have a posteriori verified this to
provide (when used with our value of γ) an excellent description of condensate
growth across all experimentally probed regimes, and have also checked that the
main findings presented in this paper are insensitive to the details of such
definition.

In addition to tbec, we also define the condensate growth timescale, τG, which is
extracted by fitting the condensate growth curve over the entire temporal range t
with

N0ðtÞ ¼ N0;i þ
N0;f � N0;i

1þ exp �ðt �~tÞ=τG
� � ; ð9Þ

where N0,i (N0,f) denote the initial (final) PO condensate atom numbers, ~t is the
moment that N0ð~t Þ reaches the mid-value (N0,i+N0,f)/2, and τG is the single fitting
parameter. We note here two things: firstly, that the mid-value is unique to all

numerical growth curves, since we have a unique set of experimentally relevant
initial and final parameters in our simulations; moreover, we have checked that the
extracted τG values are largely insensitive to whether the fit is performed over the
entire temporal range t, or whether it is constrained to values t ≥ tbec, suggesting the
independence of the two timescales tbec and τG.

Defect identification. In our work we identify the location of vortices by the
regions of high velocity, v(r)= (ħ/m) Im Ψ�

CðrÞ∇ΨCðrÞ
� �

= ΨCðrÞj j2, characterising
the region around the vortex core. By scanning the whole local maximum of the
velocity field within the yellow region, we identify the positions of the vortex cores.

Statistical analysis and error bars. For each numerically simulated quench rate,
we have analysed between N = 3 and 7 independent noise realisations. The sta-
tistical uncertainty in the vortex number, Nv, was estimated as

ΔNv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Nvð Þi� Nvh i� �2
N 2

" #
þ 1
N

vuut : ð10Þ

Determination of the most likely vortex number, Nv, in each independent noise
realisation was performed manually by four independent (human) observers. Such
a method is prone to systematic errors introduced by the use of subjective criteria
in the identification of single vortices in situations where a vortex is at the
boundary of the condensate or two vortex lines are very close to each other.
However, we have checked that the corresponding uncertainty is significantly
smaller than the statistical error defined above.

Our procedure for assigning errors to the determination of the characteristic
timescales is as follows: firstly, we recall that the condensate onset time, tbec was
defined as the time at which the condensate (Penrose–Onsager) atom number
reaches 5% of the total final atom number. Error bars in our determination of tbec
arise from shifting the (heuristic) value of 5% between 3% and 7%, values which are
still consistent with the experimental growth curves reported in Fig. 3. Regarding
the quenched growth timescales, τG, depicted errors arise from the 95% confidence
bounds of the fit to our numerical growth curves: the quality of the fits can be seen
in Supplementary Fig. 4. Those two errors are treated as independent in the
determination of temporal error bars for the scaled time (t− tbec)/τG discussed in
Fig. 6.

Data availability. Data supporting this publication is openly available under an
“Open Data Commons Open Database License”. Additional metadata are available
at: https://doi.org/10.17634/122626-7.
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