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 Multi-analytical approach for origin authentication of cocoa beans shells is proposed. 

 

 Principal Component Analysis of NIR, ATR-FT-IR and ICP-OES data was 

discussed. 
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Abstract 16 

The aim of this study was to evaluate the efficacy of a multi-analytical approach for origin authentication of 17 

cocoa beans shells (CBS). The overall chemical profiles of cocoa bean shells from different origins were 18 

collected and measured using diffuse reflectance near-infrared spectroscopy (NIRS) and attenuated total 19 

reflectance mid-infrared spectroscopy (ATR-FT-IR) for molecular composition, as well as inductive coupled 20 

plasma-optical emission spectroscopy (ICP-OES) for elemental composition. Exploratory chemometric 21 
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techniques were employed to identify systematic patterns related to the geographical origin of samples based on 22 

each technique using Principal Components Analysis (PCA). A combination of the three techniques proved to be 23 

the most promising approach to establish classification models. Partial Least Squares-Discriminant Analysis 24 

model of the fused PCA scores of three independent models was used and compared with single technique 25 

models. CBS samples were better classified by the fused model. Satisfactory classification rates were obtained 26 

for Central Africa samples with accuracy of 0.84. 27 

1. Introduction 28 

Since the 19
th

 century cocoa has seen a continuous growth of consumption in a variety of forms, leading to an 29 

outstanding economic interest of chocolate industries for constant innovation and modernization. As many other 30 

agro-food activities, cocoa industry produces large amounts of by-products (https://www.icco.org/). Cocoa bean 31 

shells (CBS) is one of the main by-products, which represents the 12 % of weight after husking and grinding of 32 

dried cocoa seeds. CBS represents a non-negligible disposal problem and thus legislation and environmental 33 

issues are forcing industries to define process optimization and recovery/recycling strategies. Recently, 34 

bioconversion of by-products has raised the interest of scientific research and in several countries strategic vision 35 

or dedicated policies are being prepared to manage food industry wastes in the most efficient way – abandoning 36 

the “take, make and dispose” behavior and instead acting out a circular economy paradigm (Sørensen, Aru, 37 

Khakimov, Aunskjær, Engelsen, 2018). The increasing interest for byproducts has certainly an environmental 38 

basis, but an important role is played by the tendency to reduce the use of synthetic additives and replace them 39 

with natural substances in food. Research concerning new natural additives with high quality/costs ratio is 40 

increasing nowadays (Carocho, Morales, Ferreira, 2015). Moreover, the demand of new functional foods, rich in 41 

bio compounds such as polyphenols, fiber, n-3 fatty acids etc., drives interest for rich food wastes, such as seeds 42 

husks (Andrade, Gonçalvez, Maraschin, Ribeiro-do-Valle, Martínez, Ferreira, 2012; Jansman, Verstegen, 43 

Huisman, Van den Berg, 1995). Vegetal by-products are rich of nutrients, such as fiber, polyphenols, minerals 44 

and their recycling represent one of the valorization strategies. The development of CBS valorization strategies 45 

is aimed at reducing the environmental impact of the cocoa production and provides information to promote 46 

conversion of a by-product into added-value products with application in food and healthcare sectors. The 47 

definition of the chemical composition of CBS from different countries is meant to evaluate the systematic 48 
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differences due to their origin. Chemical analysis of CBS has been carried out in several research papers because 49 

of its interesting features related to flavor, phenolic compounds and nutritional values (Barbosa-Pereira, 50 

Guglielmetti, Zeppa, , 2018; Manzano, Hernández, Quijano-Avilés, Barragán, Chóez-Guaranda, Viteri, Valle, 51 

2017; Redgwell, Trovato, Merinat, Curti, Hediger, Manez, 2003; Serra Bonvehí, and Escolá Jordà, 1998; 52 

Martín‐ Cabrejas, Valiente, Esteban, Mollá, Waldron, 1994;), however a complete characterization, using 53 

different methodologies to highlight similarities and differences in composition of samples from different 54 

countries has not been accomplished yet. In this work, CBS samples from different countries were analyzed with 55 

three different analytical methods. Near infrared spectroscopy (NIRS), mid infrared spectroscopy by attenuated 56 

total reflectance (ATR-FT-IR) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were 57 

used to collect a wide chemical information, both molecular and elementary. The aim of this study was to 58 

evaluate the validity of simple and rapid analytical techniques, supported by a chemometric approach, for the 59 

identification of differences due to different geographical origin of samples of CBS, with the perspective of a 60 

future application for traceability and origin authentication of CBS as food additive. 61 

Nowadays, the exchange of food is realized in a complex and interconnected global net, and food products are 62 

often exposed to frauds, false information, contamination risk and counterfeiting. For this reason, it is extremely 63 

important to protect and valorize authentic products, including regionals specialties. Innovative, reliable 64 

strategies to individuate specific markers of origin, as well as characteristic compositional patterns that can be 65 

associated to a precise origin are needed (Mandrile, Giovannozzi, Zeppa, Rossi, 2016). Geographical origin 66 

indicators should provide an analytical response to the geographical traceability problem and support the 67 

documental certification, which is used today to guarantee food and food-additives provenience. Different 68 

techniques such as NMR and isotope ratio mass spectrometry can play a relevant role to provide origin indicators 69 

(Lee, et al., 2011). Rapid and non-destructive techniques, such as near infrared spectroscopy, are particularly 70 

interesting because of the possibility to obtain an efficient and non-biased overview of the sample chemistry 71 

(Sørensen, Khakimov, Engelsen, 2016). The chemical specificity and ease of sampling of NIR spectroscopy 72 

make it an attractive tool for rapid and comprehensive food analysis. The complex pattern of signals revealed by 73 

IR analysis, both in the near and mid infrared spectral region, is correlated to the content of the different 74 

chemical constituents, such as proteins, fatty acids, carbohydrates, alimentary fibers and phenolic compounds. 75 

Statistics and multivariate data analysis offer powerful tools to identify robust correlations between measured 76 
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data and geographical origin, and validated models can provide useful methods for the recognition of unknown 77 

samples, with a certain probability (Peres, Barlet, Loiseau, Montet, 2007; Kelly, Heaton, Hoogewerff, 2005). In 78 

this work, chemometrics was used for data analysis to calculate at first explorative, and subsequently predictive, 79 

models. Principal Component Analysis for data exploration and visualization is a well-established strategy to 80 

allow the extraction of useful information from numerous experimental results in food science (Munck, 81 

Nørgaard, Engelsen, Bro, Andersson, 1998). Moreover, data fusion for multi-block analysis was used to improve 82 

models, gaining information from several different analytical techniques (Biancolillo, Bucci, Magrì, Magrì, 83 

Marini, 2014; Skov, Honoré, Hansen, Næs, Engelsen, 2014; Silvestri et. al, 2014; Zakaria, et al, 2010).  84 

 85 

2. Material and Methods  86 

2.1 Samples 87 

Fermented and dried cocoa (Theobroma cacao L.) samples were selected and collected within COVALFOOD 88 

project funded by European Union’s Seventh Framework, involving five Italian chocolate industries. A complete 89 

list of 78 samples with the associated information about supplier, provenience and variety is reported in table 90 

1S.1 in supplementary information. For an easier exploration of the sample pool, charts of geographical and 91 

varietal distribution are shown in figure 1S.1. All samples were imported as untreated raw materials, and the 92 

geographical origin was guaranteed by the supplying industry. All samples were roasted and decorticated in 93 

laboratory in a ventilated oven for 20 min at 130°C. After roasting, the fragile shell of the beans was separated 94 

by mechanical rubbing and removed by hoover suction. The collected cocoa bean shells (CBS) were ground 95 

using an ultra-centrifugal mill Retsch ZM 200 (RetschGmbh, Haan, Germany) and stored as dry fine powders 96 

(250 µm) in a desiccator in closed containers.  97 

2.2 Near infrared spectroscopy 98 

NIR spectra of CBS were collected in the spectral range 10000 - 4000 cm
-1

 (1000 - 2500 nm) using an Antaris II 99 

FT-NIR spectrometer (Thermo Fisher, Waltham, USA) in diffuse reflectance mode. The integrating sphere 100 

accessorize was used to collect diffuse reflected light. CBS was analyzed without sample pretreatment; 0.1 g of 101 

powder in a quartz glass vial located over the integrating sphere. 32 scans were collected per each sample with 102 
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spectral resolution of 8 cm
-1

. A clean flat golden surface was used for background collection. Three 103 

measurement replicates were collected per sample. All samples were measured in randomized order. 104 

2.3 Mid infrared spectroscopy 105 

ATR-FT-IR spectra in the mid infrared region between 500 - 4000 cm
-1

 were collected using Nicolet FT-IR 106 

spectrometer (Thermo Fisher, Waltham, USA), Germanium crystal (n = 5.7) for total reflection was used which 107 

allows a maximum sample penetration of 1 µm. 64 scans were needed for a good signal to noise with 4 cm
-1

 108 

resolution. The sample powder was pressed with a conical tip on the crystal, the pressure applied was 15 Bar. 109 

The tip and the crystal were washed with ethanol between one sample analysis and the following. Three spectra 110 

were collected for each sample, resampling at each replicate. 111 

2.4 ICP-OES elemental composition 112 

ICP-OES measurements were performed on an Agilent 5100 Synchronous Vertical Dual View (Agilent, Santa 113 

Clara, California, USA), equipped with an EasyFit torch (Agilent P/N G8010-60228). Samples were measured in 114 

radial mode, using a plasma flow of 12 ml/min and nebulizer flow of 0.7 ml/min, with a rinse time of 15 seconds 115 

and stabilization time of 15 seconds, in three replicates. Viewing height was set to 8 mm, and pump speed to 12. 116 

Prior to measurement, the samples were digested in an Antor Paar Multiwave GO microwave oven: 5 mg of 117 

CBS samples were placed in the oven teflon tubes, 1 ml of HNO3 5 % v/v was added, and the tubes were sealed 118 

to manufacturer specifications. The temperature ramp was set to reach 180° in 5 min, then held constant, and the 119 

total treatment lasted 40 min. After digestion the samples were further diluted with 4 ml HNO3 5 % v/v to obtain 120 

a clear solution, before being put in tubes and placed in the auto-sampler for the ICP analysis. All glassware, 121 

tubes and equipment were cleansed in HNO3 5 % v/v as needed. 122 

2.5 Data treatment 123 

Chemometric data analysis was carried out using PLS Toolbox from Eigenvector Research, Inc. (Manson, WA) 124 

for Matlab R2015a (Mathworks, Natick, USA). Principal Components Analysis (PCA) method is a linear 125 

factorization method uniquely suited for data exploration. As an explorative tool, PCA provides visualization of 126 

multivariate data as score points in a model space (Wold, Esbensen, Geladi 1987). PCA scores plot are useful to 127 
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explore data and to find correlation between measured variables and the information of interest, such as 128 

geographical provenience of CBS, in this case. Then PLS-DA (Barker and Rayens 2003) models were calculated 129 

to compare the classification performances of the three techniques separately with the results obtained by joining 130 

the three datasets and considering all information contemporarily. Ten classes were considered: Central Africa, 131 

Ecuador, Gulf of Mexico, Indonesia, Mexico, Peru, São Tomé, Colombia, Venezuela and Brazil. All the 132 

calculated PLS-DA models were validated using leave-one group-out cross validation. The subsets of samples 133 

used as tests sets in cross validation corresponds to the country of origin. For each technique data preprocessing 134 

details are reported. Leave-one group-out cross validation was performed, using as group vector the country of 135 

origin. Sensitivity (True Positive/(True Positive+False Negative)), Specificity (True Negative/(True 136 

Negative+False Positive)), Accuracy (correctly classified samples/total samples) and Precision (True 137 

Positive/(True Positive +False Positive) were considered as model evaluation parameters for each class in cross 138 

validation to compare classification performances of different techniques. 139 

2.5.1 NIRS data treatment 140 

Preprocessing of NIRS data was applied to extract useful information from the dataset. Absolute absorbance 141 

variations and unwanted light scattering were removed using preprocessing of the NIRS data (Martens et al, 142 

2003). The most effective preprocessing was chosen based on the minimum differences between replicates on 143 

the PCA scores plots relative to the distance between samples.  2
nd

 derivative (Savitzky Golay, filter width 15 144 

and polynomial order 2) coupled with standard normal variate (SNV); normalization was useful to remove 145 

random shift of the baseline offset (Barnes, Dhanoa, Lister, 1989). In addition, the derivatives of spectra were 146 

calculated to increase sensitivity to data trends changings. Processed spectra were shown in figure 2S.1. 147 

Unwanted variability was successfully removed as demonstrated by the narrow grouping of the replicates 148 

obtained after processing shown in figure 2S.2 in supplementary information. PCA was applied to visualize data 149 

and to investigate systematic differences among samples, and variables with peculiar relevance were identified. 150 

4LVs PLS-DA classification model was also calculated to discriminate classes of samples from different 151 

geographical areas. Same spectra preprocessing was used.  152 

2.5.2 MIRS data treatment 153 
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Preprocessing of data was performed to suppress useless variability associated to unwanted noise. The selection 154 

criterion for data preprocessing was the maximized closeness of the scores of technical replicates on PC1, as 155 

shown in figure 3S.1 in supplementary information. Baseline correction (using asymmetric weighted least 156 

squares algorithm, with basis filter of order 2) (Peng, Peng, Jiang, Wei, Li, Tan, 2010) followed by second 157 

derivative (Savitzky Golay, filter width 15 and polynomial order 2) and mean centering was selected as optimal 158 

preprocessing. PCA model for data visualization and exploration was calculated; PLS-DA classification model 159 

using 4 LVs of the same preprocessed data was also calculated to compare MIRS classification capabilities with 160 

the other techniques. 161 

2.5.3 ICP-OES data treatment 162 

ICP emission spectra were evaluated for quantification using a calibration curve per element. The calibration 163 

curves were estimated using two series of standards prepared by dilution of a certified standard mix (ICP Multi-164 

element standard solution IV, Sigma Aldrich, Germany) containing known concentration of 21 elements (Al, B, 165 

Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn). Standard concentrations were 0, 0.2, 166 

0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10, 20, 30, 40, 60, 80 100 mg/100g of the certified standard concentration, which was 5 167 

mg/l for all elements, out of Potassium that was 50 mg/l in the standard solution. Three emission wavelengths 168 

were monitored per each element, then the intensity revealed for only one λ was selected per each element based 169 

on the best correlation coefficient of the corresponding calibration curve and trying to avoid interferences 170 

between different elements: λAl= 237.3 nm; λB=249.7 nm; λBa=455.4 nm; λBi=190.2 nm; λCa=396.8 nm;  λCd=228.8 171 

nm; λCo=230.8 nm; λCr=206.2 nm; λCu=324.8 nm; λFe=234.4 nm; λK=766.5 nm; λLi=670.8 nm; λMg=285.2 nm; 172 

λMn=259.4 nm; λMo=203.8 nm; λNa=589.0 nm; λNi=221.6 nm; λ Pb=217.0 nm; λ Sr=421.6 nm; λTl=351.9 nm; 173 

λZn=202.5 nm. 174 

The table of results was then imported in Matlab (Mathworks, Natick, USA) and processed with the PLS 175 

Toolbox for PCA model calculation and PLS-DA classification. Autoscaling was performed on the data. Three 176 

LVs were considered for PLS-DA classification model. Cross validation was used to evaluate the classification 177 

capabilities of the model, leaving one country out at each validation step, as described for the other techniques.   178 

2.5.4 Data fusion 179 
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The multi-block tool of PLS toolbox by Eigenvector was used to fuse the PCA scores from the three single PCA 180 

models of the different analytical techniques. A joined model exploiting mid-level data fusion was obtained (; 181 

Borràs, et al, 2014). To make the interpretation clearer, the measurement replicates were averaged, and one 182 

matrix line per each sample was maintained for the three different original datasets (NIRS, MIR-ATR and ICP). 183 

Each block was first decomposed by PCA, and the resulting scores were fused into a new dataset. The samples’ 184 

scores for the most relevant PCs were considered to calculate a new fused model. Seven PCs were considered for 185 

MIRS and ICP, and six PCs were considered for NIRS. Thus, twenty initial variables were used to build the new 186 

joined PCA model. Default autoscale was applied before joining data. PLS-DA method was then performed with 187 

autoscaled data to obtain a classification model (Ballabio, Consonni, 2013). The class vector was represented by 188 

the area of origin. It was composed of 10 classes i.e. Central Africa, Colombia, Ecuador, Gulf of Mexico, 189 

Indonesia, Mexico, Peru, São Tomé, Venezuela, Brazil. Unfortunately the number of samples per each class was 190 

not balanced, due to sample availability. Five latent variables were considered for the PLS-DA model, based on 191 

the minimum average classification error in cross validation, using leave-one country-out cross validation 192 

strategy.  193 

3. Results and Discussion 194 

3.1 NIRS spectroscopy characterization of CBS samples 195 

The NIRS profiles show the typical broad bands of overtones and combination bands of vibrational modes 196 

associated to the main constituents of vegetal origin materials. The assignment of the most bands of the NIR 197 

spectrum are reported in table 2S.1 in the supplementary information (Jacobsen, et. al. 2011). The mean NIR 198 

spectra of all CBS samples is shown in figure 1 a, together with the standard deviation profiles. Similar spectral 199 

shape was obtained for all samples, the same bands are present in all spectra with slight differences in mutual 200 

intensities. 201 

Figure 1 202 

Vibrational spectroscopy represents a rapid strategy to gather chemical information of a complex matrix, 203 

reducing costs, time and environmental impact of analysis. NIR spectra can be effectively correlated to the main 204 
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alimentary components as widely reported in literature (De Oliveira, Roque, de Maia, Stringheta, Teófilo, 2018; 205 

Dong, Sørensen, He,Engelsen, 2017; Mandrile, Fusaro, Amato, Marchis, Martra, Rossi, 2018).  206 

The sensitivity of NIRS to the botanical variety was tested at first, since it has been previously demonstrated in 207 

literature that differences in the chemical composition of different varieties of Theobroma Cacao L. were present 208 

(Elwers, Zambrano, Rohsius, Lieberei, 2009). The outcome of the PCA on the NIR spectra is shown in figure 1 209 

b. In contrast with expectations, different botanical varieties did not cause evident systematic clustering of NIR 210 

spectra. The scores of NIR spectra of Forastero and Trinitario samples were overlapped in the scores plot 211 

(figure 1 b), no separation occurred neither in the PC2/PC1 plot, nor in the later PCs (plots not shown). This can 212 

be probably attributed to the complexity of the samples’ set, that introduces a lot of confusing variability. 213 

However, Arriba samples, a specific variety cultivated in Ecuador only (green squares on the scores plot in 214 

figure 1b), was specifically, even though not selectively, characterized by negative scores on PC1 and positive 215 

scores on PC2 attesting the capability of NIR spectra to catch common chemical features of Arriba samples. The 216 

loadings profiles (figure 2S.3 a) and the variance captured (figure 2S.4) hallows to define what spectral regions 217 

are involved in each relevant PC. PC1, is mainly characterized by fatty acids bands as 5670-5780 cm
-1

 (1
st 

C-H 218 

str) and 4325 cm
-1

 (1
st
 C-H str + 1

st
 C-H def CH2), 4250 cm

-1
 (1

st
 C-H str + 1

st
 C-H def). In addition PC1 captures 219 

also some regions related to proteins such as  5170-5190 cm
-1

 (2
nd

 C=O of CONH), 5269 cm
-1

 (2
nd

 C=O of 220 

COOH), 6320 cm
-1

 (1
st
 N-H str  of CONH) and  6535 cm

-1
 (1

st
 N-H str of RNH2) and 6950 cm

-1
. PC2, instead, 221 

shows three maxima at 4400 cm
-1

 (1
st
 O-H str + 1st C-C str, associated to starch), 4763 cm

-1
 (2

nd
 O-H def + 2

nd
  222 

C-O str of starch) and 5000 cm
-1

 (2
nd

 O-H def + 1st C-O def of starch), this means that PC2 mostly represents the 223 

starch content into the samples. PCA highlighted a major content of fatty acids and vegetal proteins in the 224 

examined Arriba samples as shown in figure 1 c, d, whereas lower intensity in the spectral regions associable to 225 

polysaccharides, such as starch, was measured (corresponding enlarged spectral region not shown for brevity 226 

reasons).  227 

As far as correlations between the geographical origin and NIR spectra are concerned, the information provided 228 

by the scores plot seems confused at a first look, however some interesting considerations can be underlined. 229 

Common features of all samples coming from central Africa were noticed in the scores plot (figure 2 a) when 230 

considering PC2. On average, central Africa samples (red rhombus in figure 2 a) show positive scores on PC2, 231 
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related to polysaccharides and starch bands mainly (figures 2S.3, 2S.4 can be consulted for all attributions of 232 

spectral bands to the PCs). Moreover other common features were noticed in further PCs, such as negative scores 233 

on PC3 (figure 2S.6 b) (where the main contributions are 5218 cm
-1

, 1
st
 O-H str of phenols, 5878 cm

-1
 1

st
 C-H str 234 

CH3, 6075 cm
-1

 1
st
 C-H str of R-CH-CH, 7062 cm

-1
, 2

nd 
C-H str + 1

st
 C-H def of aromatic compounds) and 235 

positive again on PC4 (Figure 2S.6 c) which is related mainly to carbohydrates (4790 cm
-1

 1
st
 O-H str + 1

st
 O-H 236 

def ROH o sucrose and starch, 6264 cm
-1

, 1
st
 O-H str intramolecular H-bond of starch or glucose). Although the 237 

separation of the examined groups is not sufficient for selective discrimination, it was confirmed that the 238 

geographical origin information is captured by NIRS. As shown in figure 2 a, African samples from São Tomé (a 239 

little island in Guinea Gulf, at latitude 0°) show features in common with samples coming from America, which 240 

on average showed negative scores on PC2. The scores of São Tomé samples (light blue rhombus in figure 2 a) 241 

are mixed with Gulf of Mexico Samples, this can be attributed to similar environmental and climatic conditions 242 

of the little islands, that influences the chemical composition of Cocoa fruits, and therefore of CBS (see also 243 

figures 2S.6 a to appreciate similitudes of São Tomé with samples from the islands and coasts of Gulf of 244 

Mexico). Moreover, Ecuador samples seemed more similar to the African samples than to the American, indeed, 245 

in figure 2 a, orange circles corresponding to Ecuador samples are mixed with red rhombus corresponding to 246 

samples from Central Africa. In figure 2 b the average NIR spectra of the macro classes, Africa and America, are 247 

compared with the spectra of São Tomé and Ecuador, that show peculiar behavior in contrast with the general 248 

trend. 249 

The Asian samples are separated from the others (blue triangles in figure 2 b), because of high values on PCs 4, 250 

5 and 6. PC4 is characterized by a peak around 4530 cm
-1

. This spectral region, represented in figure 2 d is 251 

assigned to ROH combination modes, so it can be hypothesized that sugars’ content differs for Asian samples 252 

with respect to all the others. The most represented spectral region in PC5 (which is relevant for the clustering of 253 

Asian samples) is the side of the peak at 6300 cm
-1

. This region, represented in figure 2 e, highlights that the 254 

bands’ shape is relevant, more than its intensity in this case. PC6 is also responsible for the following spectral 255 

regions: 4466 cm
-1

 (beta-glucan), 5114 cm
-1

 (2
nd

 C=O of esters) and 7147 cm
-1

 typical of R-OH (as already 256 

mentioned figures 2S.3, 2S.4 can be consulted for all attributions of spectral bands to the PCs). 257 

Figure 2  258 
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The definition of rules to correlate the NIR spectra variability with the geographic area of origin based on the 259 

PCA scores plot of NIR spectra is not immediate. However, some common trends were noticed for samples from 260 

the same area, and NIR spectra demonstrated to contain useful information for geographical provenience 261 

analysis.           262 

3.2 ATR-FT-IR spectra  263 

Spectral profiles in the mid infrared region are shown in figure 3 a. As well as for NIRS, ATR-FT-IR 264 

spectroscopy is expected to deliver information about the chemical composition of CBS samples including most 265 

of biochemical species present in the matrix. Although absorption bands in the mid infrared region are more 266 

defined and narrower because primary vibration modes absorb in this spectral region, the visual interpretation of 267 

spectra is difficult, especially in the so-called fingerprint region, between 1750 cm
-1

 and 500 cm
-1

. Main bands 268 

interpretation is reported in table 3S.1 in supplementary information. (Socrates, 2001; Rubio‐ Diaz, 269 

Rodriguez‐ Saona, 2010; Li-Chan, Chalmers, Griffiths, 2011). The region between 2260-2440 cm
-1

, where CO2 270 

band is present, was excluded. 271 

Figure 3 272 

MIRS spectra provided information in agreement with NIRS investigation. Signals are more defined and spectral 273 

specificity is increased compared to NIRS, and PCA scores plots investigation resulted an effective strategy to 274 

explore spectra similarities. Similarities and differences between samples are ruled by PC1, 2 and 3. The 275 

correspondence between PCs and MIR spectral regions was evaluated analyzing figure 3S.4, where the MIR 276 

spectrum was superimposed over the histogram of the percentage of variance captured by each PC, to understand 277 

what bands drive the scores distribution on the scores plot.  PC1 is mainly dominated by CHx vibrations in the 278 

3000-2800 cm
-1

 and 1460-1420 cm
-1

 region (samples with high intensity of signals at 2920 cm
-1

 and 1463 cm
-1

 279 

present lower  values of PC1), moreover 1730 cm
-1

 peak (C=O stretching) that showed increased intensity in 280 

Arriba samples is also represented in PC1; PC2 captures variance in 1700-1650 cm
-1

 region (high values of PC2 281 

mean lower intensity at 1560 cm
-1

 and 1525 cm
-1

 of amide I-II and lower intensity of the 1690 cm
-1

 shoulder). 282 

Several peaks associated to carbohydrates are also relevant, for example 763 cm
-1 

related to pyranose compounds 283 

is modeled by PC5. Variety information reveals a certain grouping of Arriba sample that show high PC2 scores 284 
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and lower intensity of PC5 in Arriba samples, in agreement with NIRS results. The scores plot colored by variety 285 

information is shown in figure 3S.5.  286 

The different geographical provenience drives a differentiation between samples and some general 287 

considerations can be extracted from the scores plot (figure 3 b,c). PC2 certainly explains interesting 288 

characteristics of Central Africa samples, that show positive scores on PC2. Samples from São Tomé showed 289 

more similarities with samples from Gulf of Mexico, Venezuela and Colombia, as attested also by NIRS data 290 

shown in the previous paragraph. This confirms that similar climatic and environmental conditions are crucial in 291 

determining the chemical composition captured by spectroscopic techniques, as previously reported in literature 292 

for cocoa samples (Marseglia, et al, 2017). African samples show higher intensity at 2954 cm
-1

 and 2870 cm
-1

 in 293 

the CHx stretching vibrations (Figure 3 d). Moreover, PC5 and PC6 were relevant to identify features in common 294 

between Ecuadorian samples. 87% of Ecuador samples were placed to the left of the left diagonal of the 295 

PC6/PC5 plot (figure 3 c). This is due to the ratio between 1280 cm
-1

 (Amide III of β-sheet proteins) and 1320 296 

cm
-1 

or 1440 cm
-1 

that allows to separate samples from Ecuador from other American samples, as shown in 297 

figure 3 e. Moreover low values in PC5 reflect low intensities at 673 cm
-1

 and 1600 cm
-1

 (ring breathing modes 298 

of polysaccharides) as already noticed for Arriba samples (enlarged spectral regions not shown for brevity 299 

reasons). 300 

The ATR-FT-IR spectrum represents the sum of numerous bands of several functional groups, which are 301 

contemporarily present in more than one biochemical compound. Beyond the hypothesized interpretation, it 302 

should be stressed that an accurate understanding of what peaks and bands drive the scores distribution should 303 

by managed carefully to avoid misinterpretation.  To univocally associate the relevant spectral regions to specific 304 

classes of compounds remains complicated when a whole complex matrix such as food is analyzed. However, 305 

the possibility to identify spectral features that precisely, characterize samples from the same origin is an 306 

indication that a correlation between geographical origin and vibrational spectra can be modeled. 307 

3.3. ICP-OES elemental characterization of CBS samples 308 

The raw ICP-OES results are shown in Table 4S.1 in supplementary information. The most abundant elements 309 

are by far Ca, Mg, K which have a concentration at least one order of magnitude higher compared to all other 310 
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elements. Among the secondary elements, particularly relevant were Al, Fe and Li (Barker and Rayens 2003). 311 

Relevant amounts of lead were revealed in all samples (around 0.3 mg/kg), which is a high value compared with 312 

the average content of lead in foods reported in 2007 by the Agency for Toxic Substances and Disease Registry 313 

(Abadin H., et al. 2007). All other elements were revealed in concentration lower than 0.2 mg/kg, particularly 314 

low concentrations were determined for Ni and Cr. PCA was used to identify major variance directions that can 315 

be related to geographical origin. Five samples were identified as very different from the others. They were SB3, 316 

SB4 from Brazil, ICAM10 from Congo, FER8 from Uganda and FER13 from Côte d’Yvoire. These samples 317 

were excluded as outliers because of their very low K content. Boron, Potassium, Magnesium and Calcium are 318 

responsible of the most variance captured by PC1, which resulted not to be particularly correlated to provenience 319 

of samples. Aluminum, Chromium, Iron, Sodium and Nickel are particularly relevant for PC2, whereas 320 

Cadmium, Cobalt and Molybdenum together with Calcium and Manganese are mostly represented in PC3, as 321 

shown in figure 4 d. 322 

Examining the PC2/PC3 loadings and scores plot (figure 4 a, b), high levels of Fe and Al resulted to be 323 

characteristic for African continent for most of Central Africa Samples, moreover a general deficiency of  Ca, K, 324 

Mg, Ni, was revealed. Interestingly some similitudes of São Tomé samples with American samples were 325 

captured by PC2. Precisely a relatively higher content of Fe, Al, Cu and Ni was revealed for this samples, this 326 

trend makes São Tomé samples more like American than to African samples. Moreover, São Tomé samples are 327 

characterized by high content of Ba with respect to others. Conversely, Ecuador samples did not show any 328 

specific elemental profile. 329 

Figure 4   330 

3.4 Data fusion to merge chemical information provided by the different analytical techniques 331 

The idea of data fusion is to merge information, provided by different analytical determinations, in one single 332 

data set, to enhance the quality of the results. The obtained joined PCA model clearly shows that all the three 333 

datasets provide useful information for the final model. It was noticed that the three most represented variables 334 

in PC1 were one from MIR-ATR, one from ICP and one from NIRS (figure 5S.1 in supplementary information). 335 

The scores plot and the loadings projected on the PC2/PC1 space are shown in figure 5. The grouping of samples 336 
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based on the geographical origin was improved by the multi analytical model. Proximity, and hence common 337 

features, were appreciated for samples from the same geographical area. 338 

Classification models were calculated to quantify the grouping performances of the joined model compared to 339 

the three single models, based on the geographical origin. Even though interesting observations were previously 340 

discussed for the three techniques separately, and some correlation between geographical origin and the 341 

composition was defined, single technique outputs were not accurate and precise for the recognition of the 342 

geographical origin of samples in predictive classification models. In table 1 the most classification figure of 343 

merit (sensitivity, specificity, error rate, accuracy, precision) relative to PLS-DA classification models for the 344 

geographical discrimination were reported. The classification performances for the samples’ classes composed of 345 

more than 5 samples were shown. Classification results were higher for the joined model compared to each of 346 

the three single models for Central Africa, Ecuador and Gulf of Mexico classes. This experimental evidence was 347 

in agreement with literature findings corroborating mid-level or high-level data fusion to increase predictive 348 

performance of classification models (Doeswijk, Smilde, Hageman, Westerhuis, Van Eeuwijk, 2011).  Single 349 

techniques provide null accuracy and precision for most classes, out of Central Africa. Moreover, merging 350 

information from the three techniques, the accuracy (correctly classified samples rate) increased. 351 

Table 1 352 

NIRS, MIRS and ICP profiles together deliver sufficiently accurate information to capture the common features 353 

of African samples, and to distinguish them from all the others. Unfortunately, the same is not confirmed for the 354 

other classes. Low stability emerged during cross validation for Ecuador, Gulf of Mexico and Venezuela classes. 355 

Classification results for classes composed of less than 10 samples were not considered statistically valid.  356 

4. Conclusions 357 

Because of the low price and interesting features of CBS, such as the extraordinary similarity to cocoa powder in 358 

terms of color, taste and texture, and the potential beneficial effects on human health, research is needed to assist 359 

the valorization of this food by-product, and to prevent fraud in cocoa powder market.  The present work 360 

demonstrates the existence of correlations between the geographical origin and the composition of CBS samples, 361 

even though low specificity for the single country or restricted areas emerged. Some information about what 362 

samples from the same macro-area have in common was described. The selected techniques provided significant 363 
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criteria to distinguish sample classes, such as Central Africa and Ecuador samples with adequate accuracy and 364 

precision, however it is very difficult to precisely determine what chemical species drive this separation only 365 

using vibrational spectroscopy for chemical composition analysis. Nevertheless, estimates and trends were 366 

determined. The geographical traceability of food based on chemical analysis remains complicated and always 367 

valid rules are rarely identified. The natural variability of most food materials is huge, climatic conditions and 368 

process variables represent an intrinsic limit of this field of study. However, the capability to identify leading 369 

variables, common trends and general indications using rapid and simple techniques is an encouraging result in 370 

this domain. More sensitive and accurate techniques should be used for an exhaustive investigation.  Easy-to-use 371 

instrumental analysis still needs the support of heavier analytical strategies for comparison and calibration. 372 
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FIGURE CAPTIONS 476 

Figure 1–a) Mean NIR spectrum of all CBS samples (green) and standard deviation limits (blue); b) Scores plot 477 

of NIRS data PCA colored in accordance with variety; c, d) Zoom of average spectrum of Arriba samples 478 

compared with the mean spectrum calculated considering all other NIR spectra. 479 

Figure 2– a) PC2/PC1 scores plot of NIR spectra of CBS sample colored by geographical origin. b) 480 

PC4/PC5/PC6 scores plot of NIR spectra of CBS sample colored by geographical origin. c) Average NIR spectra 481 

of CBS from Africa and America as macro-classes (red and green respectively) and mean spectra of São Tomé 482 
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and Ecuador groups (light blue and orange respectively); d, e) Zoom on the spectral regions which make Asian 483 

samples different from all other CBS samples; 484 

Figure 3– a) ATR-FT-IR average spectrum of all CBS samples (green) and standard deviation limits (blue); b) 485 

PC2 scores plot which highlight common behavior of African samples; c) PC5/PC6  scores plot that allow to 486 

highlight characteristic trend for Ecuador samples; d) MIR average spectra of CHx stretching bands of samples 487 

different geographical origin; e) MIR average spectra of Ecuador sample compared with Americans in the 488 

spectral region where Ecuador samples show distinct characteristics with respect to American samples. 489 

Figure 4– PCA model of ICP-OES data outputs, 2D a) loading and b) scores plots; c) Histogram of mean data 490 

for the considered macro-classes (Africa and America) and São Tomé samples that show peculiar feature with 491 

respect to others; d) Variance captured per each principal component. 492 

Figure 5–  Joined PCA model of NIRS+ICP+MIRS, a) loadings and b) scores plot on PC1 and PC2. 493 

Table 1–Cross Validation outputs of PLS-Discriminant Analysis classification models for geographical origin 494 

discrimination: a) Joined classification model with 5 LVs, classification performances in leave-one origin-out 495 

cross validation; b) NIRS PLS-DA model with 4 LVs classification performances in leave-one origin-out cross 496 

validation; c) MIRS PLS-DA model with 4 LVs classification performances in leave-one origin-out cross 497 

validation; d) ICP-OES PLS-DA model with 3 LVs classification performances in leave-one origin-out cross 498 

validation. 499 
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Class Technique N 
Sensitivity Specificity 

Accuracy Precision 
(true positive ratio) (true negative ratio) 

Central Africa 

a) Joined 22 0.68 0.92 0.84 0.79 

b) NIRS 19 0.68 0.86 0.81 0.00 

c) MIRS 19 0.32 0.70 0.59 0.29 

d) ICP-OES 19 0.50 0.83 0.75 0.50 

Gulf of Mexico 

a) Joined 9 0.33 0.82 0.76 0.21 

b) NIRS 9 0.00 0.87 0.75 0.00 

c) MIRS 9 0.00 0.82 0.71 0.00 

d) ICP-OES 9 0.00 0.87 0.75 0.00 

São Tomé 

a) Joined 6 0.33 0.95 0.9 0.40 

b) NIRS 6 0.00 0.91 0.86 0.00 

c) MIRS 6 0.00 0.90 0.83 0.00 

d) ICP-OES 6 0.00 0.92 0.86 0.00 

Venezuela 

a) Joined 10 0.10 0.87 0.76 0.11 

b) NIRS 12 0.00 0.89 0.74 0.00 

c) MIRS 4 0.00 0.89 0.84 0.00 

d) ICP-OES 12 0.00 0.85 0.69 0.00 

Ecuador 

a) Joined 10 0.00 0.87 0.74 0.00 

b) NIRS 10 0.00 0.85 0.72 0.00 

c) MIRS 10 0.00 0.81 0.70 0.00 

d) ICP-OES 10 0.00 0.87 0.73 0.00 

Indonesia 

a) Joined 1 0.00 0.96 0.94 0.00 

b) NIRS 1 0.00 1.00 0.99 0.00 

c) MIRS 1 0.00 1.00 0.99 0.00 

d) ICP-OES 1 0.00 0.98 0.97 0.00 

Mexico 

a) Joined 2 0.00 0.99 0.96 0.00 

b) NIRS 2 0.00 0.96 0.93 0.00 

c) MIRS 2 0.00 0.94 0.91 0.00 

d) ICP-OES 2 0.00 0.97 0.94 0.00 

Peru 

a) Joined 4 0.00 0.89 0.84 0.00 

b) NIRS 4 0.00 0.92 0.87 0.00 

c) MIRS 4 0.00 0.97 0.91 0.00 

d) ICP-OES 4 0.00 0.87 0.81 0.00 

Colombia 

a) Joined 4 0.00 0.95 0.90 0.00 

b) NIRS 4 0.00 0.92 0.87 0.00 

c) MIRS 12 0.00 0.93 0.77 0.00 

d) ICP-OES 4 0.00 0.85 0.80 0.00 

 
Table 1: Cross Validation outputs of PLS-Discriminant Analysis classification models for geographical origin 
discrimination: a) Joined classification model with 5 LVs, classification performances in leave-one origin-out cross 
validation; b) NIRS PLS-DA model with 4 LVs classification performances in leave-one origin-out cross validation; c) 
MIRS PLS-DA model with 4 LVs classification performances in leave-one origin-out cross validation; d) ICP-OES PLS-
DA model with 3 LVs classification performances in leave-one origin-out cross validation. 

Table1
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