
13 March 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Ultrasound physiotherapy devices: how to measure them / Durando, Giovanni; Guglielmone, CLAUDIO
LUIGI DOME. - In: IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE. - ISSN 1094-6969. - 19:5(2016),
pp. 15-48. [10.1109/MIM.2016.7579065]

Original

Ultrasound physiotherapy devices: how to measure them

IEEE

Publisher:

Published
DOI:10.1109/MIM.2016.7579065

Terms of use:

Publisher copyright

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/54594 since: 2021-03-05T10:30:47Z

IEEE

This is the author's submitted version of the contribution published as:



Ultrasound Physiotherapic Devices: 
How to measure them 

Giovanni Durando, Claudio Guglielmone 
 
Ultrasound machines are frequently used by physiotherapists. Ultrasound, US, physiotherapy devices are widely used 
for the treatment of chronic inflammation, degenerative rheumatic disorders, ankle distortions and post-traumatic 
diseases, such as lateral epicondylitis and acute soft tissue injuries [1]. At lower power (less than 3 W), US effects could 
produce stable cavitation in biological tissues, which in turn could affect the permeability of cell membranes. At high 
power settings (up to 12 W), the absorption of ultrasound energy by tissues causes a temperature increment, with an 
increase in the blood flow.  In order to ensure safe and effective treatments, it is important that the adopted ultrasound 
therapeutic devices are accurate. The use of uncalibrated systems could in general produce inefficient or even harmful 
treatments results on the patients. In this context, the objective of this work was to evaluate the performance of the 
ultrasound devices that are commonly used in Physical-therapy departments [3]. 
 

Quality Control 
A verification programme of the medical apparatuses adopted in therapies that use ultrasound beams is essential to 
maintain an acceptable quality standard of the performances in time. 
Planning a quality control programme may lead to a decrease in the number of therapy sessions, an increase in the 
effectiveness of the treatment and a reduction in the need for other methods to complete the therapy. 
Moreover, it is possible, through the use of precautions to eliminate or at least reduce the effect of the operator, to 
compare different devices and probes when taking a decision on purchasing a device and checking its correspondence 
with the manufacturer’s declared characteristics. 
After the initial setup, the need for quality verifications stems from the physical decay of the apparatus (signs of wear 
may be found in particular in cables and transducers). This decay is due to the wear of electronic and electric 
components, and may also cause electrical safety problems. It depends on the quality of the components, on the total 
working time and on the characteristics of the environment in which the device operates. The resulting degradation of 
therapy effectiveness is a slow and progressive process that is normally not detected by the operator who uses the same 
device again and again and technical assessment procedures that are able to give objective and reproducible 
measurement of the parameters are therefore necessary [4]. 
On the basis of these considerations, the verification of the correct operation of therapeutic ultrasound devices should 
start with an initial acceptance test, in co-operation with the manufacturer’s technicians. 
At a later point in time, it is advisable to plan periodic verifications of the device status, in order to sketch a maintenance 
plan of the therapeutic device, on the basis of a specified number of quality control parameters. In order to take into 
account the variability of the set-up configurations and conditions of use, the evaluation of the technical parameters 
should be compared with the initial values of the acceptance test for the same individual device. 
From a practical standpoint, the periodicity of the verification test should be constant and should depend on the 
workload and on the previous history of the device, in agreement with the physicians and medical physics experts. 
However, the test should be carried out at least once a year for devices used daily, although additional verification tests 
should be conducted if the operator believes that it is appropriate [5]. The age of the device, if it has been maintained 
properly, is not a criterion that should influence the periodicity of the tests [6]. The quality controls test, according to the 
procedures, should be performed by a technician with verified expertise, and the conformance should be stated by a 
physician with experience in the field [7]. 
Some years ago (1992), Pye and Milford tested eighty-five ultrasound therapy machines that were used in the Lothian 
region (Scotland). The most important parameter reported was Ultrasound Power. It resulted that around 69% of the 
tested devices had an ultrasonic power that differed by more than 30 % from the expected values. A total of 29 out of 85 
machines required some form of major repairs, and could not simply be calibrated by adjusting their internal power or 



frequency controls. A total of 9 required crystal replacements [8]. 
 

Ultrasonic Power Measurement 
The most important parameter necessary to define the ultrasound field is the output ultrasound power, P, emitted by the 
transducer. The standardized method is based on the radiation force balance method, which is defined as the time-
averaged force exerted by an acoustic field (that is, a second-order effect of wave propagation in fluids [9]) on a target 
that intercepts the ultrasonic beam. Under the assumption that the target is much larger than the lateral dimensions of 
the acoustic beam, the ultrasound power, P, can be related to the resultant radiation force, F, or, in other terms, the 
variation of mass induced by the US field, by means of the simple equation: 
 

𝑃 = 𝑢 𝑇 𝐹 =   𝑢 𝑇   𝑔  ∆𝑚           (1) 
 

where 𝑢 𝑇  is the speed of sound in a medium (ultra-pure in water), 𝑔, is the gravity acceleration and ∆𝑚 is the mass 
variation. From this equation, it is possible to determine that the sensitivity of the measurement method is 69 mg for 1 W 

of power, and very sensitive and accurate balances are therefore required [10]. Equation (1) is valid for a plane-wave 
assumption and, for this reason, it is a very good equation to approximate the real fields that are encountered in medical 
practice, see Figure 1. 

 
Figure 1, US transducer - plane wave mode 

 
The radiation force method is the internationally accepted method that is generally used to characterize ultrasonic power, 
and it specifies a procedure that can be used to determine the total emitted acoustic power of ultrasonic transducers, 
based on the use of a radiation force balance [11], in order to evaluate the ultrasonic parameters that are related to 
physiotherapy systems. This procedure can be applied to ultrasonic equipment designed for physiotherapy that contains 
an ultrasonic transducer which generates continuous or quasi-continuous wave ultrasounds in the 0.5 MHz to 5 MHz 
frequency range [12]. There are many high-quality commercially available power balances, the sensitivity of which is 
fully compatible with the physiotherapy output power levels (100mW–15W). There are many types of power 
measurement systems, but in practice the radiation force is usually determined by measuring the apparent change in 
weight of an initially buoyant target. 
An absorbing target is preferred in a radiation force balance for the realization of primary instruments [13] (especially for 
NMIs, National Metrological Institutes), and conical reflecting targets, designed to totally reflect incident ultrasound 
laterally, are commonly used for commercial instruments, which are usually called “ultrasound wattmeters”. Radiation 
force balances are cheap and easy to use instruments, and for these reasons represent the first step in establishing a 
measurement infrastructure within a hospital, device manufacturer or test laboratory [14]. A system based on an 
absorbing target is shown in Figure 2, while a system based on a reflecting target is shown in Figure 3. 



 
Figure 2, Measuring system based on an absorbing target 

 

 
Figure 3, Measuring system based a reflecting target 

 
Ultrasound Power Measurements at INRIM 

INRIM (Italian National Metrological Institute) has developed two different systems for ultrasound power 
measurements. 
The first system, the Radiation Force Balance system (RFB), see Figure 4, is based on a commercial METTLER TOLEDO 
model SAG-285 balance, which is able to measure ultrasound power from 50 mW to 20 W, with a greater insonation time 
than 10 s [15]. 
 



 
Figure 4, the RFB system  

 
The second system, the Submersible Load Cell system (SLC), see Figure 5, is based on a HONEYWELL model 31 
submersible load cell, which takes the place of the balance, and is able to measure ultrasonic power from 0.5 W to 200 W, 
with on insonation time of less than 2 s [16]. The target, whether absorbing or reflecting, is connected closely to the 
sensing element of the load cell through a screw. The signal produced by the load cell passes through a HONEYWELL 
model UV-10 strain gauge amplifier, and is then measured by an AGILENT model 34420A voltmeter. 
 

 
Figure 5, the SLC system  

 
This solution, compared with a system based on a commercial balance, essentially offers two advantages. The first, of an 
electrical nature, concerns the possibility of reducing the insonation time (the ON period of the electric driving signal to 
the HIFU transducer) to less than 2 s, and this is obtained from the faster response of the force transducer. The second 
one is relevant to the fact that the target is connected rigidly to the force transducer, thus eliminating unwanted target 
motion at high power. 
Both measuring set-ups are based on targets (see Figure 6, the absorbing target is on the left and the reflecting one is on 
the right), and are immersed in water tank that intercept the radiated ultrasonic field from the transducer [17]. 



 

 
Figure 6, Left: Absorbing target; Right: Reflecting target 

 

Ultrasonic Power Measurements of Therapeutical Devices 
 
Three different devices currently used in in the Physical Medicine & Rehabilitation Department of the University 
Hospital have been measured in this work. 
Table 1 shows the list of devices that have been tested. 

Table 1 - List of tested devices 
 

Name Model Probe 1MHz 

Device 1 SONOPLUS 434 X 

Device 2 COSMOGAMMA F230 X 

Device 3 
ENRAF NONIUS 
SONOPLUS 490 

X 

 
The experiment consisted of two separate measurements on each apparatus. First, the device was set up at its nominal 
output level and the ultrasound power emitted by the probe was measured n = 5 times in order to evaluate the 
repeatability of the ultrasound emission. The short time of the single measurements allowed the RFB system to be used 
in the absorbing target configuration. The second measurement was aimed at evaluating the stability  of the output in 
time: with the same device set up, the power was measured over a 300 s period, that is, the typical time of a clinical 
treatment [18]. In this case, it was not possible to use the absorbing target, as the  absorbed energy would have led to an 
excessive heating and thermal dilatation, with an increase in the buoyancy, and therefore to a measurement error [19]. A 
reflecting target was used instead, and it should be pointed out  that the SLC system allows the use of this kind of target 
at high power levels without unwanted movements, because the target is connected closely to the sensing element.  
 

Measurements 
The measurements on the devices listed in Table 1 are reported in Figures 7, 8 and 9. 
 



 
Figure 7, Left: US Power emitted from Device 1 Probe 1 MHz; Right US Power vs. time Device 1 Probe 1 MHz 

 
 

 
Figure 8, Left: US Power emitted from Device 2 Probe 1 MHz; Right: US Power vs. time Device 2 Probe 1 MHz 

 
 

 
Figure 9, Left: US Power emitted from Device 3 Probe 1 MHz; Right: US Power vs. time Device 3 Probe 1 MHz 

Conclusion 
 
Even though the measurement check was not based on a large number of devices, it is possible to conclude that, unlike 
what had happened in the past, the tested devices were inside the recommended ± 20% standard limits [20]. 
As a result of these verifications, it has been found that the level of the emitted US power decays with time, that is, it 
does not remain constant during the treatment. 



Assuming an average US treatment time equal to 5 minutes, the difference between the US power emitted at the 
beginning and the end of the treatment is still less than 30 %. 
The cause of the decay is probability due to the increase in the temperature of the piezoelectric part of the transducer and 
to a subsequent change in the working point of the internal amplifier [21]. 
This data could be used by the manufacturers of physiotherapeutic systems to feed back the electrical characteristics in 
order to obtain constant emissions during the treatments. 
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