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This paper deals with the modeling of sensitivity of epitaxial graphene Hall bars, from sub-

micrometer to micrometer size, to the stray field generated by a magnetic microbead. To demon-

strate experiment feasibility, the model is first validated by comparison to measurement results,

considering an ac-dc detection scheme. Then, a comprehensive numerical analysis is performed to

investigate signal detriment caused by sensor material heterogeneities, saturation of bead magnet-

ization at high fields, increment of bead distance from sensor surface, and device width increase.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917323]

I. INTRODUCTION

In the last decade, many studies have been focused on the

fabrication and characterization of miniaturized semiconductor

Hall sensors for biomedical applications, as the detection of

magnetic nanoparticles and microbeads for biological labeling

and drug delivery.1,2 Recently, it has been shown that graphene

can be an advantageous alternative to semiconductor materials

for the development of high-sensitivity devices, due to its high

room temperature carrier mobility, low-cost production, and

possibility of reducing the vertical distance between active

layer and target.3–8 Different device performances are expected,

depending on the Hall bar geometrical properties and the gra-

phene fabrication process,3 e.g., chemical vapor deposition,

thermal sublimation of SiC, and exfoliation.

In this work, we explore the possibility of using miniatur-

ized graphene devices as detectors of magnetic beads with mi-

crometer size. To this aim, we simulate the graphene sheet as

a 2D electronic system in the diffusive regime, by means of a

finite element model that provides the spatial distribution of

the electric potential inside the Hall plate in the presence of a

strongly localized magnetic field (i.e., the bead stray field).9

The model is first validated by comparison to experimen-

tal results obtained on an epitaxial graphene sensor (with

intrinsic n-type doping) using an ac-dc detection scheme.2,6

Then, it is applied to investigate the possibility of employing

graphene Hall bars for bead susceptibility mapping,10 by vary-

ing device width, dc field and bead vertical distance. Finally,

we study the degradation of device performance due to hetero-

geneities in the material electrical properties, e.g., bi-layer

islands11 and topographic corrugations,12,13 modeling gra-

phene as a multi-carrier system.14

II. NUMERICAL MODEL

To include non-homogeneous conductivity properties

due to multi-layer islands and topological defects, the gra-

phene sample is modeled as a 2D electronic system with M

types of carriers with distinct mobility and density.14 Under

the assumptions of diffusive transport regime and non-

uniform orthogonal magnetic field, B ¼ Bðx; yÞk, charge

transport is described by means of the Ohm’s law J ¼ r$ E,

having introduced a spatially dependent conductivity tensor

r$ , whose elements are

rxx ¼ ryy ¼
XM

i

Cinieli

1þ l2
i B2

rxy ¼ �ryx ¼
XM

i

Ciniel2
i B

1þ l2
i B2

;

8>>>><
>>>>:

(1)

where e is the electron charge and Ci is the characteristic

function associated to the i-th carrier type with mobility li

and density ni. By expressing the electric field E as a func-

tion of scalar potential / (E ¼ �r/) and considering the

equation of continuity for current density vector J, it is as

follows:

r � ½r$ ðx; yÞr/ðx; yÞ� ¼ 0: (2)

Problem (2), which is completed by ad-hoc boundary condi-

tions at the current and voltage contacts and at the insulating

boundaries, is solved by applying the finite element method.

To simulate ac-dc Hall magnetometry technique,2,10 the

magnetic field in (1) incorporates a uniform external field, per-

pendicular to the sensor surface and composed of a dc and an

ac signals (Bext¼BdcþBac). Moreover, it includes the orthog-

onal component of the stray field produced by a magnetic

bead assumed to be uniformly magnetized along the direction

of Bext. The bead, represented as a magnetic dipole, is respon-

sible for the generation of a field with z-component

Bbeadz
x; yð Þ ¼

l0

4p
m Bextð Þ 3d2

r5
� 1

r3

� �
; (3)

where r is the distance between the point of calculus in the

graphene plane, with coordinates ðx; yÞ, and the barycenter

of the bead with moment amplitude m and distance d above

the graphene device.
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The ac-dc detection scheme is mimicked by calculating

the amplitude of the ac Hall voltage due to the bead (Vac,bead)

for a specific dc field. The ac contribution is extrapolated by

approximating m as

m Bextð Þ ffi m Bdcð Þ þ Bac
V

l0

v Bdcð Þ; (4)

where v is the magnetic susceptibility of the bead.

III. MODEL VALIDATION

The numerical model is validated by comparison to experi-

mental results obtained at room temperature on a 1600-nm

wide Hall bar with three-cross configuration made of epitaxial

graphene grown on 4H-SiC(0001) (see inset in Fig. 1). The ma-

terial, with intrinsic n-type doping, has carrier density

n¼ 1.07� 1016 m�2 and mobility l¼ 0.17 m2/V s.6 To remove

parasitic inductive signals, the device sensitivity is experi-

mentally characterized via an ac-dc Hall magnetometry tech-

nique, based on the measurement of the in-phase component

of the ac Hall voltage.2 A bead comprised of iron oxide

nanoparticles embedded into a polystyrene matrix with 1 lm

diameter and mass saturation magnetization of �22 A m2/kg

(Dynal, MyOne)15,16 is placed on top of one cross, and its

detection is performed by applying a step dc field varying

between B0
dc ¼ 0 T (duration of 60 s) and B1

dc ¼ 0:25 T (dura-

tion of 30 s), fixing Bac to 3 mT and Ibias to 50 lA. The bead

presence leads to a change in the amplitude of the in-phase

component of the ac signal (DVac,bead), which is proportional

to the variation in bead magnetic susceptibility.

Figure 1 reports the measured step amplitudes for the

cross with bead and the empty one, together with a compari-

son with the calculated signal, where vðB0
dcÞ and vðB1

dcÞ are

directly derived from the magnetization curve in Ref. 15 to

avoid susceptibility underestimation at 0 T correlated to the

use of Langevin function.10 A good agreement between ex-

perimental and simulation results is found, with a variation

in Vac,bead higher than 6 lV.

IV. NUMERICAL ANALYSIS

A parametric analysis of bead susceptibility mapping10 is

carried out considering epitaxial graphene Hall bars constituted

by two symmetric crosses with variable width w; the longitudi-

nal and transversal arms have a length equal to 18w and 9w,

respectively (inset of Fig. 2). The sensor performances are

studied by varying the dc magnetic field and the bead distance

from graphene sheet, also investigating the impact of possible

material heterogeneities, such as the presence of islands of bi-

layer graphene and topographic corrugations (substrate terra-

ces). For all cases, Bac is fixed to 10 mT and the frequency to

400 Hz, considering constant-current-supply or current mode

as well as constant-voltage-supply or voltage mode.4

A. Influence of device width and bead distance

The analysis starts from Hall devices with cross width w
ranging from 400 nm to 1500 nm and made of a monolayer

epitaxial graphene. The considered material has homogeneous

carrier density n¼ 2� 1016 m�2 and room-temperature mobil-

ity l¼ 0.3 m2/V s,5,17 corresponding to an electron mean free

path of �70 nm, which justifies the hypothesis of diffusive

transport regime. The analysis is performed in current mode,

setting the bias current at 75 lA. For all the device sizes, the

calculated 4-terminal resistance and the Hall coefficient are

�20 kX and 312 X/T, respectively. In the high-frequency ther-

mal noise range, the estimated voltage-noise spectral density

is �18 nV=
ffiffiffiffiffiffi
Hz
p

, which corresponds to a minimal detectable

field of �0.8 lT=
ffiffiffiffiffiffi
Hz
p

at 75 lA. However, in the usual work-

ing frequency range, 1/f or flicker noise becomes the dominant

contribution, limiting sensitivity performance when reducing

the device size and increasing the bias current.6 If we assume

a Hooge parameter of �10�4 (Refs. 18 and 19), an operating

frequency of 400 Hz and Ibias¼ 75 lA, the voltage-noise spec-

tral density rises up to �3 lV=
ffiffiffiffiffiffi
Hz
p

for the 400 nm width de-

vice and to�0.8 lV=
ffiffiffiffiffiffi
Hz
p

when w¼ 1500 nm.

The magnetic moment resolution is strongly affected

by the dc magnetic field Bdc applied to magnetize the bead.

FIG. 1. Measured and calculated variation in the amplitude of the in-phase

component of the ac Hall voltage in response to a step dc field (amplitude of

0.25 T and duration of 30 s), considering a 3 mT ac field at 210 Hz. The inset

shows the scheme of the considered Hall bar with width w¼ 1600 nm.

FIG. 2. Amplitude of the ac Hall voltage due to a bead placed in contact with

the sensor surface at the cross centre, as a function of Bdc and device width w
(Ibias¼ 75 lA). The inset shows the scheme of the considered Hall bars.
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This is well demonstrated by Fig. 2, which shows the role of

Bdc on the amplitude of the ac Hall voltage (Vac,bead) due to a

bead placed above the device cross centre at a vertical distance

d of 500 nm between its barycenter and the graphene sheet, for

different values of cross width w. The non-linearity of the bead

magnetization curve, which saturates at �0.8 T, leads to a

rapid diminution in the device response with the dc field

increase, following the bead susceptibility decay. A reduction

of a factor of �19 is observed for all the range of variation of

w when changing Bdc from 0.1 T to 0.5 T, approaching white-

noise level for larger devices. For the entire considered interval

of Bdc, the sensitivity reduces by factor of �9 when increasing

the device width from 400 nm to 1500 nm. To avoid signal

degradation caused by non-linearity and to operate above

flicker noise, low dc fields should be considered.

Figure 3 analyzes the effect of the increase in bead vertical

distance d for different cross widths w. Strong signal detriment

is found for w¼ 400 nm, with a reduction to one third when the

bead is moved from the sensor surface to a position d¼ 800 nm,

in correspondence of which flicker noise is reached; whereas a

slow variation is obtained for larger devices.

B. Influence of sensor material heterogeneities

The presence of multi-layer islands can affect the elec-

tronic transport properties and thus the device performance.

As an example, we study the sensitivity of a Hall bar with

w¼ 1000 nm, containing a bi-layer region with hexagonal

shape that is responsible for a local increase in carrier con-

centration (inset of Fig. 4(a)). The material properties of

mono-layer graphene (1LG) are the same as in the previous

analysis, while the bi-layer island is assumed to have the

same mobility as 1LG and a carrier density 8 times higher.11

The role of the material defect position is shown in Fig. 4(a),

by comparing current and voltage modes and placing the

bead at the cross centre in contact with the device surface;

the size of the bi-layer region is �575 nm (diameter of the

circumscribed circle) and Bdc¼ 0.1 T.

In the current mode (Ibias¼ 75 lA), which is strongly de-

pendent on carrier density,4 there is a significant decay

(�30%) in the signal amplitude when the defect is located at

the cross centre, while its effect becomes negligible for posi-

tions outside the cross junction area. For the centered posi-

tion, Vac,bead varies from 2.8 lV to 1.3 lV when increasing

the defect size from 145 nm to 1150 nm. Additionally, the

voltage mode, which is generally affected only by the carrier

mobility when material uniformity is considered, displays a

quantitative behavior similar to the current mode, due to per-

turbation in the current density spatial distribution induced

by material heterogeneity (Fig. 4(b)).

Epitaxial graphene grown on SiC can be also character-

ized by topographic corrugations due to the surface morphol-

ogy of the substrate, which results in periodic structures

consisting of terraces and step edges.12,13 These heterogene-

ities, caused by preparation processes, lead to anisotropic

electron transport that can strongly affect the sensitivity to

localized magnetic fields. The role of periodic heterogene-

ities is investigated by considering a 1000-nm wide Hall bar

with terraces and steps aligned both perpendicular (Fig. 5(a))

and parallel (Fig. 5(b)) to the device channel. The local ma-

terial properties are derived from the experimental results

reported in Ref. 12 at zero gate voltage, i.e., terraces have car-

rier density nT of 7.5� 1016m�2, mobility lT of 0.1 m2/V s,

and variable width wT up to 160 nm, while steps have carrier

density nS of 9.4� 1016m�2, mobility lS of 0.01 m2/V s, and

fixed width wS of 10 nm. The estimated voltage-noise spectral

density associated to 1/f noise when Ibias¼ 75 lA and

f¼ 400 Hz is �0.47lV=
ffiffiffiffiffiffi
Hz
p

for a device with homogeneous

material properties equal to the terrace ones.

Figure 5(d) compares device sensitivity for the two con-

sidered material microstructures as a function of terrace width,

analyzing both types of supply. In current mode, there is a

FIG. 3. Amplitude of the ac Hall voltage as a function of bead vertical dis-

tance d, for variable device width w (Ibias¼ 75 lA). The dc field is set

at 0.1 T.

FIG. 4. (a) Amplitude of the ac Hall

voltage due to a bead placed in contact

with the sensor surface at the cross

centre, as a function of position u of a

bi-layer island with 575 nm size (inset).

(b) Spatial distribution of current density

vector perturbed by defect presence.
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weak dependence on wT and microstructure, as a consequence

of the small change in carrier density between terrace and step

regions. A non-negligible signal reduction is found for wT

smaller than 60 nm. Conversely, a strong influence of the step-

terrace orientation is observed for the voltage mode, as a result

of the charge transport anisotropy induced by the high varia-

tion in carrier mobility. The perpendicular orientation leads to

a more rapid decay of device performance when reducing wT,

reaching the estimated flicker noise when wT� 50 nm.

The obtained results can be interpreted by modelling

charge transport along the parallel (perpendicular) direction via

an equivalent electrical circuit consisting of terrace and step

resistances connected in parallel (series).12 According to this

approximation, the effective electrical properties along the two

orientations can be expressed as aeff== ¼ caT þð1� cÞaS and

1
aeff?
¼ c

aT
þ 1�cð Þ

aS
, where c is the fraction of terrace region and a

stands for n or l. The strong influence of material microstruc-

ture on device sensitivity found for voltage mode is strictly de-

pendent on the deviation of the effective mobilities along the

two directions for low values of c (Fig. 5(c)).

V. CONCLUSIONS

A numerical model has been developed, experimentally

validated, and applied to study the sensitivity of graphene

devices in the presence of localized stray fields generated by

magnetic microbeads, simulating ac-dc detection scheme.

Larger signals have been generally found in comparison to

semiconductor devices based on InSb due the possibility of

using high bias currents. However, the analysis has demon-

strated that the performances of graphene devices can deteri-

orate in the presence of material defects. Hence, only a

proper selection of experimental parameters (sensor width,

supply mode, and dc field for bead magnetization) can guar-

antee high detectable signals.
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