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Abstract 

The ac Stark shift, or light shift, is a physical phenomenon that plays a fundamental role in 

many applications ranging from basic atomic physics to applied quantum electronics. Here, we 

discuss experiments testing light-shift theory in a cold-atom cesium fountain clock for the Cs D2 

transition (i.e., 62S1/2  62P3/2 at 852 nm).  Cold-atom fountains represent a nearly ideal system for 

the study of light shifts: 1) the atoms can be perturbed by a field of arbitrary character (e.g., 

coherent field or non-classical field); 2) there are no trapping fields to complicate data 

interpretation; 3) the probed atoms are essentially motionless in their center-of-mass reference 

frame, T ~ 1 K, and 4) the atoms are in an essentially collisionless environment.  Moreover, in the 

present work the resolution of the Cs excited-state hyperfine splittings implies that the D2 ac Stark 

shift contains a non-zero tensor polarizability contribution, which does not appear in vapor phase 

experiments due to Doppler-broadening. Here, we test the linearity of the ac Stark shift with field 

intensity, and measure the light shift as a function of field frequency, generating a “light-shift 

curve.” We have improved on the previous best test of theory by a factor of two, and after 

subtracting the theoretical scalar light shift from the experimental light-shift curves, we have 

isolated and tested the tensor light shift for an alkali D2 transition. 
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I.  Introduction 

As noted by Kastler soon after its discovery [1], the ac Stark shift (or “light shift”) has an 

intimate connection to the Lamb shift, since both arise from virtual transitions between quantum 

states.  Originally observed by Cohen-Tannoudji in Hg [2] and Ariditi  and Carver in Cs [3], the 

light shift was quickly recognized as one of the more fundamental aspects of the field-matter 

interaction; and though the basic theory underlying the ac Stark shift was first developed using a 

QED formalism [4], QED is not (at present) required for its accurate description.  Specifically, the 

light shift, LS, can be understood in semiclassical terms as the interaction of a field-induced 

atomic dipole moment,       E  p


, acting in second order with the dipole-inducing field: 

       


2EERe  LS  .  Here,  


 is the atom’s polarizability dyadic, which for 

linearly polarized light only contributes to LS through scalar and tensor polarizability 

components: 0) and 2), respectively [5,6].  To lowest order in perturbation theory there is no 

difference between the QED and semiclassical theories, and to date there have been no observed 

discrepancies between theory and experiment [7]. 

Of course the light shift is more than an academic curiosity, as it makes its presence felt in a 

diverse range of experimental situations.  For example, the light shift is purposefully used to 

manipulate atoms in Sisyphus cooling of atomic samples [8] as well as cold-atom optical-lattice 

traps [9].  Additionally, in many high-precision spectroscopy situations the light shift is a 

perturbation that needs to be carefully controlled and ideally avoided.  In particular, the blackbody 

radiation shift in atomic clocks is one of the leading terms of inaccuracy in many pr imary atomic 

fountain clocks [10,11], and the ac Stark shift produced by the optical pumping light in Rb atomic 

clocks (used onboard global navigation system satellites) is likely one of the more important causes 

of their long-term frequency instability [12]. 

Due to its ubiquity and importance in atomic, molecular, and optical physics, there is clearly 

a continuing need to push experimental tests of theory, and in the present work we discuss first 
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results from a test of light-shift theory using a cold-atom Cs fountain clock.  To begin, in the 

following section we outline the semiclassical theory of the light shift, and its description in terms 

of scalar, vector, and tensor components.  In Section III we describe the experimental system, and in 

Section IV we present the experimental results: 1) a test of the linearity of the light shift with field 

intensity, 2) a test of the light-shift curve’s agreement with theory, improving on the previous best 

test of theory by a factor of two, and 3) a test of the tensor polarizability contribution to the light 

shift for the D2 transition.  Finally, in the conclusions we will discuss future directions for ac Stark 

shift investigations in cold-atom fountains.    

II.  Theory 

A. General analysis 

The semiclassical calculation of the ac Stark shift for a multilevel atom is well known, and 

here we follow an approach similar to that reported in Refs. [13,14,15].  We first consider the 

interaction of a classical light field E


 of angular frequency  with a two-level atom, writing the 

field as: 

c.c  e ê
2

E
    E tio  


                                                       (1) 

where Eo is the field amplitude and ê  is a complex unit vector defining the field’s polarization.  The 

two-level atom is identified by the states |g and |e with unperturbed energies Eg,e = g,e (such that 

Ee > Eg), and in the dipole approximation the atom-field coupling is described by the perturbation 

operator: 

  c.c  e dê
2

E
    dE    V tio  


,                                           (2) 

where d


 is the electric dipole operator that acts on the atom. 

The second-order ac Stark shift of the energy level |g due to the interaction with the light 

field can be obtained in several different ways. A simple density matrix approach yields: 
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where  is the decay rate of the excited state and Re[…] stands for real part.  Clearly, for an atom 

with a multilevel structure in the excited state Eq. (3) becomes (with eg  eg) 

  
   














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





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*
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o

g
2i

gdêeedêg
  

2i

gdêeedêg
Re 

4

E
    E



.                     (4) 

This can be conceptually simplified by introducing a light-shift operator OE [13-15]: 

            dê R dêdê R dêRe 
4

E
    O **

2

oE

 ,                          (5a) 

where 

 
 
  4

2i
    R

22

eg

eg









.                                                  (5b) 

Thus, the second-order perturbation embodied by Eqs. (4) is replaced by the matrix elements of an 

equivalent first-order perturbation operator: 

gOg    E E

g  .                                                             (6) 

To proceed, we now modify the above to deal with the problem at hand: the near resonant ac 

Stark shift of an atom with hyperfine structure interacting with a linearly polarized laser.  The states 

we are interested in are the atom’s hyperfine basis states characterized by the quantum numbers  

|nJFM, where J is the quantum number for the complete electronic angular momentum, F the 

quantum number for the atom’s total angular momentum (including the nuclear spin I), M is the 

azimuthal quantum number specifying the components of F along the quantization axis (z-axis), and 

n stands for all remaining quantum numbers.  In this set of basis states the hyperfine Hamiltonian 

Hhfs is diagonal, but in general OE will not be diagonal.  In principle, eigenstates and eigenvalues 

could be found by diagonalizing the total Hamiltonian Hhfs + OE.  However, we can assume that the 

field amplitude Eo will be low enough so that the ac Stark shift is much smaller than the hyperfine 
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and Zeeman splittings.  Under this assumption, OE is a weak perturbation, and the shift of level 

|nJFM follows directly from Eq. (6): 

nJFMOnJFM    E E

nJFM      0FOF0    E E

F  .                             (7) 

For the expression on the right-hand-side of Eq. (7), we have recognized that we will be primarily 

concerned with the shifts in the alkali ground-state hyperfine levels with M = 0. 

To highlight the rotational symmetry characteristics of the ac Stark shift, i t is convenient to 

express the vectors of Eq. (5a) in terms of irreducible tensors of rank k, so that the Wigner-Eckart 

theorem [16] can be brought to bear in order to simplify the expressions.  Additionally, we note that 

from Eq. (7) we are primarily interested in the diagonal components OE, and moreover we are 

interested in near resonant light fields:  ~ eg, which implies that in general R(+)  R().  

Consequently, after a bit of spherical tensor algebra we arrive at the following expression for the 

shift of level |nJFM due to the interaction with the perturbing laser field: 
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where the 
 k

F  are multipole moments of rank k for the atom’s polarizability: 
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and where Re[R(+)] is now given by 

  
  

   4
    RRe

22

nJFFJn

nJFFJn








 ,                                 (9b) 

assuming that the Zeeman splittings are much smaller than the natural decay rate  of the transition.  

In the above, we have ignored Doppler broadening, which is certainly reasonable for our cold-atom 

fountain experiments.  However, for completeness, and to ensure that small (but potentially 

important) effects are not being overlooked, it is straight forward to include Doppler broadening: 
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one simply needs to replace Re[R(+)] with the real part of the plasma dispersion function, 

Re[Z(+)], as discussed by Happer and Mathur [6].   

From Eq. (7) with a  I+½ and b  I½ the ac Stark shift of the ground-state hyperfine 

transition becomes  

 0nJb0nJaLS EE
1

    


                                                    (10) 

with EnJa0 and EnJb0 given by Eqs. (8) and (9). Though we have ignored the non-diagonal 

components of OE here, we do note, somewhat in passing, that these can give rise to Zeeman 

transitions when an off-resonant light field is modulated at multiples of the Larmor frequency as 

discussed in Refs. [17,18].  Further, since k ranges from 0 to 2, the ac Stark shift is composed of 

just three multipole moments: 
 0

F the scalar polarizability component leading to the scalar light 

shift, 
 1

F the vector polarizability component leading to the vector light shift, and 
 2

F the tensor 

polarizability component leading to the tensor light shift.  

Continuing, we can assume that the laser propagation direction is along the atoms’ 

quantization axis, which allows us to parametrize the light field’s polarization state by an angle : 

    sinêi  cosê    ê yx                                                 (10a) 

           sincos
2

e
  sincos

2

e
    ê 11 .                                (10b) 

If  = /4 (or 3/4) we have maximum circular polarization, and if  = 0 (or /2) we have 

maximum linear polarization.  Employing Eqs. (10), the direct product in Eq. (8) then yields 

             11cossin211  
011

k11

2

1k2
    

kk

0k

* 

















ee ,          (11) 

so that 

 
3

1
    00

*  ee ,                                                      (12a) 
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      cosins 2    10

*
ee ,                                             (12b) 

 
6

1
    20

*  ee ,                                                       (12c) 

B. Predictions for 133Cs and 87Rb with the perturbing field tuned near the D2 Transition 

To set the stage for the experimental results, the previous theory is now applied to the case 

of a cold sample of atoms (T ~ 1 K) probed in an atomic fountain with  equal to the D2 

transition’s Einstein-A coefficient, A, and with  equal to zero (i.e., linearly polarized light).  

Specifically, Fig. 1 shows the light-shift curve for the 133Cs ground-state hyperfine transition (i.e., 

the 0-0 transition, or more specifically |Fg=3, M=0  |Fg=4, M=0) produced by a perturbing 

narrow-linewidth laser tuned 14 GHz around the 62S1/2 – 62P3/2 transition.  This computation was 

performed for a value of the optical Rabi frequency,  



oeg

R

EJdJ
     ,                                                       (13) 

equal to 2.2104 s-1, which corresponds to a laser intensity of about 200 pW/cm2, and is a value 

consistent with the experiment to be described below.    

Figure 1a corresponds to the scalar light shift, Fig. 1b corresponds to the tensor light shift, 

and Fig. 1c is the total light shift.  The light shifts are normalized to the 133Cs ground-state 

hyperfine spitting, hfs = 9.192 GHz, and as can be clearly seen there are two multiplets of ac Stark 

shifts: Fg = 3 Fe = 2, 3, 4 and Fg = 4  Fe = 3, 4, 5 spaced by hfs.  Since  = 0, the vector 

contribution to the light shift is zero (see Eq. (12b)).  However, it is worth noting that the vector 

contribution to the light shift will be identically equal to zero for the 0-0 hyperfine transition 

regardless of the laser’s polarization.  This result comes from the vanishing of the 3-j symbol in 

Eq. (8) for M = 0 when 2F+k is odd [19], but is not the case in general (e.g., the vector light shift is 

non-zero for |Fg=3, M=1  |Fg=4, M=1).  Importantly for present considerations, it is evident that 

the tensor light shift is not negligible, and that it significantly modifies the relative size of the light-

shift curves compared to what they would be if the scalar light shift acted alone. 
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For completeness, Fig. 2 shows the results of similar calculations for 87Rb, and it is to be 

noted from Fig. 2c that the light-shift curve corresponding to the 52S1/2(Fg=1) – 52P3/2(Fe=0) 

transition appears to be absent.  In other words, when perturbing the atom with light of this 

frequency, the dispersion-like nature of the light shift for the 0-0 ground-state hyperfine transition 

does not exist.  The explanation of this striking observation again points to the importance of the 

tensor light shift.  Specifically, as illustrated in Fig. 3, for linearly polarized light the angular 

momentum couplings are such that the scalar light shift and tensor light shift nearly cancel. 

Consequently, around the 52S1/2(Fg=1) – 52P3/2(Fe=0) transition the light shift is a slowly varying 

function of laser frequency.  In particular, near this optical resonance the scalar light shift (by itself) 

predicts that the resonant frequency of the 0-0 hyperfine transition will rapidly change with 

perturbing laser frequency: d[LS]/d = 1.310-12/MHz (for a laser power of ~ 102 pW/cm2).  

However, by virtue of the tensor light shift the actual variation of clock frequency with laser 

detuning will be roughly 102 times slower: d[LS]/d = 1.010-14/MHz.    

These observations illustrate the importance of the tensor light shift, which only contributes 

to the total light shift if the excited state hyperfine structure is resolved, and if the perturbing light is 

non-isotropic.  To date there have been few accurate measurements of the near-resonant light shift 

for the alkali D2 transitions when the tensor contribution to the light shift might be expected to play 

a significant role (see for Example Ref. [20]), and none have tested theoretical predictions to a 

satisfactory quantitative level.  In part, the lack of tensor light shift study can be traced to the fact 

that historically light-shift measurements have been most commonly made in hot atomic vapors, 

where Doppler broadening is larger than (or as large as) the excited-state hyperfine splitting.  

Recently, however, Levi et al. [7] were able to test the tensor light shift produced by a laser tuned 

near the 87Rb D1 transition in a hot atomic vapor, since the excited-state hyperfine splitting for the 

52P1/2 state in 87Rb is ~800 MHz, while the linewidth of the transition (FWHM) including 

collisional and Doppler broadening is often less.  In their experiment, Levi et al. were able to 
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resolve the two hyperfine components of the D1 transition, and test light shift theory including the 

tensor light shift.   

In the present work we accurately measure the light shift in cold atoms using a Cs fountain 

clock, where the excited-state hyperfine splittings (~102 MHz) are easily resolved, being limited by 

the natural linewidth of the optical transition (i.e., 5.2 MHz) and an insignificant degree of Doppler 

broadening (i.e., ~ 30 kHz).  More to the point, since the angular momentum coupling in 133Cs 

(between the electronic P3/2 state and the I = 7/2 nucleus) is richer than the coupling in 87Rb 

(between the electronic P1/2 state and the I = 3/2 nucleus), the present experiment offers an 

important continuation of the work of Levi et al. [7].  Further, as we will discuss subsequently, ac 

Stark shift experiments in cold-atom fountains offer a unique testbed for investigating fundamental 

issues in atomic physics.   

III. Experiment 

The measurement of the light shift was done with ITCsF2, a cryogenic Cs fountain routinely 

used to calibrate the national and international time scales: UTC(IT) and TAI.  Though not designed 

specifically for the purpose of ac Stark shift investigations, the device is nonetheless well suited to 

that purpose.  Since ITCsF2 was extensively described previously [21], we will not repeat that 

description here.  However, we briefly note that atom cooling and trapping is performed in pure 

linlin molasses in (1,1,1) spatial orientation, where no trapping laser is present along the vertical 

axis. Instead, along this axis there is a “blasting” laser, which state selects the atoms, removing all 

atoms in Fg = 4, after a microwave pulse has transferred part of the launched atoms into the state 

|Fg=3, M=0.  This laser beam (similar to all the others) is delivered to the fountain structure by 

means of polarization maintaining optical fiber.  Acousto-optic modulators (AOMs) and shutters are 

used to extinguish all the laser light during the clock’s operation.  The fountain accuracy is 

measured as 1.710-16, while its stability is typically σy(τ)  2.510-13/τ1/2 out to averaging times 

beyond 105 seconds. 
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For the purposes of ac Stark shift measurements, a perturbing laser (PL) is added to the 

optical system, which is not present (obviously) when the fountain operates as a clock. In Fig. 4 the 

scheme of the experiment is given. The PL is a narrow linewidth Ti:Sapphire laser that can be 

locked to any of the optical transitions of the Cs D2 manifold, which are observed in a low pressure 

Cs cell with saturated absorption spectroscopy.  The frequency of the PL is scanned across the 

various D2 transition’s hyperfine components with a pair of double-pass AOMs, which are aligned 

to provide positive and negative frequency shifts.  The first AOM works at a fixed frequency, 

providing a laser frequency shift of 85 MHz, while the second is stepped across any one of the D2 

hyperfine components with a frequency step size of 250 kHz.  This provides a PL frequency sweep 

across resonance of between 75 and 95 MHz. 

An optical fiber is used between the AOM and the fiber coupler that delivers PL light into 

the fountain.  At the fiber output, the laser power is actively stabilized and then attenuated, so that 

all effects of AOM mode distortion and laser pointing are virtually eliminated before the PL light is 

coupled into the fountain.  In particular, before the last fiber coupler the power of the PL is 

electronically set and stabilized to a fixed value in order to avoid amplitude fluctuations arising 

from AOM efficiency changes (Photodiode #1, or Ph1). Then the PL is further attenuated by means 

of optical density filters to deliver between a few hundred picowatts and a few nanowatts of light 

into the fountain.  

To produce the AC stark shift, a short (100 msec) PL pulse is shone onto the atoms when 

they are almost at rest near the apogee of their motion in the fountain.  At all other times, the PL is 

electronically and mechanically switched off so that the cold atoms experience no perturbation.  To 

compensate for the laser absorption that must take place inside the fountain loading region, where 

the Cs density is higher than the cold-atom cloud at apogee, the power incident on the atoms is 

measured with a photodiode placed on top of the fountain drift tube (Photodiode #2, or Ph2), which 

has a length of about one meter. The signal from this photodiode is proportional to the laser 

intensity perturbing the cold-atom sample. To avoid spurious effects in the measurements of the 
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frequency shift, the power of the PL laser is attenuated to produce negligible optical pumping (i.e., a 

negligible rate of real transitions).  Typically, all measurements are performed with a PL power that 

produces less than 1% of any optical-pumping effect with the laser tuned to the Fg = 4  Fe = 4 

transition.  As will be discussed further below, we note that a reduction of the PL power by a factor 

of five resulted in a reduction of the measured light shift by the same factor.  Further, the ratios 

between the various optical hyperfine transition light-shift magnitudes (including the cycling 

transition Fg = 4  Fe = 5) were unaffected by the PL power reduction.   

In a very real sense, cold-atom fountains represent a nearly ideal system for the study of 

light shifts.  In the first place, the perturbing field is spatially and temporally distinct from all other 

electromagnetic fields affecting the atoms in the fountain.  Thus, taking the difference between the 

fountain clock frequency with and without the PL provides a direct and unambiguous measurement 

of the ac Stark shift.  Further, because the PL is distinct from the fountain’s operation, it can be a 

field of any type: it can be a coherent field state (well approximated by the singlemode Ti:Sapphire 

laser employed here); it could be a multimode field mimicking a classically chaotic field [22], or it 

could even be a non-classical (i.e., squeezed) field.  Additionally, the PL is the only field perturbing 

the atoms; there are no trapping fields present at the moment of PL perturbation to complicate data 

interpretation.  Finally, in their center-of-mass reference frame the probed atoms are nearly 

motionless (i.e., T ~ 1 K).  Clearly, this implies that the atomic sample is essentially collisionless, 

aiding in the comparison between theory and experiment.  Additionally, however, it implies that 

when the cold-atom cloud is at apogee each individual atom is effectively in the same local inertial 

reference frame as the PL source.  Specifically, for a temperature of 1 K the mean thermal speed 

of the Cs atoms relative to the center-of-mass motion of the cloud is only ~ 1.3 cm/sec (i.e., vth/c ~ 

510-11).   
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IV. Results 

Figure 5 shows the peak-to-peak fractional frequency light shift for the Fg = 4 to Fe = 4 

transition as a function of PL power, P.  Two least squares fits to the data are shown: the solid line 

is a linear fit (i.e., LS = 1P+0), while the dashed line is a quadratic fit (i.e., LS = 

2P
2+1P+0).  Performing a regression F-test, we found no evidence that the quadratic fit was 

better than the linear fit.  Briefly, computing the standard error of the residuals about the linear 

regression line, -2108.06   
and the quadratic regression line, -2104.22  

, we obtained 

F(5,4) = 3.65.  Comparing this to the critical value of F for a type-I error probability of 0.05 (i.e., 

6.26), the null hypothesis of 2 = 0 could not be rejected with a 95% (or better) confidence level.  

Stated differently, the data of Fig. 5 are consistent with 2nd-order perturbation theory (i.e., LS ~ 

P), and show no statistically meaningful evidence of higher-order perturbation effects.        

Figure 6 shows the main results of the present work, light-shift curves for the 133Cs ground-

state 0-0 hyperfine transition as the PL is scanned across the six optical hyperfine components of 

the D2 manifold.  Consistent with expectations for a several hundred picowatt probe laser (see Fig. 

1), the magnitudes of the measured light shifts are in line with theoretical expectations.  However, 

we are not so much interested in the absolute magnitude of the light shift, since our measurement of 

the PL power perturbing the atoms is not sufficiently well known. The exact laser intensity 

distribution, the intensity losses in the window, and spurious reflections inside the vacuum chamber 

are not precisely known and cannot be easily assessed. In fact, the photodiode at the top of the drift 

chamber (Ph2) has no collection optics, since it was originally designed to simply align the blast 

laser beam along the fountain’s vertical axis.  Consequently, we expect that there could easily be a 

50% error in the absolute power of the PL perturbing the cold-atom sample. 

In the present work, a more important theoretical parameter for test is the relative amplitude 

of the ac Stark shift, since this is insensitive to systematic effects arising from PL power 

determinations.  Specifically, as illustrated in Fig. 1, the relative amplitudes of the light-shift curves 
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for the six transitions of the D2 manifold depend on a balance of scalar and tensor light shift terms, 

which varies significantly from optical hyperfine transition to optical hyperfine transition. Thus the 

relative amplitudes of the light-shift curves for the various optical hyperfine transitions of the D2 

manifold provides a fairly strict test of theory. 

Table 1 shows the ratios of various peak-to-peak light shifts using the data from Fig. 6, and 

compares those ratios to theoretical expectations.  (Values in parentheses are uncertainties in the 

least significant figure.) Clearly, the agreement is quite good, and well within the experimental 

uncertainty.  In particular, considering the root-mean-square difference between theory and 

experiment, the agreement is at the level of 7.610-2.  However, it is possible to go a bit further in 

testing theory, and in particular the tensor shift’s contribution to the overall light shift.   

 

6
2
S1/2  6

2
P3/2 Transitions Measured Ratio Theory Ratio Difference 

{Fg = 4 Fe = 4}/{Fg = 3 Fe = 3} 0.83(7) 0.82 1.2% 

{Fg = 4 Fe = 5}/{Fg = 4 Fe = 4} 1.22(8) 1.15 6.1% 

{Fg = 4 Fe = 3}/{Fg = 4 Fe = 4} 0.13(2) 0.14 7.1% 

{Fg = 3 Fe = 4}/{Fg = 3 Fe = 3} 0.38(4) 0.40 5.0% 

{Fg = 3 Fe = 2}/{Fg = 3 Fe = 3} 0.43(4) 0.38 13.2% 

Table 1: Relative peak-to-peak magnitudes of the various light-shift curves for the 133Cs D2 

transitions.  The measured ratios were taken directly from the experimental data without least 

squares fitting. 

 

In Fig. 6, the solid lines through the data represent best fits of theory to experiment with one 

free parameter for each light-shift curve: the magnitude of the ac Stark shift.  The fits were 

restricted to  6 MHz around the optical hyperfine resonance.  For completeness, we note that the 

ratios of the various light-shift curve amplitudes obtained from the least squares fits are in complete 

agreement with the values given in Table 1.  The Table 1 values, however, were obtained directly 

from the experimental data without any theoretical assumptions (i.e., curve fitting).  To account for 
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residual Doppler broadening in our cold-atom sample (i.e., T = 1 K  Doppler = 23 kHz), we 

replaced R(+) in Eq. (9a) with the plasma dispersion function, Z(+) [6].  Additionally, we set A 

= 5.16 MHz and assumed a PL linewidth of 100 kHz (FWHM).  For all six light-shift curves the 

agreement between theory and experiment is excellent.  Specifically, considering the residuals for 

all six fits, and normalizing these residuals to the largest peak-to-peak ac Stark shift in the D2 

manifold (i.e., 1.9410-12, which corresponds to the Fg = 4  Fe = 5 transition), the agreement 

between theory and experiment is at the 2.210-2 level.  This represents roughly a factor of two 

improvement in experiment/theory agreement over the results of Levi et al. in a hot atomic vapor 

[7], and in some sense represents a more stringent test given the richer influence of the tensor light 

shift in the 133Cs fountain ac Stark shift measurements. 

The dashed curves in Fig. 6 correspond to the theoretical scalar light shift.  Taking the 

difference between the experimental data and the scalar light shift, we obtain an estimate of the 

tensor light shift for all six transitions of the D2 manifold; this is shown in Fig. 7.  Solid lines in this 

figure correspond to the theoretical prediction of the tensor light shift, and as is readily apparent the 

experimental data are in excellent agreement with theory.  In particular, theory predicts that for a set 

of transitions originating from the same Fg level, the sign of the tensor light shift will scale like 

(1)Fe, and this is indeed verified.    

V. Discussion 

In the present work we have tested light-shift theory for a D2 transition (i.e., n2S1/2 – n2P3/2) 

using ac Stark shift measurements in a cold-atom 133Cs fountain, where the tensor polarizability’s 

contribution to the ac Stark shift cannot be ignored and is more complex than for the D1 transition 

(i.e., n2S1/2 – n2P1/2).  After verifying the quadratic nature of the ac Stark shift with field amplitude, 

we examined the ratios of the various light-shift curve magnitudes in the D2 manifold.  Our 

agreement with theory at the level of 810-2 provided one successful test of light-shift theory (i.e., 

Table I).  We also examined the fit of the light-shift curves to theory, obtaining agreement between 
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theory and experiment at the 210-2 level (i.e., Fig. 6).  Finally, removing the scalar light shift from 

the experimental data, we were able to observe the tensor light shift alone, and its agreement with 

theory was very good as well.  Taken together, the results of the present work represent one of the 

few close examinations of the tensor shift’s precise contribution to the ac Stark shift.  

Clearly, the accuracy of the light-shift measurements reported here could be improved in 

future work, providing for more stringent tests of theory.  Most notably, our fountain clock is 

limited by white frequency noise out to at least 105 seconds [21].  Thus, constrained only by the 

duration of the measurements, the signal-to-noise ratio apparent in Fig. 6 could be improved by at 

least one order of magnitude without having to increase the actual magnitude of the light shift.  

However, beyond “pushing the limits,” our demonstration of accurate light-shift measurements in a 

cold-atom fountain opens up possibilities for investigating fundamental questions of atomic 

physics.   

Comparing the noise shown in Fig. 6 for the Fg = 4  Fe = 3 transition (i.e.,  0.0510-12) 

with the measured peak-to-peak magnitude of the ac Stark shift for the Fg = 4  Fe = 5 transition 

(i.e.,  1.910-12), we presently have a relative measurement inaccuracy of 2.610-2 for a single ac 

Stark shift measurement.  If we simply average for a period 102 times longer, and employ a field 10 

times more intense to create a larger ac Stark shift (which would appear viable given Fig. 5), then 

the measurement inaccuracy for a single measurement drops to ~ 10-4.   At such a level one can start 

to ask fundamental questions of AMO physics.  For example, Eqs. (8) and (9) imply that the 

perturbing field’s character only enters the ac Stark shift through the field’s energy ( i.e., |Eo|
2) and 

the field’s first-order correlation function (i.e., Re[R(+)]).  However, one might imagine photon 

bunching/anti-bunching to give rise to subtle ac Stark shift effects (perhaps at the level of 10-4), 

which are not manifested in Eqs. (8) and (9).   

Regardless of future novel ac Stark shift experiments, for the present we intend to improve 

our measurement accuracy, and further our examination of the ac Stark shift induced by a narrow-
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band singlemode field.  In particular, we will be interested in examining the effect of laser 

polarization (circular vs. linear) on the ac Stark shift of the 0-0 hyperfine transition, and the role of 

polarization in the manifestation of the tensor light shift for the |Fg = 3, Mg = 0  |Fg = 4, Mg = 0 

transition, as well as the |Fg  = 3, Mg = 1  |Fg = 4, Mg = 1 transitions.  
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Figure Captions 

 

Figure 1: Theoretical ac Stark shift curves for the 0-0 hyperfine transition in a 133Cs fountain.  The 

perturbing laser is tuned near the D2 transition, and the light shift is given in terms of 

fractional frequency: (a) scalar light shift; (b) tensor light shfit; (c) total light shift.  

Figure 2: Similar to Fig. 1, but for the D2 transition of 87Rb at 780 nm.  Notice that here the splitting 

between the two manifolds of light-shift “resonances” is 6.8 GHz corresponding to the 

ground-state hyperfine splitting of 87Rb.  

Figure 3: For 87Rb, closer examination of the scalar and tensor contributions to the light shift for the 

D2 transition.  Notice that for Fe = 0, the scalar and tensor contributions effectively cancel, 

so that the light shift changes very slowly with PL frequency near this transition. 

Figure 4: Schematic of the experiment. The PL is locked to saturated spectroscopy dips observed in 

a low pressure Cs vapor cell. After the locking a pair of AOMs shift the PL frequency in 

different directions, so that by control of the second AOM we can perform a frequency scan 

across the optical transitions. Photodiode #1 (Ph1) is used to amplitude stabilize the 

perturbation pulse, while Photodiode #2 (Ph2) is used as a monitor of the real power 

impinging on the atoms. 

Figure 5: ac Stark shift as a function of PL power.  The solid line is a linear least squares fit, while 

the dashed line is a quadratic fit in PL power. 

Figure 6: ac Stark shift curves for the six hyperfine components of the 133Cs D2 transition. 

Figure 7: Tensor light shift curves for the six hyperfine components of the 133Cs D2 transition. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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