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Abstract. The unique properties of the quantum Hall effect allow one to
revisit traditional measurement circuits with a new flavour. In this paper we
present the first realization of a quantum Hall Kelvin bridge for the calibration
of standard resistors directly against the quantum Hall resistance. The bridge
design is particularly simple and requires a minimal number of instruments. The
implementation here proposed is based on the bridge-on-a-chip, an integrated
circuit composed of three graphene quantum Hall elements and superconducting
wiring. The accuracy achieved in the calibration of a 12 906 Ω standard resistor
is of a few parts in 108, at present mainly limited by the prototype device and
the interferences in the current implementation, with the potential to achieve few
parts in 109, which is the level of the systematic uncertainty of the quantum Hall
Kelvin bridge itself.
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1. Introduction

Highest-accuracy (10−9 level) bridges are based on
the cryogenic current comparator (CCC) [1]. A CCC
bridge operates in a low-noise, low-magnetic field liquid
helium cryogenic environment independent from the
one where the QHE is realized. To date, no competitive
operation of a CCC in a cryogen-free environment
has been demonstrated. Dedicated room-temperature
DC current comparator (DCC) bridges can also be
employed, though with limitations on the available
resistance ratios (for instance, only the RH : 1 kΩ ratio
might be available for the measurement of RH), ratio
errors at the 10−8 level, and low current in the QHE
device [2]. Both CCC and DCC bridges are expensive
instruments.

In [3] we introduced the design of a direct
current (DC) quantum Hall Kelvin bridge for the
direct calibration of standard resistors. Here we
present a bridge-on-a-chip implementation: the core
is an integrated circuit composed of three quantum
Hall effect (QHE) elements fabricated using epitaxial
graphene on a SiC substrate and interconnected by a
NbTiN superconducting wiring layer [4,5]. Each QHE
element of the chip constitutes an arm of a Kelvin
bridge; the fourth arm is given by the resistor under
calibration. The bridge network is completed with
inexpensive commercial room-temperature electronic
instrumentation: a current generator and a digital
voltmeter.

The conditions of temperature and magnetic field
necessary to achieve quantization in graphene are
less demanding than those of conventional GaAs
devices [6–8]. The operation of graphene QHE
devices in small-size dry cryostats was demonstrated [9,
10]. Therefore, the herewith presented bridge-
on-a-chip has the potential to become a tabletop,
continuously-operating QHR calibration system that
does not require further high-accuracy commercial
instrumentation.

The design of the bridge-on-a-chip stems from
a schematic diagram proposed by Delahaye [11,
figure 7], and later implemented in [12, 13], to test
the reproducibility of the quantized Hall resistance
(QHR). The operation of the bridge exploits the
peculiarities of the QHE effect as a circuit element [14]:
multiple connections [11] minimize the effect of
cable resistances, and mimic the behaviour of the
combining network of a conventional Kelvin bridge [15,

section 4.6.3.4].
National metrology institutes (NMI) exploit the

QHE as a realization of the unit of resistance [16,
appendix 2]. The typical NMI traceability chain
involves an experiment with a single QHE element
in which a resistance bridge compares the quantized
resistance RH ≈ 12 906.4 Ω with the resistance of the
artifact standard under calibration. The resistance
standards of interest have nominal values in decadal
sequence (100 Ω, 1 kΩ, . . . ) or equal to RH [17, 18].

Section 2 presents the theory of operation
of the bridge. Section 3 describes the device
and its characterization. Section 4 describes the
implemenetation of the experiment in the laboratories
of the National Institute of Standards and Technology
(NIST), Gaithersburg, MD, US. Sections 5 and 6
develop a detailed circuit model of the whole electrical
network to evaluate the measurement uncertainty. The
results reported in section 7 show that the bridge
can calibrate a resistor having nominal value RH

with a relative uncertainty of a few parts in 109,
thus comparable with that of the CCC bridge [2]
employed during the validation measurements. As
finally discussed in section 8, the bridge-on-a-chip
concept can be extended to include quantum Hall
array resistance standards [19,20] in place of individual
elements, thus allowing the calibration of resistance
standards having nominal values different from RH,
like decadal ones.

2. Theory of operation

Figure 1 shows the principle schematic of the bridge.
The ratio arm is composed of the two QHE elements
U2 and U3; the opposite arm is composed of the QHE
element U1 and of the four-terminal resistor under
calibration Rx = RH(1 + x), x being the relative
deviation ofRx fromRH. The bridge excitation current
is I. The bridge operates in the deflection mode, that
is, the measurand x is related to the bridge imbalance
voltage VD.

The QHE elements are joined by multiple
connections [11]: U1, U2 and U3 are connected by
triple-series and -parallel connections; U1 and U3 are
connected to Rx by a double-series connection between
the current terminals and a single connection between
the voltage terminals.

In figure 1, we considered, as an example, that
all blue elements are implemented in a single device
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Figure 1. Principle schematic of the Kelvin bridge, adapted
from figure 1 of [3] to match the implementation presented in
section 4. The QHE elements U1, U2 and U3 are interconnected
by triple-series and -parallel connections. The four-terminal
resistor under calibration Rx is connected to U1 and U3 by a
double series connection between the current terminals and a
single connection between the voltage terminals. I is the bridge
excitation current and Ix is the current fraction crossing U1 and
Rx. V = RHIx is the voltage drop across U1 and VD is the bridge
imbalance differential voltage. Thick blue elements represent the
device; thin red elements and connections are external to the
device.

Figure 2. Bridge equivalent circuit in the ideal case. R1, R2

and R3 are the resistances of the QHE elements U1, U2 and
U3, respectively. V , V2 and V3 correspond to the Hall voltages
across U1, U2 and U3. Vx is the voltage across the resistor under
calibration Rx. The orange-highlighted 8-shaped path γ is a
suitable path for the derivation of the bridge model.

and interconnected therein. The red colour, instead,
identifies the four-terminal resistor under calibration
and its connections to the QHE elements. The current
I splits between the two bridge arms and Ix is the
current crossing U1 and Rx, such that V = RHIx is
the Hall voltage measured across U1.

Figure 2 shows the bridge equivalent circuit in the
ideal case, with zero lead and contact resistances, and
infinite leakage resistances. Applying the Kirchhoff’s
voltage law to the 8-shaped path γ yields

−V3 + VD − V + V2 + VD + Vx = 0. (1)

Taking into account that Vx = (Rx/R1)V and that for
ideal QHE elements R1 = R2 = R3 and V2 = V3, we
obtain the measurement model in the ideal case:

x = −2
VD
V
. (2)

3. Bridge-on-a-chip description and
characterization

In general, the bridge-on-a-chip can be implemented
with any type of QHE elements (e.g., GaAs or

graphene) and with conventional double- or triple-
connections, according to the schematic of figure 1.

Here, the bridge was implemented using a
prototype quantum Hall array resistance standard
(QHARS) composed of three multiple-series and
parallel interconnected graphene Hall bars. To reduce
the effect of contact resistances, split contacts are
applied as described in [4]. Furthermore, the array
elements use superconducting interconnections that
do not have ohmic resistance and do not suffer from
magnetoresistance. This allows the potential contacts
to be directly connected to the current path, making
the QHARS as precise and stable as single-element
quantized Hall resistance standards [5]. Exploiting the
superconducting interconnections, this kind of device
differs from a conventional one for being crossover free.
Both the split contacts and the interconnections are
made of NbTiN.

Figure 3 shows the mounted sample and the design
details of the array device. In figures 3(b) and (c),
the sample characterization by confocal laser scanning
microscopy [21] shows the NbTiN interconnections and
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Figure 3. (a) The sample was mounted and contacted
using a TO-8 header such that only three in series connected
devices were active for the measurements. (b) The modified
optical microscope image shows design details of the crossover-
free multiple connection in the highlighted region of (a).
By using superconducting NbTiN, ohmic resistances and
magnetoresistance contributions in the interconnections are
avoided. (c) The confocal laser scanning microscope image
indicated in (b) shows the split contact geometry as a part
of the multiple connection that rejects the influence of contact
resistances.
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Figure 4. Preliminary characterization of the array device at
30 µA and 1.6 K. The plot shows the magnetic field dependence
of the Hall resistance RH (solid lines, left axis) and longitudinal
resistance Rxx (dashed lines, right axis) of U1 (thick blue) and U3

(thin red). In the legend, V (i, j) represents the voltage measured
across the terminals i and j of figure 3, while I(l,m) represents
the current entering into terminal l and exiting from terminal
m.

split contacts as well as the structured monolayer
graphene Hall bar.

The graphene growth process that applies a
combination of face-to-graphite (FTG) and polymer-
assisted sublimation growth (PASG), and the device
fabrications process are thoroughly described in
previous works [4, 7, 22, 23]. For charge carrier density
control, the graphene was functionalized with Cr(CO)3
after device fabrication in a purpose-built deposition
chamber [24].

Figure 4 shows a preliminary characterization of
the array device at about 1.6 K performed with a
lock-in amplifier system. The individual magnetic
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Figure 5. Relative deviation of the Hall resistance RH

from the nominal value of U1, U2 and U3 at 9 T, 1.6 K
and different nominal current values Ix (37.5 µA, 50 µA,
75 µA and 100 µA). For the elements U1 and U2 there
are reported the measurements performed with two different
terminal configurations. At overlapping points a small horizontal
offset has been introduced to improve readability. The plot
shows the expanded uncertainties (k = 2).

field dependence of the Hall resistance RH and of
the longitudinal resistance Rxx of U1 and U3 were
measured in the four-terminal resistance measurement
configuration with a current of about 30 µA for each
QHE element. In the legend of figure 4, V (i, j)
represents the voltage measured across the terminals
i and j of figure 3, while I(l,m) represents the current
entering into terminal l and exiting from terminal m.

The measurements of RH and Rxx for both of these
devices (U1 and U3) are asymmetric with respect to
the magnetic field direction, with a plateau starting
around B = ±3 T. When the magnetic field direction
is positive, both the elements exhibit the typical
behaviour of RH and Rxx. Instead, when the magnetic
field is reversed, the behaviour of Rxx and RH is
atypical for both elements due to the different current
paths caused by the position of the measurement
terminals and the multiple-connections between the
devices [4].

Figure 5 shows, at 9 T and 1.6 K, the relative
deviation of the Hall resistance RH from the nominal
value of U1, U2 and U3 for different values of the current
Ix injected in each QHE element. The traceability of
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Figure 6. Longitudinal resistances Rxx measurements of U1

and U3 at 70 µA, 1.6 K and 9 T.

the measurement is obtained by comparing the Hall
resistances with a room-temperature 100 Ω resistance
standard (Electro Scientific Industries ESI SR102‡)
calibrated against a GaAs QHR with a binary
cryogenic current comparator (BCCC) bridge [25].
The plot reports also the expanded uncertainties with
coverage factor k = 2. The deviation increases with the
current because of the self-heating. For currents up to
75 µA, that is, within the range usually employed in
the calibrations, the quantized Hall resistance has a
deviation less than 20 nΩ Ω−1. For U1 and U2 there
are reported the measurements performed with two
different terminal configurations.

Figure 6 shows more accurate measurements at
70 µA, 1.6 K and 9 T of the longitudinal resistance
Rxx of U1 and U3 by using an analog nanovoltmeter
and a current reversal measurement technique to
eliminate offsets. The resistances are zero within
the measurement uncertainty, RU1

xx = (31± 49) µΩ
and RU3

xx = (7± 64) µΩ. Here the uncertainty bars
represent the standard uncertainty.

4. Experimental setup

The bridge operates in a cryogenic system at about
1.5 K and at a magnetic flux density of 9 T.

Figure 7 shows the implementation of the bridge:
the blue elements and connections represent the device
as described in section 3; the red element and
connections represent the four-terminal resistor under

‡ Commercial equipment, instruments, and materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Institute
of Standards and Technology or the United States government,
nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.
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Figure 7. Schematic of the bridge implementation representing
the crossover-free multiple connections.

calibration and its connections with the device and
current source; and the green elements represent the
voltmeter used to measure the bridge voltages.

The connections are labelled with numbers
corresponding to the wire-bonded TO-8 holder pins,
shown in figure 3.

The four-terminal resistor under calibration is a
12.9 kΩ NIST resistance standard (NIST ESI SP036),
kept in a temperature-controlled oil bath at 25 ◦C. The
standard resistor is located in a different laboratory
and connected to the bridge through long shielded
cables at junction terminals A, B, C and D. The
distance between the junction terminals and Rx is of
about 10 m.

The bridge excitation current I is generated by an
Adret 103A direct current and voltage standard. The
voltages V and VD are alternatively measured with
an Agilent 34420A nanovoltmeter manually switched
between the two positions.

The measured data are acquired with an applic-
ation developed under the National Instruments Lab-
view environment.

5. Error sources

We list and analyze here the error sources affecting
the bridge measurement, and for each error source
we construct a suitable mathematical model. The
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individual error terms are collected in section 6 into
a complete measurement model, which is then used in
section 7 to evaluate the uncertainty.

We discuss first the errors due to the bridge
network and instrumentation, that is, bias and drift,
voltmeter error, lead, contact and leakage resistances.
These errors depend on the practical implementation of
the bridge and exist also with ideal QHE elements. We
discuss last the error caused by the possible imperfect
quantization of the QHE devices. This error mainly
depends on the device fabrication and the operating
conditions.

The effects of lead, contact and leakage resistances
are analyzed with the computer method presented
in [26, 27] which directly yields the analytical
expression of the errors.

5.1. Bias and drift

The readings of the bridge voltages may be biased due
to the thermoelectric voltages in the bridge circuit and
to the voltmeter residual offset and bias current. This
bias may also drift with time. Bias and drift can be
removed by periodically reversing the bridge excitation
with a suitable pattern [28,29].

In this work, the excitation current I is
periodically reversed with the sign pattern − + +−,
yielding associated raw readings V read,1

D (−), V read,2
D

(+), V read,3
D (+) and V read,4

D (−). The reading V read
D

of the imbalance voltage is obtained by combining the
raw readings as

V read
D =

1

4
(−V read,1

D + V read,2
D + V read,3

D − V read,4
D ). (3)

Similarly, for the Hall voltage,

V read =
1

4
(−V read,1 + V read,2 + V read,3 − V read,4). (4)

The above pattern removes bias and first-order
drift [28, 29].

It is worth noting that if there is an asymmetry
between positive and negative excitation, this can
be assimilated to a bias with respect to the mean
excitation and thus removed by (3) and (4), provided
indeed that the mean excitation is sufficiently stable
between the measurement phase of VD and that of V .

5.2. Voltmeter error

Let VD be the bridge imbalance voltage for positive
excitation and −VD that for negative excitation. For
the measurement of VD, we assume that the voltmeter
systematic error can be decomposed into a gain error
gD, an offset error VD,OS and a nonlinearity error ∆V ±

D

V read
D

VD

VD,OS

∆VD

Figure 8. Voltmeter transfer characteristic relating the
imbalance voltage VD to the voltmeter reading V read

D : the
solid black curve represents the voltmeter transfer characteristic;
the solid red line represents a linear approximation with slope
1 + gD and offset ∆VD,OS; and the dashed red line with unit
slope represents the ideal transfer characteristic. The vertical
deviation between the linear approximation and the transfer
characteristic is the nonlinearity error ∆VD.

(figure 8), so that for the readings in the pattern
−+ +− we can write

−VD = (1 + gD)V read,1
D + VD,OS −∆V −

D ,

VD = (1 + gD)V read,2
D + VD,OS −∆V +

D ,

VD = (1 + gD)V read,3
D + VD,OS −∆V +

D ,

−VD = (1 + gD)V read,4
D + VD,OS −∆V −

D .

(5)

Combining the above equations as in (3) yields

VD = (1 + gD)V read
D −∆VD, (6)

with ∆VD = (∆V +
D − ∆V −

D )/2. The terms gD
and ∆VD can be assumed to have zero value with
uncertainties that can be evaluated from the voltmeter
specifications.

Similarly, for the Hall voltage, we can write

V = (1 + g)V read −∆V. (7)

Generally, the voltmeter is used for the measurement
of ∆VD and V in two different ranges, and the
quantities gD, g, ∆VD and ∆V can be thus considered
uncorrelated.

5.3. Lead and contact resistances

Figure 9 shows an equivalent circuit representing the
most significant lead and contact resistances of the
implemented bridge. Lead resistances from the bridge-
on-a-chip to the junction terminals A, B, C and D
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Figure 9. Bridge equivalent circuit representing the most
significant lead and contact resistances (contact resistances are
incorporated into lead resistances). Letter subscripts identify
the lead resistances associated to the four-terminal resistor under
calibration; number subscripts identify the resistances associated
to the connections to the cryogenic system.

are labelled from r1 to r6; lead resistances from the
junction terminals to Rx are labelled from ra to rd.

Assuming lead resistances much less than RH, the
analysis of this circuit according to [26, 27] yields the
relationship

x = −2
VD
V
−∆xleads (8)

with

∆xleads =
1

R2
H

[ra(rb − r1) + (rc + r4)rd]

+O

(
rmax

RH

)3

, (9)

where rmax is the maximum lead resistance of a
connection and the big O notation specifies the limit
on the growth rate of the higher-order terms.

The error term ∆xleads depends at second order on
the lead resistances r1, ra, rb, rc + r4, and rd. Instead,
the resistances r2, r3, r5 and r6 contribute only at third
order, as expected from a triple-series connection [11].

Conventional Kelvin bridges include, in addition
to the main voltage ratio arm—R2 and R3 of figure 2—
the Kelvin arm, a network of two additional resistors
combining [30] the potentials at the low-voltage
terminals (not shown in figure 2) of R1 and Rx.

Looking at figure 9, terminal 1 of U1 takes a role
analogous to the low-voltage terminal of R1; rb and
r1 constitute a Kelvin arm for the voltage drop on ra.
The term ra(rb − r1) in (9) models the contribution
to ∆xleads caused by the imbalance of this Kelvin
arm. It is worth mentioning that, with respect to
a conventional Kelvin bridge, the imbalance of the
Kelvin arm has a second order effect on ∆xleads due
to the properties of the QHE, which scale down the
current in the Kelvin arm.

5.4. Leakage resistances

Figure 10 shows the bridge equivalent circuit with
the leakage resistances of interest: RCL represents the
resistance from the voltmeter low terminal to ground,
including the interconnection leakage resistances and
the voltmeter common-mode resistance; likewise, RCH

represents the resistance from the high terminal to
ground; and RD represents the voltmeter differential
resistance. The voltages VDL and VDH are, respectively,
the voltage of the low and high voltmeter terminals
with respect to ground, so that VD = VDH − VDL.

The effect of leakage resistances is usually nulled
by keeping VDL ≈ VDH ≈ 0 either by directly grounding
VDL or by means of a Wagner ground. This was
not possible in the experiment described here due to
ground interferences between the laboratory hosting
the bridge and that hosting the standard resistor. We
therefore adopted a different approach: the ground is
switched between the low (IL in figure 10) and the high
(IH in figure 10) terminals of the current source and
the voltmeter readings are averaged, thus cancelling
the effect of leakage resistances at first order.

Let VD and V be now, respectively, the average
imbalance and Hall voltages. The analysis of the circuit
of figure 10 yields the relationship

x = −2
VD
V
−∆xleak (10)

with

∆xleak = 2
VD
V

(
RH

2RCL
+

3RH

2RD

)
− RH

RCL

(
RH

RCH
− RH

2RCL

)
. (11)

Leakage resistances thus cause both multiplicative and
additive errors.

5.5. Imperfect quantization

With reference to figure 2, we here consider the possible
imperfect quantization of the QHE elements by setting
R1 = RH(1 + x1), R2 = RH(1 + x2) and R3 =
RH(1 + x3). The relative deviations x1, x2 and x3
of the resistances from RH represent the quantization
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Figure 10. Bridge equivalent circuit representing the leakage
resistances of interest. IL and IH represent the low and
high terminals of the current source, which are alternatively
connected to ground to reduce the effect of leakage resistances.

errors. The voltages V , V2, V3 and Vx of (1) can be
written as

V = RH(1 + x1)Ix,

V2 = RH(1 + x2)(I − Ix),

V3 = RH(1 + x3)(I − Ix),

Vx = RH(1 + x)Ix.

(12)

By substituting the above expressions into (1) and
simplifying, we obtain

RH(I − Ix)(x2 − x3) +RHIx(x− x1) + 2VD = 0. (13)

Since all terms in (13) are at first order in x, x1, x2 and
x3, the currents Ix and (I − Ix) can be approximated
at the zeroth order, that is,

RH(I − Ix) ≈ RHIx ≈ V. (14)

Therefore, with this assumption, we obtain the
relationship

x = −2
VD
V
−∆xquant (15)

with

∆xquant = −x1 + x2 − x3. (16)

6. Measurement procedure and model

According to the discussion of the previous section, in
particular for the minimization of the effect of leakage
resistances, we adopt the following measurement
procedure for a single measurement (all readings
are obtained by periodically reversing the excitation
current I according to the pattern −+ +−):

(i) Ground the current source low terminal.

(ii) Record repeated readings of VD and compute their

average V read,low
D .

(iii) Record repeated readings of V and compute their
average V read,low.

(iv) Ground the current source high terminal.

(v) Record repeated readings of VD and compute their

average V read,high
D .

(vi) Record repeated readings of V and compute their
average V read,high.

(vii) Compute the averages V read
D = (V read,low

D +

V read,high
D )/2, V read = (V read,low + V read,high)/2

and the bridge reading xread = −2V read
D /V read.

The above steps are then repeated for multiple
measurements.

Given the above procedure, we can combine the
results reported in section 5 to obtain the complete
measurement model,

x = −2
VD
V
−∆xleads −∆xleak −∆xquant, (17)

= −2
(1 + gD)V read

D −∆VD
(1 + g)V read −∆V

−∆xleads −∆xleak −∆xquant, (18)

where we have assumed that the nonlinearity errors
∆VD and ∆V are the same for the grounded-low and
grounded-high readings. Taking into account that gD,
g, ∆VD/V

read and ∆V/V read are all small quantities
with respect to one, the above model simplifies as

x =

(
1 + gD − g +

∆V

V read

)
xread − 2

∆VD
V read

−∆xleads −∆xleak −∆xquant. (19)

7. Results

The quantum Hall Kelvin bridge was validated with
the comparison procedure schematically represented
in figure 11. First, the quantum Hall Kelvin bridge
was used to calibrate the NIST SP036 resistance
standard directly against the graphene QHR, obtaining
x from (19). Then, the same NIST SP036 resistance
standard was calibrated with a commercially available
CCC [25] against a 100 Ω resistance standard (ESI
SR102), in turn calibrated with the CCC against a
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ESI SR102
100 Ω

NIST SP036
12.906 kΩ

QHR GaAs
R = RK/2

CCC

CCCKelvin Bridge

QHR Graphene
R = RK/2

x xref

Figure 11. Diagram representing the comparison between the
calibration of the NIST SP036 resistance standard performed
with the Kelvin bridge and that performed with the CCC.

GaAs QHR. This yielded xref , the reference relative
deviation of Rx from RH. The result of the comparison
is the difference δ between the calibration with the
quantum Hall Kelvin bridge and that with the CCC,
that is,

δ = x− xref (20)

=

(
1 + gD − g +

∆V

V read

)
xread − 2

∆VD
V read

−∆xleads −∆xleak −∆xquant − xref (21)

=

(
1 + gD − g +

∆V

V read

)
xread − 2

∆VD
V read

−∆xleads −∆xleak

+ x1 − x2 + x3 − xref . (22)

The uncertainty budget for δ of an example
comparison is reported in table 1. The comparison
was performed with I ≈ 150 µA so that the current in
the QHE elements is Ix ≈ I/2 ≈ 75 µA.

The first uncertainty component is the type
A uncertainty of the bridge reading xread. The
reported measurement consisted of 4 repeated cycles,
as described in section 6. Taking into account the dead
time between the readings, the overall measurement
time was about 3 h. Figure 12 reports an example Allan
deviation of the imbalance voltage VD, as a function of
the effective integration time τ . The slope of about
−1/2 of the Allan deviation in the log-log plot means
that the dominant noise process is white [31]. The type
A uncertainty was evaluated accordingly. It should
be noted that the ultimate limit due to the thermal

10 100
5

10

15

20

25

30

35

τ/s

σ
V
D
(τ

)/
n

V

Figure 12. Allan deviation σVD
(τ) of the bridge imbalance

voltage as a function of the integration time τ for an example
measurement.

and voltmeter noise is about one order of magnitude
below the level shown in figure 12. This observed
level is probably due to fluctuations in the thermal
voltages along the circuit and external interferences,
both fed by the presented implementation spanning
two laboratories.

The components from 2 to 5 are the type B
uncertainties of the nanovoltmeter measuring VD and
V , considering both gain and nonlinearity as described
in section 5. The measurement ranges for VD and V
were 1 mV and 1 V, respectively (VD is of the order of
a few microvolts; V is about 0.5 V or 1 V, depending
on the current). The uncertainty components
were evaluated from the instrument specifications,
assuming uniform probability distributions for the
errors. The uncertainty components associated with
V are virtually negligible.

Component 6 is the correction for the lead res-
istances estimated from (9), considering the resistance
measurements r1 ≈ 1.43 Ω, r4 ≈ 2.30 Ω, ra ≈ 0.888 Ω,
rb ≈ 0.888 Ω, rc ≈ 0.892 Ω and rd ≈ 0.894 Ω with a rel-
ative uncertainty of 1 %. The values of r1 and r4 mainly
depend on the cabling of the cryogenic probe which is
made of wires with small cross section to reduce the
heat exchange with the environment. These values are
typical of QHE cryogenic systems and cannot be easily
reduced. The values of ra, rb, rc and rd are large be-
cause the NIST SP036 resistance standard was located
in a different laboratory. These resistance values yield
an error ∆xleads = 1.42× 10−8 that needs to be correc-
ted. Alternatively, this error can be reduced by either
implementing the experiment in a more compact way
or by connecting nodes 2, 3, 8 and 11 directly to the
current terminals of the resistance standard to reduce
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Table 1. Uncertainty budget for δ of an example comparison performed with I ≈ 150 µA. Each input quantity is identified by the
index i, its name and the symbol xi. ci = ∂δ/∂xi is the sensitivity coefficient of δ with respect to xi. RSS denotes the root sum of
squares.

i Quantity name Quantity xi u(xi) Type ci ui(x) = |ci|u(xi)

1 Bridge reading (≈ 3 h) xread −3.4567× 10−6 5.5× 10−9 A 1.0 5.5 × 10−9

2 Nanovoltmeter gain (VD) gD 0 2.9× 10−5 B −3.5× 10−6 0.1 × 10−9

3 Nanovoltmeter gain (V ) g 0 2.0× 10−5 B 3.5× 10−6 < 0.1 × 10−9

4 Nanovoltmeter nonlinearity (VD) ∆VD 0 0.3 nV B −2.1 V−1 0.6 × 10−9

5 Nanovoltmeter nonlinearity (V ) ∆V 0 740 nV B −3.6× 10−6 V−1 < 0.1 × 10−9

6 Lead resistances ∆xleads 1.42× 10−8 0.2× 10−9 B −1 0.2 × 10−9

7 Leakage resistances ∆xleak < 10−11 < 10−11 B −1 < 0.1 × 10−9

8 Imperfect quantization ∆xquant −3.71× 10−8 0.7× 10−9 B −1 0.7 × 10−9

9 CCC calibration xref −3.4366× 10−6 0.4× 10−9 B −1 0.4 × 10−9

δ 2.7× 10−9 RSS 5.6 × 10−9

ra and rd.
Component 7 is the correction for the leakage

resistances estimated from (11), considering leakage
resistance measurements on the bridge network and
the instrument specifications. With RCL, RCH and
RD greater than 10 GΩ, this uncertainty component
is negligible.

Component 8 is the correction for the imperfect
quantization of the device, as characterized in
section 3. The error ∆xquant = −3.71× 10−8, which
combines the quantization errors of all three QHE
elements according to 16, is related to the specific
prototype device and to the current dependence of the
bridge quantized Hall resistances: a recent work has
shown that such devices can reach an accuracy level of
10−9 [5].

Component 9 is the reference deviation of Rx

from RH of the NIST SP036 resistance standard
obtained from the CCC calibration. This uncertainty
component considers also the instability of the
resistance standards between the Kelvin bridge and the
CCC calibrations.

Components 8 and 9 are set apart in the
uncertainty budget because they were both determined
from CCC measurements against the same ESI SR102
100 Ω resistance standard and are therefore partially
correlated. The correlated part, by virtue of (16),
actually cancels in (22) and the remaining uncertainty
components are those associated to the type A
uncertainty.

The result of the example comparison is the
difference, from (21), δ = (2.7± 5.6)× 10−9 between
the calibration with the quantum Hall Kelvin bridge
and that with the CCC. This is compatible with zero,
showing the agreement between the two calibrations of
the NIST SP036 resistance standard. The uncertainty
is dominated by the type A component of the bridge
reading.

Figure 13 reports the results of four comparisons.

17-Apr-19 18-Apr-19 19-Apr-19
−20

0

20

40

60
k = 2

Date

δ/
(n

Ω
Ω
−

1
)

75 µA
37.5 µA

B = 9 T
T = 1.6 K

Figure 13. Summary plot of the final results of δ of
four comparisons as represented in figure 11. δ, as given
in (21), represents the difference between the calibration with
the quantum Hall Kelvin bridge and that with the CCC.
The uncertainty bars represent the expanded uncertainties with
coverage factor k = 2.

The uncertainty bars represent the expanded uncer-
tainties with coverage factor k = 2. The uncertainty
budget of table 1 refers to the measurement identi-
fied in the figure with a black triangle. One of the
reported measurements was obtained with a current
Ix = 37.5 µA. The different uncertainties among the
measurements depend on the different measurement
times and, therefore, on the different type A uncer-
tainties. Overall, figure 13 shows a good agreement
between the calibrations performed with the quantum
Hall Kelvin bridge and the CCC. The single non-
compatible measurement and the fact that all the devi-
ations are positive may be likely ascribed to the char-
acterization of the imperfect quantization of the Hall
bars, in particular that of U2. In fact, as described
in section 3, U2 was characterized through an arrange-
ment which differs from that of operation.

Taking into account the uncertainty components



Implementation of a graphene quantum Hall Kelvin bridge-on-a-chip for resistance calibrations 11

from 2 to 7 in table 1, that is, assuming perfect
device quantization, the evaluation of the uncertainty
here presented shows that the quantum Hall Kelvin
bridge can reach an uncertainty level of a few parts
in 109. This uncertainty level is comparable to that
of a CCC calibration, in both cases mainly limited by
the type A uncertainty. For the quantum Hall Kelvin
bridge, taking into account the limitations described
in the foregoing analysis of component 1, the type
A uncertainty can be probably reduced with a more
compact implementation.

8. Further developments

The quantum Hall Kelvin bridge-on-a-chip can be
extended to calibrate resistance standards with
nominal values different from RH by employing in one
or more arms a quantum Hall array resistance standard
(QHARS). For instance, this would allow the direct
calibration of resistance standards with decadal values.

It is worth noting that the usage of a QHARS for
each bridge arm may reduce the number of the required
QHE elements with respect to a resistance comparison
with a single QHARS. In fact, for instance, let us
consider Rx ≈ 1 MΩ, a resistance value that can be
obtained, with good approximation, as (10150/131)RH

with a QHARS with 88 QHE elements [20, 32]. From
figure 2, the bridge balance equation would yield

Rx ≈
10150

131
RH =

R1R3

R2
, (23)

which can be decomposed as

10150

131
RH =

10RH × 5RH

131

203
RH

=
R1R3

R2
. (24)

This means that the 1 MΩ resistance standard can be
calibrated with a quantum Hall Kelvin bridge with
R1 = 10RH (10 QHE elements), R2 = (131/203)RH

(12) and R3 = 5RH (5). This bridge can then be
implemented with just 27 QHE elements.

More generally, a resistance

Rx ≈
p

q
RH =

p1p2p3
q1q2q3

RH =
R1R3

R2
, (25)

where p1, p2, p3, q1, q2 and q3 are suitable integer
factors of the integers p and q, can be calibrated with
a bridge with R1 = (p1/q1)RH, R2 = (q2/p2)RH

and R3 = (p3/q3)RH. This arrangement might need
fewer QHE elements than those of a QHARS with
resistance (p/q)RH. In this configuration, the effect
of the lead resistances can be minimized by adjusting
the combining network composed of r1 and r4.

9. Conclusions

The quantum Hall Kelvin bridge presented in this
work has shown an accuracy at the level of a few
parts in 108 when calibrating an artefact standard
resistor with nominal value RH, at present mainly
limited by the prototype device and the interferences
in the current implementation, with the potential to
achieve few parts in 109. This result is comparable
with that of other state-of-the-art calibration bridges,
like the DCC or the CCC. The bridge includes just two
room temperature electronic instruments of standard
accuracy. The implementation as graphene bridge-on-
a-chip is particularly simple and robust and allows the
connection to the room temperature standard resistor
and electronics with few leads.

With respect to a CCC with a QHR, the quantum
Hall Kelvin bridge can be implemented with a single
cryogenic environment, suitable for operation in a dry
cryocooler. Furthermore, this can be of small size
when graphene is adopted for the QHE elements. At
variance with DCC or CCC instruments, the noise
rejection (which depends on a voltmeter) is expected
to be significantly higher.

The usage of QHARS can extend the operation of
the quantum Hall Kelvin bridge to resistance standards
of arbitrary nominal value.
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