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Abstract. One-dimensional bosons interacting via a soft-shoulder potential are investigated
at zero temperature. The flatness of the potential at short distances introduces a typical length,
such that, at relatively high densities and su�ciently strong interactions, clusters are formed,
even in the presence of a completely repulsive potential. We evaluate the static density response
function of this system across the transition from the liquid to the cluster liquid phases. Such
quantity reveals the density modulations induced by a weak periodic external potential, and is
maximal at the clustering wavevector. It is known that this response function is proportional
to the static structure factor in the classical regime at high temperature, while for this zero-
temperature quantum systems, we extract it from the dynamical structure factor evaluated with
quantum Monte Carlo methods.

1. Introduction
Ensembles of particles, interacting with potentials that are flat at short distances, have the
possibility of clustering, at su�ciently high particle densities, even if the interaction is completely
repulsive. This is a subject of intense study in classical soft-matter physics, where such kind of
potentials may describe an e↵ective interaction between polymers [1–4]. Recently, a great deal of
interest has arisen in the quantum statistical mechanics of particles interacting with finite-range
soft potentials, and the related quantum cluster phases. Supersolid behavior, characterized by
the coexistence of crystal and superfluid order, has been investigated for bosons [5–9], and a
breakdown of Fermi liquid theory has been predicted for fermions [10]. In one dimension (1D),
cluster Luttinger liquids (CLL) have been proposed on a lattice [11, 12] and in the continuum
[13]. The best candidates, for the experimental realization of such novel quantum phases, seem
to be ultracold Rydberg gases [14], which are atoms in highly-excited electronic states, and
especially ensembles of dressed Rydberg atoms, which are superpositions of the ground state
and the above mentioned excited states, coupled via a Rabi process. Their e↵ective interaction
is a soft-shoulder potential, with a flat repulsive core of size Rc, related to the highly excited
orbital, and a repulsive van-der-Waals tail [5, 6, 15–18]. Experiments are progressively increasing
the coherence time of such systems [19–21].

In [13], we have characterized the T = 0 quantum phase transition [22] from a liquid to a
cluster phase in a bosonic system, at a suitable density, by means of quantum Monte Carlo
methods. In particular, we have evaluated the dynamical structure factor S(q,!), which o↵ers a
picture of how the system responds to small dynamical external density perturbations, such as
those coming from scattering experiments, providing the dispersion relation of collective modes.

http://creativecommons.org/licenses/by/3.0
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In this article, we instead focus on the static response function �(q), which provides information
on how the system responds to a static periodic potential. This is relevant for trapped quantum
gases, where external perturbations can be modulated quite easily. We also briefly describe some
of the features of the liquid to cluster-liquid transition.

2. Methods
We study a system of N bosons in 1D at linear particle density n, governed by the following
Hamiltonian in the continuum:

H = � ~2
2m

NX

i

@2

@x2i
+
X

i<j

V0

r6ij +R6
c

, (1)

where xi are the particle coordinates, rij = |xi�xj | the distances, m is the mass and V0 and Rc

are the strength and the radius of the soft-shoulder potential V (r). A possible realization of this
potential in 1D is given by ultracold gases in optical elongated traps. The transverse degrees
of freedom would be frozen in their ground state, due to low temperature and strong trapping.
The physical hard-core radius c of the core electrons orbitals could be safely ignored, because of
integration along the transverse direction, provided the three-dimensional density is small with
respect to 1/c3. Anyway, the addition of a su�ciently small hard core c ⌧ Rc to V (r) should
not qualitatively change the conclusions of this work, as discussed, in the higher dimensional
case, in [23].

The low-energy physics of 1D quantum fluids is quite generally described by the Luttinger
liquid (LL) paradigm [24], characterized by a phononic dispersion law "(q) = ~vq. For Galilean
invariant systems, sound velocity v is related to the Luttinger parameter KL by v = ~n⇡/(mKL)
[25]. In order to study the excitations at higher energies and momenta, typically numerical
methods are required, and we analyze the system using the path integral ground state (PIGS)
quantum Monte Carlo method [26, 27], which projects a trial wavefunction in imaginary time
to the ground state. We simulate up to N = 200 particles in a segment of length L = N/n,
using periodic boundary conditions (PBC) (see [13]). We have thus access to the exact static
structure factor S(q) of the system. Moreover, evaluation of the dynamical structure factor

S(q,!) =
R
dt e

i!t

2⇡N heitH/~⇢qe�itH/~⇢�qi, where ⇢q is the density operator in momentum space,
is provided via analytic continuation, through the genetic inversion via falsification of theories
algorithm [28–31].

3. Clustering and phase diagram
It is convenient to introduce the dimensionless density ⇢ = nRc and strength U = V0/(EcR6

c),
where Ec = ~2/mR2

c . The Fourier transform Ṽ (q) of the potential has the following form:

Ṽ (q) = Ec
U
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It features a global minimum, found numerically at qc ' 4.3, for which Ṽ (qc) < 0, corresponding
to a typical length bc = 2⇡/qc ' 1.46 (here and in the following, when not otherwise specified,
lengths and wavevectors are in units of Rc and 1/Rc, respectively).

In the classical case it has been shown that, even for a completely repulsive potential, such
a feature favors the formation of clusters at a mutual distance ⇠ bc which, at suitably low
temperature T or high density ⇢, arrange into an ordered configuration, thereby forming a
cluster crystal with periodicity determined by bc itself [1, 2]. To be more specific, in order to
have stable clusters, a positive clustering harmonic constant (see [13, 32]) is needed. For such
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Figure 1. Mean-field potentials experienced by a reference particle, at ⇢ ' 1.37, if all the others
are placed in a lattice of spacing a = bc (two particles per site) or a = bc/2 (one particle per
site). The original soft-shoulder potential is also shown as a reference.

condition to be satisfied it is necessary (but not su�cient) for Ṽ (q) to take negative values
for some q. For the one-dimensional system considered here, this ordered phase is most likely
prevented by thermal fluctuations at all temperatures T > 0 [33, 34], but, classically, it still
occurs at T = 0 for any positive value of U . Indeed, it has been argued that, on increasing ⇢,
one will witness a virtually infinite sequence of first-order transitions connecting phases with
di↵erent numbers of particles per cluster [32, 34].

Let us focus on the density ⇢2 = 2/bc ' 1.37. Classically, at T = 0, such a density
accommodates a crystal of two-particles clusters. This can be easily understood by considering
the mean-field potential experienced by a particle, when all the others are placed in couples
on a perfect lattice of spacing a = bc, except for a companion particle, which is placed at
x = 0. The resulting potential (see solid line in Fig.1) manifests a clear harmonic minimum at
x = 0. Notice also that secondary minima are present at multiples of bc, meaning that, upon
increasing kinetic energy, hopping to nearby clusters is initially more preferable than melting
of the clusters. Conversely, if one forces the other particles to sit on lattice sites with spacing
a = bc/2, the mean-field potential displays a double-well structure, close to x = 0 (dotted line),
indicating that such a perfect lattice, with one particle per site, would not be an equilibrium
configuration.

In the quantum case, the scenario is further enriched, since zero-point kinetic energy is present
even at T = 0, introducing two main consequences: the cluster phase is not a crystal anymore,
but a liquid of clusters, and clusters can also coherently delocalize towards a standard Luttinger
liquid. As a consequence, a quantum phase transition occurs between the CLL and a LL without
cluster order, at a (density-dependent) value of U (Fig. 2). This transition has been studied in
a related 1D lattice model [11, 12], while we have demonstrated that, at the density ⇢ = ⇢2 in
the continuum, it occurs at U = Uc ' 18 and is in the 2D Ising universality class [13].

In the dilute limit, the only relevant parameter is the scattering length, which we have
calculated for the soft-shoulder potential in 1D [35]. At ⇢ = ⇢2, on the contrary, the details
of V (r) become relevant. In the LL regime, a Bogoliubov picture turns out to be valid [13],
providing the following dispersion relation for the main excited mode

"B(q) =

r
"0(q)

h
"0(q) + 2⇢Ṽ (q)

i
, (3)
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Figure 2. Phase diagram (linear-log scale). A symbol indicates the critical point between
the LL (dashed line) and CLL (solid line) phases for density ⇢ = 1.37 [13], commensurate to
two-particle clusters. The long-dashed line corresponds to the softening of the Bogoliubov roton.

where "0(q) = ~2q2/2m is the free particle dispersion. Interestingly, the functional form of
the Bogoliubov excitation allows for a minimum of "B(q) at q ' qc, provided the combination
↵ = ⇢U is su�ciently large. The dynamical structure factors, evaluated in [13], indeed show very
clearly that a roton minimum is prominent in the LL regime. When ↵ = 20.65, the Bogoliubov
roton softens, and this mean-field picture breaks down. This can be used as an approximate
boundary between the LL and CLL phases (long-dashed line in Fig. 2), although microscopic
calculations have to be performed to determine the precise position (see, for example, the circle
in Fig. 2, at ⇢ = ⇢2). It is still an open issue the precise determination of the transition between
di↵erent quantum cluster phases upon increasing ⇢.

4. Static density response function
The static density response function is introduced, in linear response theory, as the coe�cient
of proportionality between a weak static periodic perturbation ṽ(q) and the produced density
fluctuation �⇢(q) ' �(q)ṽ(q), with respect to the equilibrium homogeneous system [36, 37].
At zero temperature, it can be computed by carefully evaluating energy di↵erences between
perturbed and unperturbed systems [36] or from the first negative moment of S(q,!) [38]:

�(q) = �2⇢

~

Z 1

0
d!

S(q,!)

!
. (4)

The previous equation is the T ! 0 limit of the more general fluctuation-dissipation relation

�(q) = �2⇢

~

Z 1

0
d!

(1� e��~!)S(q,!)

!
, (5)

with � = 1/kBT , kB being the Boltzmann constant. It is straightforward for us to evaluate
Eq. (4), by integrating S(q,!) as obtained in [13]. Our results are shown in Fig. 3. We compare
�(q) from Eq. (4) to the Feynman approximation of the same quantity:

�FA(q) = �2⇢
S(q)2

"0(q)
. (6)
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Figure 3. Static density response function �(q) (with a negative sign), evaluated as (solid lines)
the first negative moment of the dynamical structure factor, compared to Feynman single-mode
approximation �FA(q) (dashed lines), for various U across the transition at ⇢ ' 1.37. The
arrows indicate the compressibility as extracted from the slope of the static structure factor at
at q ! 0. Errorbars (not shown for clarity) are of the order of the fluctuations of the plotted
quantities, and are large only for U = 18, which approximately corresponds to the transition
point and thus su↵ers more from the finite length of the simulations.

The latter assumes that the density fluctuations spectrum is exhausted by a single mode of
dispersion "FA(q), so that the zeroth

S(q) =

Z 1

0
d!S(q,!) (7)

and first

"0(q)/~ =

Z 1

0
d!S(q,!)! (8)

sum rules imply "FA(q) = "0(q)/S(q) and SFA(q,!) = S(q)�(! � "FA(q)/~), allowing for an
estimation of various quantities provided the knowledge of only the static structure factor [39].
We observe that, qualitatively, �FA(q) grasps the main features of �(q).

It is worth recalling that, in the classical case, �(q) is simply proportional to S(q) via the
relation �(q) = ��⇢S(q), which is recovered from the finite-temperature quantum expression
of �(q), Eq. (5), in the classical limit �~! ! 0. For the classical fluid, the connection
between cluster formation and the occurrence of the global minimum of Ṽ (q) at qc 6= 0 is
then brought forward within a simple mean-field approximation for S(q), according to which
�(q) = ��⇢/[1+�⇢Ṽ (q)]. The minimum of Ṽ (q) then causes a peak at q = qc in both S(q) and
�(q), signaling the attitude of the system to form density modulations over lengthscales ⇠ bc.
The above mean-field expression refers to the classical fluid phase and is not valid in the limit
T ! 0. Moreover, in this limit the classical and quantum expressions of �(q) di↵er markedly
and, as shown by Eq. (4), in the latter case the connection between �(q) and S(q) gets lost.
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In particular, the quantum S(q) becomes linear in q at small q, whereas �(q) tends to a non-
vanishing value which, as in the classical case, is proportional to the isothermal compressibility
of the system �(q)!� ⇢/mv2.
Notwithstanding these di↵erences, Fig. 3 clearly shows that, even in the quantum case, �(q) still
displays a peak at q ⇠ qc which becomes more and more pronounced on increasing U , similarly
to what predicted by the above mean-field approximation for the classical �(q) on increasing �.

A comment on finite-size e↵ects is in order. Strictly speaking, �(q) (and analogously S(q))
may diverge, at a specific wavevector, only in the N ! 1 limit. The number N = 200
allows us to see a clearly di↵erent behavior between U < Uc and U � Uc: namely, before the
transition, the maximum of �(q) saturates at a finite value (liquid behavior), while, for stronger
interaction, this maximum diverges. It can be shown that such a divergence is sub-linear with
the number of particles (quasi-solid behavior, see [13] for a detailed analysis of finite-size e↵ects
of S(q)). Moreover, the number of particles, with PBC, directly sets the momentum resolution
�q = 2⇡⇢/N . Finally, since we want to reduce the creation of defects in the two-particles cluster
phase, we only simulate an even number of bosons.

The striking feature of this peak of �(q) (and S(q)) is that its position is determined by
the shape of the interaction potential, and not by the mean interparticle distance 1/⇢, which,
for ⇢ = ⇢2, would correspond to q = 2qc. The static response function we have evaluated
thus indicates a very strong sensitivity of the system to external potentials with modulation of
wavevector ⇠ qc, as expected, both in the liquid regime and especially in the cluster regime. By
explicitly breaking translational invariance, such perturbations would induce the formation of
a true crystal, analog to the superfluid to Mott transition of one-dimensional dilute Bose gases
[40, 41].

We finally discuss the physical understanding of the crucial role of the shape of the potential
in favoring clustering. Clearly, the property of the potential of having a negative minimum in
its Fourier transform depends on the overall shape of V (r), rather than on its strength V0. A
change in V0 would merely amount to a rescaling of the Fourier transform of the interaction,
which would a↵ect the depth of its minimum, but would leave its position qc unchanged.

In principle, the occurrence of a negative minimum in Ṽ (q) may be caused by a number
of di↵erent features of the interaction. For the potential considered here, it stems from V (r)
being rather flat at short distances, while decaying rapidly at longer distances. How such a
property may favor cluster formation can be explained heuristically by mean-field arguments
similar to that put forward in the discussion of Fig. 1, such as those presented for a classical
system in [42]. In particular, let us consider a one-dimensional regular array of particles with
nearest-neighbor distance d, interacting with each other via a repulsive, bounded potential V (r),
and let us determine the overall potential W (r) felt by a further test particle inserted into the
system for small enough d. If V (r) is, say, a Gaussian (whose Fourier transform clearly does
not have a negative minimum), then it is found that W (r) has minima in between the particles
of the array, suggesting that the preferred position of the additional particle would destroy the
periodicity. However, if V (r) is made flatter at small r and steeper at larger r, then W (r) has
minima on the top of the particles of the array: this would drive the test particle on top of one
of these particles, thereby preserving the periodicity by forming a cluster. In such a process, the
optimal value of d depends on the detailed shape of V (r), whereas the strength of V (r) does
not play any role. An extreme (admittedly artificial) example of the latter instance is that of a
square-shoulder V (r): when the density of the array reaches the close-packing value such that d
is equal to the shoulder width, placing an additional particle in between those of the array will
create two overlaps, whereas putting it on top of one of them will create just one.

We may then say that for this class of potentials, the interaction energy price one has to
pay for clustering is more than compensated by the ensuing reduction of the repulsion between
particles on neighboring sites. The role of the strength V0 is to tune the relative dominance
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of potential energy with respect to kinetic energy, and is thus particularly relevant in the 1D
quantum case, where it triggers the transition to the liquid phase [13].
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[18] P lodzień M, Lochead G, de Hond J, van Druten N J and Kokkelmans S 2017 Phys. Rev. A 95 043606
[19] Jau Y Y, Hankin A M, Keating T, Deutsch I H and Biedermann G W 2016 Nat. Phys. 12 71–74
[20] Zeiher J, van Bijnen R, Schauß P, Hild S, Choi J Y, Pohl T, Bloch I and Gross C 2016 Nat. Phys. 12

1095–1099
[21] Zeiher J, Choi J Y, Rubio-Abadal A, Pohl T, van Bijnen R, Bloch I and Gross C 2017 arXiv:1705.08372
[22] Sachdev S 2000 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[23] Boninsegni M 2016 J. Low Temp. Phys. 184 1071–1079
[24] Giamarchi T 2003 Quantum Physics in One Dimension (Oxford University Press)
[25] Haldane F D M 1981 Phys. Rev. Lett. 47 1840–1843
[26] Sarsa A, Schmidt K E and Magro W R 2000 J. Chem. Phys. 113 1366–1366
[27] Rossi M, Nava M, Reatto L and Galli D E 2009 J. Chem. Phys. 131 154108
[28] Vitali E, Rossi M, Reatto L and Galli D E 2010 Phys. Rev. B 82 174510
[29] Bertaina G, Motta M, Rossi M, Vitali E and Galli D E 2016 Phys. Rev. Lett. 116 135302
[30] Motta M, Vitali E, Rossi M, Galli D E and Bertaina G 2016 Phys. Rev. A 94 043627
[31] Bertaina G, Galli D E and Vitali E 2017 Adv. Phys. X 2 302–323
[32] Neuhaus T and Likos C N 2011 J. Phys.: Condens. Matter 23 234112
[33] Prestipino S 2014 Phys. Rev. E 90 042306
[34] Prestipino S, Gazzillo D and Tasinato N 2015 Phys. Rev. E 92 022138
[35] Teruzzi M, Galli D E and Bertaina G 2017 J. Low Temp. Phys. 187 719–726
[36] Moroni S, Ceperley D M and Senatore G 1995 Phys. Rev. Lett. 75 689–692
[37] Senatore G, Moroni S and Ceperley D M 1998 Quantum Monte Carlo Methods in Physics and Chemistry

Nato Science Series C: ed Nightingale M and Umrigar C (Springer Netherlands)
[38] Motta M, Bertaina G, Vitali E, Galli D E and Rossi M 2017 J. Low Temp. Phys. 187 419–426
[39] Hall D and Feenberg E 1971 Ann. Phys. 63 335–360
[40] Stöferle T, Moritz H, Schori C, Köhl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[41] Fertig C D, O’Hara K M, Huckans J H, Rolston S L, Phillips W D and Porto J V 2005 Phys. Rev. Lett. 94

120403
[42] Mladek B M, Charbonneau P, Likos C N, Frenkel D and Kahl G 2008 J. Phys.: Condens. Matter 20 494245


