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Abstract: Distributed Raman amplification (DRA) is widely exploited for 
the transmission of broadband, modulated signals used in data links, but not 
yet in coherent optical links for frequency metrology, where the 
requirements are rather different. After preliminary tests on fiber spools, in 
this paper we deeper investigate Raman amplification on deployed in-field 
optical metrological links. We actually test a Doppler-stabilized optical link 
both on a 94 km-long metro-network implementation with multiplexed ITU 
data channels and on a 180 km-long dedicated fiber haul connecting two 
cities, where DRA is employed in combination with Erbium-doped fiber 
amplification (EDFA). The performance of DRA is detailed in both 
experiments, indicating that it does not introduce noticeable penalties for 
the metrological signal or for the ITU data channels. We hence show that 
Raman amplification of metrological signals can be compatible with a 
wavelength division multiplexing architecture and that it can be used as an 
alternative or in combination with dedicated bidirectional EDFAs. No 
deterioration is noticed in the coherence properties of the delivered signal, 
which attains frequency instability at the 10−19 level in both cases. This 
study can be of interest also in view of the undergoing deployment of 
continental fiber networks for frequency metrology. 

©2015 Optical Society of America 
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instrumentation; (290.5900) Scattering, stimulated Brillouin; (140.4480) Optical amplifiers; 
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1. Introduction 

In the last twenty years, frequency metrology has progressively enabled the investigation of 
fundamental physics at new orders of magnitude. This happened thanks to many scientific and 
technical achievements: primary frequency standards and optical clocks are now respectively 
at the 2 × 10−16 and at the 1 × 10−18 level of uncertainty [1–3]; optical frequency combs cover 
an extremely broad spectrum, ranging from the visible to the terahertz region, and became a 
fundamental tool in spectroscopy [4–6]; the large variety of atomic species used in these 
experiments around the world is an enabling tool to prove fundamental theories [7]. However, 
improved frequency transfer techniques are required to cover the large geographical distances 
as an alternative to satellite methods [8]. This would bring a benefit not only to metrology and 
fundamental physics domains, but also to Very Long Baseline Interferometry (VLBI) [9], 
particle accelerators technology [10] and atomic and molecular spectroscopy [11]. 

Phase-stabilized optical fiber links are a viable solution; they are based on the 
transmission of a radio-frequency [12–17] or a continuous-wave, ultra narrow-linewidth 
optical signal [18–26] along a standard telecom fiber, phase-stabilized through the Doppler 
cancellation technique [27]. This avoids that random temperature variations and acoustic 
noise on the fiber affect the uncertainty of the delivered signal. It is interesting to note that 
only the phase variations which are experienced by the signal in both propagating directions 
can be efficiently compensated; therefore the optical signal must travel exactly the same 
optical path during the round trip. This is a key point for this technique and prevents from 
using telecom networks in the typical unidirectional transmission schemes. Standard telecom 
components such as Erbium Doped Fiber Amplifiers (EDFAs), isolators, circulators and so 
on, must be then avoided as they are clearly not suitable for metrological purpose. They are 
replaced by dedicated instrumentation such as bi-directional EDFA (b-EDFA), where optical 
isolators are removed to allow gain in both propagation directions [18, 19, 28]. 

During last years, attention has been paid to increasing the backbones robustness of 
metrological optical links and to ultra-long hauls bridging. The compatibility of this technique 
with a Wavelength Division Multiplexing (WDM) approach has been explored, autonomous 
and compact optical lasers systems have been developed [19], alternative techniques for the 
remote phase-comparisons [29,30] are under study and other amplification schemes are being 
investigated as an alternative to b-EDFA. Within this context, the most promising techniques 
are distributed Brillouin amplification (DBA) [31] and Raman amplification (DRA) [32], 
thanks to their intrinsic low noise and to the possibility of high gain levels. A novel technique 
based on injection locking has recently been reported as well [33]. 
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DBA has been widely explored in the context of frequency dissemination. One of the most 
important issues of DBA is the narrow gain bandwidth (~20 MHz) which requires a careful 
frequency control of the pump laser, and the possibilty to amplify only the signal which 
propagates in a direction opposite to the pump. These issues have been addressed by the latest 
technology developments, and autonomous turn-key DBA modules are now available [31]. 

On the contrary, DRA is extensively exploited in telecommunications. It is based on the 
Stimulated Raman Scattering (SRS) occurring in optical fibers between a high-power pump 
radiation and a frequency-downshifted signal (by 13.2 THz in silica glass fibers [34]). The 
gain bandwidth is significantly larger than in DBA; this avoids the need of frequency tuning 
the pump laser to achieve a stable gain and makes the amplifier barely insensitive to the 
frequency shifts involved in bidirectional optical links for metrology. In addition, DRA is 
intrinsically bidirectional, i.e. the amplification occurs whether the signal propagates in the 
same or in the opposite direction as the pump. For these reasons, DRA might be used in the 
intermediate amplification shelters of long optical links, where autonomous and robust 
operation are among the main requirements. The flexibility of DRA modules can make them a 
viable solution also for multi-user frequency distribution schemes [35–37]. On the other hand, 
due to the large bandwidth, DRA can provide a significant gain to WDM channels in addition 
to the metrological signal; thus, a careful design of amplification in frequency-multiplexed 
architectures is necessary to avoid cross-talk and gain depletion in WDM applications [38]. 
The efficiency of SRS is 6 × 10−13 m/W in standard single-mode fibers, meaning that pump 
power levels of several hundred mW are required to achieve a 20 dB gain. This is 
significantly higher than in DBA, where the typical gain coefficient is ~5 × 10−11 m/W [38]. 
The high pump power required by DRA might represent a drawback in some operating 
conditions, as it could lead to non-linear interactions between pump and signal such as self- 
and cross-phase modulation. The transfer of relative intensity noise (RIN) from pump to 
signal, which can be an issue in standard telecom systems [38], is a minor problem in the case 
of metrological signals, thanks to the extremely narrow bandwidth of the lightwave channel, 
as well as to the inherent phase-detection schemes in optical frequency transfer applications. 

DRA-based optical frequency dissemination through real optical fibers then requires the 
experimental investigation of possible non-symmetrical phase shifts due to the interaction of 
pump and signal and of the compatibility with other users of the network [38]. 

In our previous work, we investigated the use of DRA for narrowband and high spectral 
purity optical signals and demonstrated its suitability for coherent optical fiber links. Our 
experiment was based on 200 km of fiber spools in a laboratory environment [32]. 

In this work, we further investigate this technique applied to real metrological links based 
both on a dark channel architecture where the fiber is shared with other data channels, and on 
a dark fiber architecture where only the metrological signal is present on the fiber. The 
experimental apparatus, the technical issues and the experimental results are described, 
demonstrating that DRA can be a viable alternative to other coherent amplification techniques 
and can be reliably adopted in long-haul metrological optical links, in WDM networks and in 
hybrid schemes in combination with bi-directional Erbium-doped fiber amplifiers. 
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Fig. 1. Common experimental setup for optical link with phase-stabilization. Details of 
experiments with metro fiber link and inter-city fiber link are reported in Sec. 3 and Sec. 4 
respectively. FPC: Fabry-Pérot cavity; AOM1 and AOM2: acusto-optic modulators; PD1 and 
PD2: photodiodes; triangles represent optical amplifiers. 

2. Common experimental set-up 

The common setup of our Raman-amplified optical link experiments is depicted in Fig. 1. 
Such a set-up has then been used in two different metrological experiments which will be 
detailed in the following sections, one involving a shared Raman-amplified fiber link with 
other data channels of the International Telecommunication Union grid, the second one 
involving a dedicated long-range fiber link with combined use of Raman amplifiers and b-
EDFAs. 

In the set-up of Fig. 1, an ultrastable laser frequency signal at 1542.14 nm is generated by 
locking a fiber laser to a high-finesse Fabry-Pérot cavity (FPC) with the Pound-Drever-Hall 
technique; the stabilized-laser linewidth is <30 Hz [39]. The laser signal is then split into two 
beams: one is used as a local oscillator, the other is coupled into the fiber, passes through the 
acousto-optic modulator AOM1 and travels the fiber to the remote link end. At the remote 
end, the lightwave signal is frequency-shifted by the acousto-optic modulator AOM2; a part 
of the signal is photo-received for extracting the optical frequency information, while a 
portion is reflected back by a Faraday mirror towards the near fiber-end. Here, the round-trip 
signal is compared to the original radiation through a heterodyne beatnote on the photodiode 
PD1; the coherent signal performing a round-trip is easily distinguished from the spurious 
back-reflections (e.g. Rayleigh backscattering) along the fiber thanks to the frequency shift 
induced by AOM2. The heterodyne beatnote on PD1 provides information about the phase 
noise experienced by the optical carrier in a double pass along the fiber; the phase fluctuations 
are then pre-compensated by a phase-locked loop (PLL) acting on AOM1. The pair of 
Faraday mirrors allows a stable polarization alignment of the round-trip signal with the local 
oscillator, avoiding beatnote fading and PLL-systems locking instability. The spectral purity 
and frequency instability of the signal delivered at the far fiber end are measured by 
comparing the delivered radiation with the original light on photodiode PD2; this is possible 
in our experiments since the in-field fiber (metro or inter-city) link undergoes a loop path, and 
the remote fiber-end is in the same building where also near fiber end and source laser are 
located. 

3. Metro shared link (dark channel) experiment 

The first experiment investigates the use of DRA to amplify metrological signals in common 
situations (e.g. urban metro fiber links) where there is availability only of a dark channel, and 
not of an entirely dedicated dark fiber. The metrological signal then shares the fiber link with 
other lightwave data channels. The experiment aims at assessing the impact of DRA and at 
verifying the absence of detrimental effects both for the metrological signal and for the data 
channels sharing the fiber link. 
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Fig. 2. Experimental setup used to evaluate DRA on a 94 km dedicated-channel optical link in 
the metropolitan area. A Raman pump laser is coupled at the remote fiber end through the 
Wavelength Division Multiplexer WDM2. AOM1 and AOM2: acusto-optical modulators; 
OADM1 and OADM2: optical add/drop multiplexers. 

The configuration for this experiment is based on the common set-up shown in Fig. 1 for 
the transmission and photo-detection of the metrological signal; the specific implementation 
of the dark-channel fiber link in presence of Internet traffic is represented in Fig. 2. 

The fiber metro-link shown in Fig. 2 is deployed along 94 km standard single-mode fiber 
throughout the metropolitan area of Turin (Italy), and is employed by the network operator for 
carrying 10 Gb/s data traffic with a Dense WDM (DWDM) architecture. The channel 44 of 
the International Telecommunication Union (ITU) grid is used by us for the coherent 
frequency transport (1542.14 nm), while the Internet traffic (managed by the network 
operator) occupies the ITU channels 21 and 22, at 1560.61 nm and 1559.79 nm respectively. 
The metro-loop is designed in such a way to have both near and far fiber-ends in our 
laboratory; this allows us to perform phase-noise and frequency-instability tests of the 
frequency delivery, rejecting the phase noise of our optical source. The metrological signal 
(−1 dBm input power) is injected and extracted to/from the optical fiber and separated by 
other WDM channels through optical add/drop multiplexers OADM1 and OADM2. The 
insertion loss of the input/output OADMs (5 dB each), together with the presence of 
connectors, bends and components along the 94 km path in the real metro environment, gives 
rise to a significantly high measured attenuation for the link, amounting to 54 dB. 

A depolarized Raman pump laser at 1452 nm is used at the remote end [32], based on a 
commercial module that delivers up to ~800 mW into the fiber. The Optical Signal to Noise 
Ratio (OSNR) is larger than 50 dB in 0.1 nm resolution bandwidth. The average RIN value at 
low frequencies (<10 MHz) for the pump laser is about −110 dB/Hz, that leads to a negligible 
effect when integrated on the narrow bandwidth (30 Hz) of the signal. The Raman pump is 
operated in cw costant power condition, without any frequency control. The pump laser is 
directly coupled into the multiplexed fiber to avoid optical filtering due to OADM2. The 
observed ON-OFF Raman gain for the ITU-44 metrological channel versus pump power is 
shown in Fig. 3 and amounts to ~23 dB for an input pump power of 0.97 W. This is the same 
gain we observe if the metro-fiber is replaced with fiber spools and indicates a good quality of 
the fiber loop. 

It is important to note that large-bandwidth DRA also provides gain to the Internet data 
channels (ITU-21 and ITU-22) and then the use of DRA might improve or affect the ITU 
channel performance in terms of Bit Error Rate (BER), receivers saturation and so forth. It is 
necessary to take this into account in DRA design. During this experiment, the amplification 
of the optical carriers on channels 21 and 22, as well as the error rates, were constantly 
monitored throughout the whole network by the network manager company. For a pump 
power of 0.97 W a gain of 14 dB and 16 dB is observed on channels 21 and 22 respectively. 
During our experiments, no receiver saturation or BER deterioration is noticed in ITU data 
channels, thanks to the use of optical attenuators placed at network nodes and to the large 
dynamic range of the receivers in terms of admitted input power levels. 

The gain provided by a single Raman amplifier at the remote link end is sufficient to 
enable a robust locking of the PLL and the frequency transfer of the ITU-44 metrological 
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signal at the 10−19 level of instability along the 94 km metro link. The results of this urban 
metro link experiment, in terms of attained phase noise and fractional frequency stability are 
shown in Section 5 and are compared to those obtained with the intercity (dark fiber) 180 km 
experiment, which is reported in next Section. 

 

Fig. 3. Measured ON-OFF Raman gain for metrological signal at 1542.14 nm versus pump 
power. 

4. Inter-city link (dark fiber) Raman-EDFA experiment 

The second in-field experiment aims at assessing the capability of DRA to achieve ultra-long-
distance frequency dissemination in a real link and at investigating the DRA behavior in 
combination with b-EDFAs. The configuration for this experiment is based on the common 
set-up shown in Fig. 1 for the transmission and photo-detection stages of the metrological 
signal, while the specific dedicated long-haul link is represented in Fig. 4. The link is actually 
based on a real inter-city link connecting the city of Turin with the neighboring town of 
Santhià (Italy), and exploits two dedicated fibers, each of whom is 90 km long. The fibers are 
connected together in Santhià to implement a 180 km long loop with both ends in our 
laboratory, where the signal is transmitted and independently received and the metrological 
characterization is carried out. 

 

Fig. 4. The scheme used to evaluate DRA on a 180 km dedicated-fiber inter-city optical link. 
Two Raman amplifiers are used at the two link ends. AOM1 and AOM2: acusto-optical 
modulators; WDM1 and WDM2: wavelength division multiplexers. 

The ultrastable laser signal is injected and extracted to/from the optical fiber (−1 dBm 
input power) and separated from the pump lights through two WDM couplers. The presence 
of connectors, bends and splices along the 180 km path in this case gives rise to total optical 
losses amounting to ~60 dB; hence, to provide higher overall gain, we use two DRA stages at 
opposite fiber ends, in bi-directional configuration. At the remote end, we use the Raman 
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pump laser described in Section 3, with an input power of 0.97 W; in addition, we also 
employ a couple of polarization-multiplexed Fabry-Pérot laser diodes at the local end [40], 
with a coupled power of 260 mW (OSNR ~58 dB in 0.1 nm resolution bandwidth). The 
average RIN value at low frequencies (<10 MHz) for the Fabry-Pérot laser diodes is about 
−140 dB/Hz, that leads also in this case to a negligible effect when integrated on the narrow 
bandwidth (30 Hz) of the signal. The Fabry-Pérot laser diodes are operated in cw costant 
power condition, without any frequency control. This device can provide a maximum ON-
OFF gain of 9 dB in a laboratory testbed [32]. This gain is lower than what provided by the 
fiber Raman laser at remote end due to the lower maximum available pump power. 

DRA is bidirectional and high bandwidth; therefore, each pump laser amplifies both the 
transferred signal and the round-trip signal, which is at nearly the same wavelength. This 
enables a robust locking of the PLL; nevertheless, amplification of the launched signal might 
induce Stimulated Brillouin Scattering (SBS) [38]. This is a detrimental effect occurring in 
standard single mode fibers for optical power higher than ~1 mW and causes a signal 
backreflection at ~80 pm lower wavelength. In these cases, a careful optimization of the pump 
and signal power levels is needed to avoid SBS excitation. This is not an issue for amplifiers 
located at the far link end where the signal, even if amplified, is very weak due to the link 
attenuation. 

 

Fig. 5. OTDR trace along the first 20 km fiber in the inter-city link, with indication of 
significant loss events. 

Interestingly, the gain achieved by these amplifiers can be significantly reduced with 
respect to theoretical expectations when using them on different real fiber links. Actually, the 
maximum ON-OFF gain observed for the remote pump in this experiment is 14 dB (lower 
than the 23 dB gain observed in the metro experiment) and the observed local pump gain is 
even lower (3 dB instead of 9 dB). This effect is well known in telecom networks and is 
related to high fiber losses near the pump input (i.e. within the pump effective length), which 
cause an abrupt pump power decrease and consequently a strong gain reduction. In order to 
verify this, we performed Optical Time Domain Reflectometry (OTDR) measurements and 
then numerically estimated the expected ON-OFF gain with the measured fiber loss values. 
OTDR measurements were taken along the first 20 km near fiber input and the last 20 km 
near fiber end, as with SMF-28 optical fiber links the connector losses located in the first ~22 
km of fiber (i.e. within the DRA effective length) are the most relevant for DRA. The 
recorded OTDR trace is shown in Fig. 5 for the first 20 km of fiber, clearly indicating 
significant losses at about 2 km, 5 km and 10 km distance from the amplifiers. The loss values 
for the last 20 km of fiber link are nearly the same as the first 20 km, since, as explained 
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above, the fiber link travels a loop configuration, and both fibers are physically placed in the 
same cable. 

 

Fig. 6. Numerical estimate of the DRA signal-pump evolution based on OTDR loss 
measurements, along the first 25 km (on the left) and the last 25 km fiber spans (on the right). 

With the recorded OTDR traces, we performed accurate numerical estimates of the 
signal/pump power evolution along the fiber, and of the resulting ON-OFF Raman gain. We 
employed a fully resolved spectral model of Raman amplifiers describing the power evolution 
of the two Raman pumps, an arbitrary number of signals, forward and backward Amplified 
Stimulated Emission (ASE) components and Rayleigh scattering effects [38]. Results of 
simulations are shown in Fig. 6 (left) and Fig. 6 (right) for the first and last 20 km of fiber 
respectively, and indicate a strong impact of measured loss events in the DRA gain, leading to 
expected ON-OFF co-propagating and counter-propagating gain values of 3 dB and ~18 dB 
respectively, which is compatible with the real measured gain (3 dB and 14 dB). Note that the 
gain provided by DRA is experienced once by the transferred signal, but the benefits of DRA 
are doubled for the reflected signal which is fed back into the fiber by the Faraday mirror at 
fiber end in order to carry out phase noise stabilization. Actually, since Raman gain is 
bidirectional, DRA pumps provide gain also to this backward-propagating signal at nearly the 
same signal wavelength, thus giving a strong benefit in attaining locking of PLL at fiber input 
and achieving source phase noise stabilization. 

Moreover, in this experiment a hybrid scheme was adopted, where a b-EDFA boosts the 
signal at the remote fiber end, just before AOM2 (see Fig. 4). The hybrid scheme allows us to 
investigate the synergy between the two techniques, providing higher overall gain without 
inserting amplifiers in the intermediate link shelters. For a b-EDFA pump current of 80 mA, a 
gain of 13 dB is obtained. 

Such a configuration enables us to achieve robust operation and frequency dissemination 
across the 180 km link without intermediate amplification. The results are described in 
Section 5 and compared with the metro link performance. 

It is important to stress that forcing high gains at the remote fiber end where the b-EDFA 
and the DRA are placed could trigger power oscillations and system instability. This is due to 
the combined effect of Rayleigh-scattered ASE of the b-EDFA and to reflections at the 
Faraday mirror. In fact, one of the well-known EDFAs limitations in a bidirectional set-up is 
the possibility to reach the lasing condition in presence of reflections on both ends of the 
EDFA and of losses compensation by the laser gain. If an EDFA is placed at the remote end 
of a link, close to the Faraday mirror, the end side after the EDFA obviously has not relevant 
losses and the Faraday mirror provides high reflection. Rayleigh back-scattering of the ASE 
in the fiber link provides optical feedback from the link side; the two combined effects lead to 
the lasing threshold even with very low EDFA gain. In this set-up the EDFA gain is limited to 
few dB. 
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5. Phase noise and frequency stability results 

Phase noise spectrum and fractional frequency instability analysis of the delivered signal is of 
paramount importance in the assessment of the validity of DRA for metrological links. We 
were able to efficiently perform these measurements in both experiments (metro and inter-city 
links) thanks to the implementation of loop schemes, where the fiber end was delivered in the 
same laboratory where the fiber input was also located. Figure 7 shows the delivered signal 
phase noise as measured on PD2 in both experiments (metro and inter-city links). The graph 
actually reports the phase noise power spectrum during free-running (thin lines) and 
compensated (thick lines) operation of the link. 

 

Fig. 7. Phase noise spectra of the free-running (thin traces) and compensated (thick traces) 94 
km multiplexed link (black traces) and of the 180 km link on dedicated fiber (red traces), and 
interferometer noise floor (dotted blue thin line). 

In both experiments, the free fiber noise shows a similar behavior, in particular a broad 
peak at about 20 Hz is observed; this is attributed to road traffic or air pipes in conditioning 
systems as suggested in [41]. The noise on the dedicated inter-city fiber link (180 km) 
exceeds by 10 dB the one in metro shared link (94 km), even if the link length is only about 
twice. This might be due to the fact that the 180 km fiber is buried along a heavy-traffic 
motorway. When the link is stabilized, the noise is expected to decrease by 50 dB at 1 Hz 
Fourier frequency on the 180 km link and by 55 dB on the 94 km link. These limits are given 
by the round-trip travel time of light into the fiber [26] and are in nice agreement with the 
obtained results of Fig. 7. No spectral purity deterioration is observed on the residual link 
noise due to Raman or hybrid amplification. The noise floor of this setup has been measured 
by replacing the optical link with an equivalent attenuator and is also shown in Fig. 7 (blue 
line). Under operational conditions, the cycle-slips rate is below 10−4. 

The fractional frequency instability of the transferred signal is evaluated in terms of the 
Allan deviation of frequency data acquired with a dead-time-free counter used in Lambda-
mode [42] with 1 s averaging time. The results are shown in Fig. 8 for both experiments. On 
the short term, the stability is limited by the residual link phase noise, while on the long term 
it is due to the short fibers of the interferometer which cannot be compensated by the loop. 
This limitation could be furtherly mitigated as described in [43]. Nevertheless, an ultimate 
instability at the level of few parts in 10−19 can be obtained after few hours of operation. This 
is more than enough for the present requirements of optical links in most applications. 

The accuracy of the link was assessed measuring the average value of the beatnote 
between the original and the delivered radiation. We did not observe any unexpected 
frequency offset at the level of the achieved instability, i.e. 5 × 10−19. 
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The obtained results demonstrate that Raman amplification can be efficiently used for the 
coherent amplification of metrological signals in deployed links, both on dedicated and shared 
fibers with other data channels, without deterioration of data transmission on the neighboring 
channels. Moreover, this experimental work demonstrates a robust and performing operation 
of DRA also in hybrid schemes where b-EDFA are used at the remote link end to boost the 
collected signal power and performance. DRA can then efficiently enable the bridging of long 
fiber hauls without intermediate amplification shelters, while preserving a robust link 
operation. This is not always guaranteed with b-EDFA alone, which might lead to oscillations 
and instabilities if placed at the link ends and at high gain levels. 

 

Fig. 8. Fractional frequency instability values of the non-compensated (black circles) and 
compensated (black squares) metro link (94 km), as well as instability values of the non-
compensated (red circles) and compensated (red squares) inter-city link (180 km). The blue 
diamonds represent the interferometer noise floor. 

7. Conclusions 

In this work, we investigate the use of distributed Raman amplification in a coherent 
frequency link based on two experimental sessions, one involving a 94 km shared link with 
ITU channels carrying data traffic, the other one on a dedicated 180 km-long inter-city fiber 
link in combination with b-EDFAs. In the first shared link experiment, DRA for metrological 
applications shows a good compatibility with other ITU data channels lying within the 
amplifier gain bandwidth, also thanks to the inherent resilience and to the admittance range of 
standard telecom photoreceivers. In the inter-city long-haul fiber experiment, DRA shows 
promising synergy with b-EDFA, allowing for optical frequency transfer over an unrepeated 
180 km link with no intermediate amplification stages. In both cases DRA proves not to affect 
the spectral purity of the delivered frequency signal, which attains frequency stability at the 
10−19 level. A significant link-dependent gain behaviour is observed in our experiments, as 
also occurring in telecom networks, due to the infrastructure quality and in particular to the 
optical loss events in the first fiber kilometers. This affects the Raman pump power and the 
maximum achievable gain, indicating that a good knowledge of the optical fiber link is 
needed during the link design. Simulations have been performed to predict the attainable gain 
based on OTDR traces. The same procedure should be followed for optimizing the pump and 
signal power level along the haul, to prevent the arising of SBS and oscillations of the signal, 
especially at the local link end where the optical power is higher. Our experiments also 
pointed out that relatively high pump-power handling is not an issue (as also confirmed by 
common practice of DRA in standard telecom networks), and, despite the repeated 
connections/disconnections of several different fibers throughout the experiments, neither 
fiber damage nor detrimental back-reflections impacting metrological signal performance 
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have been observed. With the pre-requisite of a careful design for the specific link, and the 
evaluation of possible impairments, we show that DRA is very effective for an extensive use 
on optical fiber links for frequency metrology. In consideration of these results, we are 
planning to employ distributed Raman amplification in our recently developed optical fiber 
metrological link in Italy [21]. 
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