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The measured value of the (220) lattice-plane spacing of silicon 28 using

scanning X-ray interferometry is essential to realize the kilogram by counting
28Si atoms. An assumption made is that the measured lattice spacing is the bulk

value of an unstrained crystal forming the analyser of the interferometer.

However, analytical and numerical studies of the X-ray propagation in bent

crystals suggest that the measured lattice spacing might refer to the analyser

surface. To confirm the result of these studies and to support experimental

investigations of the matter by phase-contrast topography, a comprehensive

analytical model is given of the operation of a triple-Laue interferometer having

the splitting or recombining crystal bent.

1. Introduction

Crystal X-ray interferometry splits and recombines X-rays

while maintaining coherence. Monolithic interferometry was

first demonstrated by Bonse & Hart (1965), and the first split-

crystal interferometers for X-rays were operated in 1968 and

1969 (Bonse & te Kaat, 1968; Deslattes, 1969).

When the crystal recombining the interfering X-rays (the

analyser) is separated, the interference signal is sensitive to

movements orthogonal to the diffracting lattice planes. Since a

displacement by one plane creates a 2� phase shift, such an

interferometer allowed measurement of the lattice parameter

of 28Si with parts per billion accuracy (Massa et al., 2011, 2015).

This result led to the determination of the Avogadro constant

(Fujii et al., 2018), the realization of the kilogram by counting

atoms (Massa et al., 2020b) and the redefinition of the inter-

national system of units (SI) (Wiersma & Mana, 2021).

To realize the kilogram, an essential assumption is that the

measured lattice spacing is the bulk value of the unstrained

analyser (a blade, typically 1 mm thick). However, surface

relaxation, reconstruction and oxidation might cause lattice

strains (Melis et al., 2015, 2016; Massa et al., 2020a). Further-

more, analytical and numerical studies of the X-ray propaga-

tion in a bent crystal (e.g. because of a difference between the

surface stresses of the two surfaces) suggest that the measured

lattice spacing might refer to the surface rather than to the

bulk (Mana et al., 2004a,b; Apolloni et al., 2008).

To confirm the results of these studies and to support

experimental tests of this prediction by phase-contrast topo-

graphy, we give an analytical model of the operation of a

triple-Laue interferometer having, one at a time, the splitter,

mirror and analyser crystals cylindrically bent. Our interest is

in the phase of the diffracted waves, rather than the intensity

profile arising when using bent crystals e.g. to focus X-rays or

as analysers for X-ray spectroscopy (Nesterets & Wilkins,
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2008; Kaganer et al., 2020; Qi et al., 2021; Guigay & Sanchez

del Rio, 2022).

This paper is organized as follows. The interferometer

operation is outlined in Section 2. Sections 3 and 4 deal with

the strain field in a cylindrically bent crystal, the reciprocal

vector of the strained lattice and the description of the

wavefields in perfect crystals as a two-state quantum system.

In Section 5, we solve the Takagi–Taupin equations for X-ray

propagation in a bent (symmetrically cut) crystal slab. The

propagation in free space is examined in Section 6. Sections 7

and 8 deal with the wavefields leaving a bent crystal and a

triple-Laue interferometer having the splitting or recombining

crystal bent. In the conclusion, we outline predictions that

have been verified by the phase-contrast topography of a

monolithic interferometer having one of its crystals bent by a

thin copper film (Massa et al., 2023).

All the symbolic computations were carried out with the aid

of Mathematica (Wolfram Research, 2021a); the relevant

notebook is given as supporting information. To view and

interact with it, readers need to download the Wolfram Player

which is free of charge (Wolfram Research, 2021b).

2. Interferometer operation

Fig. 1 shows schematically a symmetrically cut triple-Laue

(LLL) X-ray interferometer having a bent mirror and oper-

ating in coplanar geometry. It also gives the meaning of some

of the symbols that we will use. The interferometer consists of

three plane-parallel Si crystals, splitter, mirror and analyser,

about 1 mm thick and cut in such a way that the diffracting

{220} planes are perpendicular to the surfaces. They split and

recombine 17 keV X-rays from a conventional Mo source.

To measure the spacing of the diffracting planes, the

analyser is moved orthogonally to them. Owing to this

displacement, the intensity of the forward-transmitted and

reflected beams varies sinusoidally, the period being ideally

equal to the sought spacing. The measurement result is the

ratio between the displacement (measured absolutely via

optical interferometry) and the number of X-ray fringes

observed.

3. Strained crystals

We consider, one at a time, the interferometer crystals cylin-

drically bent about an axis perpendicular to the x–z plane (see

Fig. 1) and approximate the x component of the displacement

field, uðrÞ, by the hyperbolic paraboloid (Nesterets & Wilkins,

2008; Kaganer et al., 2020)

u ¼ sþ �ðx� x0 � sÞðz� z0Þ; ð1Þ

where ��2 is the Gauss curvature and positive � values equal

downward bendings, as shown in Fig. 1 (Weisstein, 2023),

z ¼ z0 is the neutral plane, and x ¼ x0 þ s; z ¼ 0 is the

bending axis. Before bending, the input surface of the crystal is

z = 0 and the output one z = t.

Equation (1) follows from the elastic theory of thin

(isotropic) plates having thickness t, where z0 ¼ t=2, but, for

the sake of generality, we do not assume z0 ¼ t=2. The limit

z0 !1 with �z0 ¼ "0 ¼ const. describes a crystal uniformly

strained. The limit x0 !1 with �x0 ¼ #0 ¼ const. describes a

crystal uniformly tilted. In general, in the case of thin crystals,

(1) is the first-order approximation of any smooth displace-

ment field.

Equation (1) is not strictly valid in the presence of aniso-

tropy, unpaired surface stresses and Dirichlet boundary

conditions imposed at the crystal base. Our finite element

analyses and experimental verifications are given by Massa et

al. (2023). In particular, we observed that a copper film coated

on one of the surfaces bends the crystal in such a way that its

opposite, naked, surface lies in the neutral, �z ¼ z¼ plane.

We introduced the overall crystal displacement s because, in

the determination of the Si lattice parameter by a split-crystal

interferometer, the analyser is moved along the x axis. In the

analysis of this measurement, x0 is contained in s and omitted

from (1). In the phase-contrast topography of a monolithic

interferometer, the x position of the X-ray beam is varied step
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Figure 1
Top view of a symmetrically cut LLL interferometer having a bent mirror
and operating in coplanar geometry. S splitter, M mirror, A analyser. The
z axis is orthogonal to the crystal surfaces; the x axis is orthogonal to the
diffracting planes. Orange and cyan indicate arms 1 and 2, respectively.
The mirror bending makes the rays that leave the interferometer in the
Ko;h directions exit the source at different points and in different
directions. An ideal geometry is assumed, tS ¼ tA and zM ¼ zA. d0,
spacing of the unstrained diffracting planes; xS, separation at the source
of the rays interfering collinearly.



by step. In the analysis of this measurement, x0 encodes the

X-ray beam displacement and s is contained in x0 and omitted

from (1).

Owing to the bending, the diffracting planes are rotated by

�ðxÞ ¼ @zu ¼ �ðx� x0 � sÞ

and strained by

�ðzÞ ¼ @xu ¼ �ðz� z0Þ:

A positive �ðxÞ rotates the diffracting planes in the Ko direc-

tion and a positive strain means a larger diffracting-plane

spacing.

The electric susceptibility of the strained crystal (e.g. in Fig.

1, the mirror) is

�ðrÞ ¼
P
g0

�g exp �ig0 � ðr� uÞ
� �

;

where r is a position vector and g0 is a reciprocal vector of

the unstrained crystals (e.g. in Fig. 1, of the splitter and

analyser). By expanding g0 � ðr� uÞ in series, we find that g =

g0 � rðg0 � uÞ is a reciprocal vector of a locally perfect crystal.

Therefore, by using (1), the reciprocal vector of the strained

diffracting planes is

gðzÞ ¼ h0 � rðh0 � uÞ ¼ h0 ½�ðzÞ � 1�x̂xþ �ðxÞẑz
� �

;

where h0 is the reciprocal vector of the diffracting planes of

the unstrained crystals and the x axis is directed along �h0.

Hence, as shown in Fig. 1, h0 ¼ ð�h0; 0Þ.

The sign of �0 depends on the sign choice in the exponent of

the plane wavefunctions. One can use either expðik � rÞ or

expð�ik � rÞ. In the former case, �0 is positive, and in the latter

case, it is negative.

The ��h phases depend on the choice of the origin of the

coordinate system in the unit cell; a translation u0 changes ��h

according to ��h ! ��h expð�ih0 � u0Þ. We assume that, for

the unstrained planes, �ð�x; zÞ ¼ �ðx; zÞ, so that �h ¼ ��h.

Since expð�i�Þ ¼ �1, the sign of ��h can be chosen as either

plus or minus.

4. Crystal fields

We limit this study to crystals that are symmetrically cut and

plane parallel. This choice makes the X-ray propagation two

dimensional and dependent only on the inward normal ẑz to the

crystal surfaces and an x coordinate that we choose opposite

the reciprocal vector h0 ¼ �2�x̂x=d0, where d0 is the spacing of

the diffracting planes of the unstrained crystals (Mana &

Palmisano, 2004; Sasso et al., 2022).

Owing to the limited spatial coherence of conventional

X-ray sources, each incoming photon is in a probabilistic

superposition of single-particle states

j ðzÞi ¼ j oðzÞijoi þ j hðzÞijhi; ð2Þ

where we used the Dirac bra–ket notation and

joi ¼ expð�iKo � rÞ
1

0

� �
exp½�iK�0z=ð2�Þ�;

jhi ¼ expð�iKh � rÞ
0

1

� �
exp½�iK�0z=ð2�Þ�:

ð3Þ

The j ðzÞi state belongs to the tensor product L2ðR
2
Þ � V2 of

the L2ðR
2
Þ space of the square-integrable two-variable func-

tions and the two-dimensional vector space V2. Throughout

the paper we use the 2 � 1 matrix representation of V2. Hence,

by omitting the exponentials in (3),

hxj ðzÞi ¼ j ðx; zÞi ¼
 oðx; zÞ

 hðx; zÞ

� �
:

In (3), the mean electric susceptibility of silicon �0 is set equal

to zero in a vacuum.

Ko;h ¼ Kð� ẑz� �x̂xÞ; ð4Þ

where � ¼ cosð�BÞ and � ¼ sinð�BÞ are direction cosines and

�B is the Bragg angle, are the kinematical wavevectors satis-

fying the Bragg conditions Kh = Ko þ h0 and jKoj =

jKhj ¼ K ¼ 2�=	. We will use the subscript n ¼ o; h to label

the V2 basis vectors and the first (plus or minus) sign of � and

	 applies always to the o state. Also, we consider a coplanar

geometry, that is, Ko, Kh, h0 and ẑz are in the same (reflection)

plane.

The representation of the crystal fields as the components of

a state vector (Bonse & Graeff, 1977) allows us to use matrix

descriptions of optical components. This simplifies the study of

the interferometer, the description of which can be built by

assembling simpler elements. This approach is a useful alter-

native to the standard formulation of the dynamical theory of

X-ray diffraction and an additional tool for the study of X-ray

interferometry.

In this paper, we consider only the propagation of the

coherent single-photon state (2). The averaging over their

probabilistic superposition can be done by the density matrix

formalism, as shown by Sasso et al. (2022).

5. Takagi–Taupin equations

The first-order approximation in p=K, where the p momentum

is conjugate to x, of the X-ray propagation in a deformed

crystal is given by the Takagi–Taupin equations (Takagi, 1962,

1969; Taupin, 1964; Katagawa & Kato, 1974; Authier, 2001;

Härtwig, 2001; Mana & Montanari, 2003; Mana & Palmisano,

2004; Honkanen et al., 2018),

i@z

 oðx; zÞ

 hðx; zÞ

� �
¼
�i tanð�BÞ@x 
 expðþih0uÞ


 expð�ih0uÞ i tanð�BÞ@x

� �
�

 oðx; zÞ

 hðx; zÞ

� �
; ð5Þ

where 
 ¼ ��hK=ð2�Þ. We consider initial Gaussian-like

beams and set the axis of the X-ray beam passing through the

x-axis origin; therefore, at z ¼ 0,  nðx; 0Þ 6¼ 0 only if

j�h0x2j 
 1. The rationale for this assumption will be clear in

the discussion following equation (10).
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To solve the Takagi–Taupin equations, we factor  nðx; zÞ as

(Mana & Palmisano, 2004)

 nðx; zÞ ¼ Inðx; zÞ�nðx; zÞ; ð6aÞ

where, by setting x0 ¼ x� x0 � s and z0 ¼ z� z0,

Inðx; zÞ ¼ exp
�
�i�h0½x

02 cotð�BÞ þ z02 tanð�BÞ�=4

� ih0ð�x0z0 þ sÞ
�
: ð6bÞ

Therefore, (5) reads (see the supporting information)

i@z

�oðx; zÞ

�hðx; zÞ

� �
¼
�i tanð�BÞ@x 



 i tanð�BÞ@x

� �
�oðx; zÞ

�hðx; zÞ

� �
:

ð7Þ

Now, it is convenient to use the Fourier transform of

�nðx; zÞ with respect to the x variable. Hence,

�nðx; zÞ ¼
1

2�ð Þ1=2

Zþ1
�1

e��nðp; zÞ expð�ipxÞ dp;

which leads to the reciprocal-space representation of the

Takagi–Taupin equations,

i@�
e��oðp; zÞe��hðp; zÞ

� �
¼
� �
� 

� � e��oðp; zÞe��hðp; zÞ

� �
; ð8Þ

where � ¼ ��h=j��hj,

� ¼ �z=�e

is the dimensionless propagation distance,

 ¼
2 sinð�BÞp

Kj��hj
¼

�e tanð�BÞp

�

is the dimensionless resonance error, and

�e ¼ 2��=ðKj��hjÞ ¼ 	�=j��hj

is the Pendellösung length.

Eventually, crystal propagation is given by

je��ðp; zÞi ¼ U0ðp; zÞje��ðp; 0Þi;

where, by solving (8) (see the supporting information),

U0ðp; zÞ ¼
Tðp; zÞ Rðp; zÞ

Rðp; zÞ Tð�p; zÞ

� �
; ð9aÞ

Rðp; zÞ ¼ �
i� sin½�ð2 þ �2Þ

1=2
�

2 þ �2ð Þ
1=2

; ð9bÞ

Tðp; zÞ ¼ cos½�ð2
þ �2
Þ

1=2
� � Rðp; zÞ=�: ð9cÞ

To complete the analysis, we need the e��nðp; 0Þ components

of the initial state, which are obtained via the convolution

integral ðeI�nI�n � e  nÞðp; 0Þ. Similarly, after propagation through a

crystal having thickness t, we can retrieve the e  nðp; tÞ

components of the output state via the convolution integral

ðeIIn �
e��nÞðp; tÞ.

To calculate these convolution integrals, we rewrite (6b) as

Inðx; zÞ ¼ exp i½�gzs=2� h0uz=2� ðp� � qzÞx�
� �

; ð10Þ

where we omitted inessential (constant) phases shared by the

o and h states and a phase proportional to �h0x2,

gz ¼ h0½1� �ðzÞ�

is the x component of the reciprocal vector gðzÞ,

uz ¼ ��x0ðz� z0Þ ¼ uðs; zÞ � s

is the displacement field at x ¼ s purged of the overall

displacement s,

p� ¼ �
�h0ðx0 þ sÞ

2 tanð�BÞ
¼ �ð0ÞKz

is the resonance error (Authier, 2001) that makes Kn � p�x̂x

satisfy the Bragg condition at the hitting point x ¼ 0 of the

X-rays, and

qz ¼ ��h0ðz� z0Þ=2 ¼ ��ðzÞKx

is the resonance error that makes Kn þ qzx̂x satisfy the Bragg

condition versus the x component of the reciprocal vector gz.

The physical interpretations of p� and qz are given in the

supporting information.

In (10), the omission of the �h0x2 phase simplifies the

convolution integrals, which otherwise must be approximated

(giving the same result) by the steepest descent method. It is

justified by assuming a limited transverse extension of the

X-ray beam about x ¼ 0, i.e. �h0x2 is assumed negligibly small

everywhere  nðx; zÞ 6¼ 0.

Note that gz, uz, p� and qz are independent of x. When

examining the bending effect on the phase-contrast topo-

graphy of a monolithic interferometer, we set s = 0. Therefore,

uz is the displacement field at x = 0, where the X-rays hit the

crystal. When studying the bending effect on the measurement

of the Si lattice parameter by a split-crystal interferometer, we

set x0 ¼ 0 and uz ¼ 0.

The Fourier transforms of (10) and of its complex conjugate

are (see the supporting information)eIInðp; tÞ / exp �iðgtsþ h0utÞ=2
� �

�ðp� p� 	 qtÞ; ð11aÞ

eI�nI�nðp; 0Þ / exp 	iðg0sþ h0u0Þ=2
� �

�ðpþ p� � q0Þ; ð11bÞ

where the g, u and q subscripts 0 and t indicate z ¼ 0 and

z ¼ t, t being the crystal thickness. The e��o;hðp; 0Þ components

of the initial state are given by the convolution integralse��nðp; 0Þ ¼ ðeI�nI�n � e  nÞðp; 0Þ

/ e  nðpþ p� � q0; 0Þ exp½	iðg0sþ h0u0Þ=2�: ð12aÞ

Similarly, the e  o;hðp; tÞ components of the final state aree  nðp; tÞ ¼ ðeIIn �
e��nÞðp; tÞ

/ e��nðp� p� 	 qt; tÞ exp½�iðgtsþ h0utÞ=2�: ð12bÞ

After ending the transformation chain describing the X-ray

propagation through a bent crystal,

je  ðp; 0Þi !
eII�
je��ðp; 0Þi !

U0
je��ðp; tÞi !

eII
je  ðp; tÞi;
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we observe that the result is the same as (see the supporting

information)

je  ðp; tÞi ¼
Rþ1
�1

UBðp; p0; tÞje  ðp0; 0Þi dp0; ð13Þ

where

UBðp; p0; tÞ ¼

Tðp� p� � qt; tÞ Rðp� p� � qt; tÞ

� exp½þið�gsþ h0�uÞ� � exp½þiðgsþ h0uÞ�

� �ðp0 � p� q0 þ qtÞ � �ðp0 � pþ q0 þ qtÞ

Rðp� p� þ qt; tÞ Tð�pþ p� � qt; tÞ

� exp½�iðgsþ h0uÞ� � exp½�ið�gsþ h0�uÞ�

� �ðp0 � p� q0 � qtÞ � �ðp0 � pþ q0 � qtÞ

2666666666664

3777777777775
ð14Þ

is the reciprocal-space representation of the propagator,

g ¼ ðgt þ g0Þ=2 and u ¼ ðut þ u0Þ=2

are, respectively, the averages of the reciprocal vector g0;t and

displacement u0;t at the input (subscript zero) and output

(subscript t) surfaces, and

�g ¼ ðgt � g0Þ=2 and �u ¼ ðut � u0Þ=2

are their half differences.

As shown by (11a) and (11b), the �gsþ h0�u and gsþ h0u

phases originate in the matching (ensuring the required

continuity) of the input and output waves e  ðp; 0Þ and e  ðp; tÞ

with the guided waves inside the crystal, i.e. the eigenmodes of

the Hamiltonian of the Takagi–Taupin equations (5). For this

reason, they depend on the lattice parameter and displace-

ment fields at the crystal interfaces. In particular, X-ray

propagation as given by (13) and (14) does not depend on the

crystal displacement and lattice parameter inside the crystal.

It can be easily verified that, in the case of a displaced

perfect crystal, i.e. u ¼ s, the scattering matrix (14) reduces to

(9a), where the reflection coefficient Rðp; zÞ gets the h0s phase.

This makes it possible to measure the spacing of the diffracting

planes by making the o and h input states interfere.

If the strain is uniform, i.e. u ¼ "xxðx� x0Þ, then �g;u and p�
are equal to zero. Therefore, apart from the different Bragg

angle encoded by the resonance error �qt, the scattering

matrix (14) reduces again to (9a), where the reflection coef-

ficient gets the h0u ¼ h0"xxðx� x0Þ phase and the interference

of the o and h input states yields a moiré pattern of upright

fringes.

Eventually, if the deformation is a tilt of the diffracting

planes, i.e. u ¼ #0z, then �g and qt are equal to zero and

g ¼ h0, �u ¼ u ¼ #0t=2 and p� ¼ �0Kz. Therefore, the scat-

tering matrix (14) reduces to that given by Sasso et al. (2022)

to account for a tilted crystal.

6. Free-space propagation

When studying the interferometer operation, the free-space

propagation from one crystal to the next must also be

considered. It is given by

je  ðp; zÞi ¼ Fðp; zÞje  ðp; 0Þi;

where the �0 value in (3) must be set to zero and (see the

supporting information)

Fðp; zÞ ¼
exp ipz tanð�BÞ

� �
0

0 exp �ipz tanð�BÞ
� �" #

� exp
ip2z

2Kz

� 	
: ð15Þ

The first-order phase �pz tanð�BÞ corresponds to geometric

optics. Accordingly, the o and h states propagate in the Ko;h

directions. Thus, we have o;hðx; zÞ = o;h½x	 z tanð�BÞ; z ¼ 0�.

In contrast to propagation in crystals, we approximated the

free-space propagation up to the order ðp=KÞ
2, which brings

the exp½ip2z=ð2KzÞ� factor and recovers the  nðx; zÞ spread

because of diffraction. This higher-order approximation is

necessary to take into account the propagation of the different

plane-wave components of the initial state. As we will make

clear in the next section, it allows the incoming diverging rays,

one of which is scattered in the Ko direction and the other in

the Kh direction, to leave the source from different points.

7. Laue diffraction

When X-rays, coming from a source at a distance zS in the o or

h state, impinge on a cylindrically bent crystal (plane parallel

and symmetrically cut) as shown in Fig. 2, the waves leaving

the crystal are (see the supporting information)e  hoðp; tÞ ¼ Rðp� p� þ qt; tÞe  oðpþ q0 þ qt; 0Þ

� exp �i½gsþ h0u� pxS � 2qtzS tanð�BÞ�
� �

; ð16aÞe  ooðp; tÞ ¼ Tðp� p� � qt; tÞe  oðpþ q0 � qt; 0Þ

� exp þið�gsþ h0�uÞ
� �

; ð16bÞ

if the input state is je  ðp; 0Þi ¼ e  oðp; 0Þjoi, ande  ohðp; tÞ ¼ Rðp� p� � qt; tÞe  hðp� q0 � qt; 0Þ

� exp þi½gsþ h0u� pxS þ 2qtzS tanð�BÞ�
� �

; ð16cÞe  hhðp; tÞ ¼ Tð�pþ p� � qt; tÞe  hðp� q0 þ qt; 0Þ

� exp �ið�gsþ h0�uÞ
� �

; ð16dÞ

if the input state is je  ðp; 0Þi ¼ e  hðp; 0Þjhi. They are given by

(13), where UBðp; p0; tÞFðp0; zSÞ substitutes for UBðp; p0; tÞ.

We omitted second-order terms proportional to q0qt=K and

irrelevant phases shared by the leaving waves, t is the crystal

thickness, zS is the source distance,

xS ¼ 2qtzS=Kz

is the separation at the source of the rays that leave the crystal

in the Ko;h þ px̂x directions (see Fig. 2), gt and ut are, respec-

tively, the reciprocal vector and displacement on the crystal
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exit surface and on the axis of the X-ray beam, and q0 and qt

are the additional resonance errors on the crystal input and

exit surfaces due to the crystal strain.

The 2qtzS tanð�BÞ phase difference between the forward-

transmitted and reflected waves originates in the free-space

propagation of the rays exiting the crystal in the Ko;h þ px̂x

directions. In fact, they leave the source with different reso-

nance errors,�qt (see Fig. 2), and, thus, propagation directions.

The phases �ð�gsþ h0�uÞ and �ðgsþ h0uÞ that come into

the forward-transmitted and reflected waves play an essential

role in the interferometer operation. As shown in the next

section, according to how they add or subtract, they make the

interference signal sensitive to the lattice parameter and

displacement fields of one or the other side of the bent crystal.

8. Triple-Laue interferometer

The X-ray propagation through a triple-Laue interferometer

having a bent crystal (the splitter or mirror or analyser) is

given by

e  o1ðpÞ þ e  o2ðpÞe  h1ðpÞ þ e  h2ðpÞ

" #
¼

Zþ1
�1

X1ðp; p0Þ þ X2ðp; p0Þ
� �

�
e  inðp

0Þ

0

" #
dp0;

where X1ðp; p0Þ and X2ðp; p0Þ propagate je  ðp0; 0Þi along the

first and second arm of the interferometer, respectively. They

are built by concatenating crystal and vacuum propagations.

The interferometer unstrained crystals have parallel and

unshifted diffracting planes. Therefore, X-ray propagation is

carried out by means of (9a). In contrast, propagation in the

bent crystal is carried out by means of (14). Vacuum propa-

gation is given by (15). Eventually, to examine separately the

two interferometer arms, we introduce the projectors

Po ¼
1 0

0 0

� �
and Ph ¼

0 0

0 1

� �
:

Free-space propagation leads to the separation of the o and h

states, leaving the interferometer in two spatially localized

states, whose i ¼ 1; 2 components overlap and interfere.

In the following subsections, we give the expressions of

X1;2ðp; p0Þ and e  niðpÞ when the bent crystal is the splitter,

mirror or analyser. In the e  niðpÞ expressions, we neglect

inessential phase terms shared by the interfering beams. The

detailed calculations are given in the supporting information.

8.1. Splitter

When the bent crystal is the splitter, X-ray propagation

along the two interferometer arms is given by

X1ðp; p0Þ ¼ F0ðp; zDÞU0ðp; tAÞF0ðp; zAÞPhU0ðp; tMÞ

� F0ðp; zMÞPoUBðp; p0; tSÞF0ðp
0; zSÞ; ð17aÞ

X2ðp; p0Þ ¼ F0ðp; zDÞU0ðp; tAÞF0ðp; zAÞPoU0ðp; tMÞ

� F0ðp; zMÞPhUBðp; p0; tSÞF0ðp
0; zSÞ: ð17bÞ

Fig. 1 gives the meaning of the symbols related to the inter-

ferometer geometry (crystal thicknesses and spacing, source

and detector distances) that are used here and in the following

subsections. The interfering waves reaching the detector aree  o1ðpÞ ¼ Rðp; tAÞRðp; tMÞTðp� p� � qtS
; tSÞ

� e  inðpþ q0 � qtS
Þ

� exp þi½gtS
sþ h0utS

� pxS � 2qtS
zS tanð�BÞ�

n o
;

ð18aÞe  o2ðpÞ ¼ Tðp; tAÞRðp; tMÞRðp� p� þ qtS
; tSÞ

� e  inðpþ q0 þ qtS
Þ; ð18bÞe  h1ðpÞ ¼ Tð�p; tAÞRðp; tMÞTðp� p� � qtS

; tSÞ

� e  inðpþ q0 � qtS
Þ; ð18cÞe  h2ðpÞ ¼ Rðp; tAÞRðp; tMÞRðp� p� þ qtS

; tSÞ

� e  inðpþ q0 þ qtS
Þ

� exp �i½gtS
sþ h0utS

� pxS � 2qtS
zS tanð�BÞ�

n o
;

ð18dÞ

where zS is the source distance from the splitter,

xS ¼ 2qtS
zS=Kz

is the separation at the source of the rays interfering colli-

nearly, gtS
and utS

are, respectively, the reciprocal vector and

displacement field on the splitter exit surface, and q0 and qtS

are evaluated on the splitter entrance (subscript 0) and exit
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Figure 2
Laue diffraction by a bent crystal. h0, reciprocal vector of the unstrained
crystal; Ko;h, diffracted kinematical wavevectors satisfying the Bragg law
for the unstrained crystal; red and blue lines, incoming rays leaving the
crystal in the Ko (red) and Kh (blue) directions; black lines, rays incoming
in the Ko;h directions; q0 and qt , resonance errors that make Ko;h � q0x̂x
and Ko;h � qtx̂x satisfy the Bragg condition versus the g0;t components of
the reciprocal vectors at the input (subscript 0) and output (subscript t)
surfaces, respectively; zS, source distance from the crystal; t, crystal
thickness.



(subscript tS) surfaces. As regards utS
, it is evaluated on the axis

of the X-ray beam.

Here and in the next subsections, we leave out the phase

terms shared by the interfering wave pairs e  o1ðpÞ and e  o2ðpÞ

(o state) and e  h1ðpÞ and e  h2ðpÞ (h state). In addition, we assign

the phase difference between the interfering waves to the

wave reflected by the analyser, i.e. to e  o1ðpÞ (o state) ande  h2ðpÞ (h state), respectively.

The phases

’s ¼ gtS
s and ’u ¼ h0utS

ð19Þ

of the e  o1ðpÞ and e  h2ðpÞ waves leaving the interferometer

originate travelling fringes and moiré interference patterns

that encode the diffracting-plane spacing d ¼ 2�=gtS
and

displacement field uðx; tSÞ of the splitter inner surface z ¼ tS.

In fact, according to equations (16a)–(16d), the waves

travelling along the i ¼ 1; 2 arms acquire, when crossing the

splitter, the �gsþ h0�u and �ðgsþ h0uÞ phases, respectively,

whose difference is gtS
sþ h0utS

.

8.2. Mirror

When the bent crystal is the mirror, X-ray propagation is

given by

X1ðp; p0Þ ¼ F0ðp; zAÞU0ðp; tAÞF0ðp; zAÞPhUBðp; p0; tMÞ

� F0ðp
0; zMÞPoU0ðp

0; tSÞF0ðp
0; zSÞ; ð20aÞ

X2ðp; p0Þ ¼ F0ðp; zDÞU0ðp; tAÞF0ðp; zAÞPoUBðp; p0; tMÞ

� F0ðp
0; zMÞPhU0ðp

0; tSÞF0ðp
0; zSÞ: ð20bÞ

The detected waves aree  o1ðpÞ ¼ Rðp; tAÞRðp� p�1 þ qtM
; tMÞTðpþ q0 þ qtM

; tSÞ

� e  inðpþ q0 þ qtM
Þ

� exp �2i½gsþ h0u� pxS � 2qzS tanð�BÞ�
� �

; ð21aÞe  o2ðpÞ ¼ Tðp; tAÞRðp� p�2 � qtM
; tMÞRðp� q0 � qtM

; tSÞ

� e  inðp� q0 � qtM
Þ; ð21bÞe  h1ðpÞ ¼ Tð�p; tAÞRðp� p�1 þ qtM

; tMÞTðpþ q0 þ qtM
; tSÞ

� e  inðpþ q0 þ qtM
Þ; ð21cÞe  h2ðpÞ ¼ Rðp; tAÞRðp� p�2 � qtM

; tMÞRðp� q0 � qtM
; tSÞ

� e  inðp� q0 � qtM
Þ

� exp þ2i½gsþ h0u� pxS � 2qzS tanð�BÞ�
� �

; ð21dÞ

where zS is the source distance from the mirror,

xS ¼ 2qðzS þ zMÞ=Kz is the separation at the source of the rays

interfering collinearly,

g ¼ ðg0 þ gtM
Þ=2 and q ¼ ðq0 þ qtM

Þ=2

are, respectively, the means of the reciprocal vector and

resonance error at the input (subscript 0) and output

(subscript tM) surfaces of the mirror, and q0 and qtM
are

evaluated on the mirror entrance and exit surfaces. As regards

u ¼ ðu1 þ u2Þ=2;

it is the average of the mean displacements u1;2 calculated

along the first (subscript 1) and second (subscript 2) X-ray

paths and on the beam axes. Since p� depends on the x

coordinate along the mirror, the subscript i in p�i indicates the

mirror crossing of the i ¼ 1; 2 arms.

The phases

’s ¼ 2gs and ’u ¼ 2h0u ð22Þ

of the e  o1ðpÞ and e  h2ðpÞ waves leaving the interferometer

originate travelling fringes and moiré interference patterns

that encode the means d ¼ 2�=g and uðxÞ of the diffracting-

plane spacing and displacement field, respectively, of the

mirror input and output surfaces. In fact, according to equa-

tions (16a)–(16d), the interfering waves, when crossing the

mirror, acquire phases having identical gsþ h0u magnitude,

but opposite signs.

8.3. Analyser

When the bent crystal is the analyser, the X-ray propagation

is given by

X1ðp; p0Þ ¼ F0ðp; zDÞUBðp; p0; tAÞF0ðp
0; zAÞPhU0ðp

0; tMÞ

� F0ðp
0; zMÞPoU0ðp

0; tSÞF0ðp
0; zSÞ; ð23aÞ

X2ðp; p0Þ ¼ F0ðp; zDÞUBðp; p0; tAÞF0ðp
0; zAÞPoU0ðp

0; tMÞ

� F0ðp
0; zMÞPhU0ðp

0; tSÞF0ðp
0; zSÞ: ð23bÞ

The interfering waves are

e  o1ðpÞ ¼ Rðp� p� � qtA
; tAÞRðp� q0 � qtA

; tMÞ

� Tðp� q0 � qtA
; tSÞ

e  inðp� q0 � qtA
Þ

� exp þi½g0sþ h0u0 � pxS � 2q0zS tanð�BÞ�
� �

;

ð24aÞe  o2ðpÞ ¼ Tðp� p� � qtA
; tAÞRðpþ q0 � qtA

; tMÞ

� Rðpþ q0 � qtA
; tSÞ

e  inðpþ q0 � qtA
Þ; ð24bÞe  h1ðpÞ ¼ Tð�pþ p� � qtA

; tAÞRðp� q0 þ qtA
; tMÞ

� Tðp� q0 þ qtA
; tSÞ

e  inðp� q0 þ qtA
Þ; ð24cÞe  h2ðpÞ ¼ Rðp� p� þ qtA

; tAÞRðpþ q0 þ qtA
; tMÞ

� Rðpþ q0 þ qtA
; tSÞ

e  inðpþ q0 þ qtA
Þ

� exp �i½g0sþ h0u0 � pxS � 2qozS tanð�BÞ�
� �

;

ð24dÞ

where zS is the source distance from the analyser,

xS ¼ 2q0ðzS þ zM þ zAÞ=Kz is the separation at the source of

the rays interfering collinearly, g0 and u0 are the reciprocal

vector and displacement field, respectively, on the input

surface of the analyser, and q0 and qtA
are evaluated on the

input (subscript 0) and output (subscript tA) surfaces of the

analyser. As regards u0, it is evaluated on the axis of the X-ray

beam.

The phases

’s ¼ g0s and ’u ¼ h0u0 ð25Þ
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of the e  o1ðpÞ and e  h2ðpÞ waves leaving the interferometer

originate travelling fringes and moiré interference patterns

that encode the diffracting-plane spacing d ¼ 2�=g0 and

displacement field uðx; t0Þ of the analyser inner surface z ¼ 0.

In fact, according to equations (16a)–(16d), the waves

travelling along the i ¼ 1; 2 arms acquire, when crossing the

analyser, the �ðgsþ h0uÞ and �ð�gsþ h0�uÞ phases,

respectively, where the plus (minus) sign applies to the leaving

o ðhÞ state. The phase difference is g0sþ h0u0.

9. Conclusions

The terms gtS
s (if the displaced crystal is the splitter), 2gs (if

the displaced crystal is the mirror) and g0s (if the displaced

crystal is the analyser) in the phase difference of the waves

travelling along the first and second arms [see (18), (21) and

(24)] make it possible to measure the diffracting-plane

spacing. In the case of a displaced mirror, the period of the

travelling fringes is half the spacing of the diffracting planes.

Our analysis of the interferometer operation confirms that,

in the case of a bent analyser, the sought spacing is measured

on the input surface. In fact, in equations (24), the observed

phase difference is g0s, where g0 is the x component of the

reciprocal vector at the input surface of the analyser.

Supported by this result, we surmise that, if the measurement

is repeated after flipping the analyser, a difference appears

whenever the analyser is (smoothly) strained. These

measurement repetitions were used to test the analyser’s

perfection and corroborate the measurement results (Massa et

al., 2011, 2015).

The phase differences h0utS
(splitter), 2h0u (mirror) and

h0u0 (analyser) [see (18), (21) and (24)] are proportional to the

displacement fields of the output surface of the splitter, utS
, the

input surface of the analyser, u0, and the mean u of the

displacement fields of the two mirror surfaces. They made it

possible to perform experimental tests of our results by the

phase-contrast topography of a monolithic interferometer

having the splitter or analyser bent by a Cu coating of one of

its sides (Massa et al., 2023). We predict that the interferogram

is insensitive to what surface (input or output) of the mirror is

coated. In contrast, we predict that it is sensitive to which

surface (input or output) of the splitter or analyser is coated.

In equations (18), (21) and (24), the arguments of the

reciprocal-space representations of the input wavefield e  in

show that the rays interfering collinearly, i.e. having the same

resonance error p when they leave the interferometer, exit the

source with different resonance errors,�qtS
(if the bent crystal

is the splitter),�ðq0 þ qtM
Þ (if the bent crystal is the mirror) or

�q0 (if the bent crystal is the analyser). This is the same as

saying that they leave the source at different angles. This

difference implies two additional terms in the phase difference

between the interfering waves.

The first, pxS, encodes, via the time-shifting property of the

Fourier transform, the fact that the rays interfering collinearly

start from different points, spaced by xS. This raises questions

about the effect of the source coherence and suggests that a

density matrix formalism is needed to describe the inter-

ferometer operation (Sasso et al., 2022).

The second, 2qtS
zS tanð�BÞ (if the bent crystal is the

splitter), 2qzS tanð�BÞ (if the bent crystal is the mirror) or

2qozS tanð�BÞ (if the bent crystal is the analyser), encodes the

different free-space propagation from the source to the

interferometer of the rays interfering collinearly. This differ-

ence is equal to zero in a perfect interferometer and we

surmise it occurs whenever the crystals are (smoothly)

strained. Since it makes the interference fringes sensitive to

the source distance, a test of the interferometer sensitivity to it

might additionally prove (or disprove) the crystals’ perfection

and, if insensitive, certify the measured values of the

diffracting-plane spacing.

Bending causes misalignment of the interferometer splitting

and recombining crystals. Firstly, the misalignment stems from

the difference between the lattice spacings of the strained and

unstrained crystals. This difference is revealed via the q0 and qt

terms in the arguments of the reflection and transmission

coefficients. It is independent of the crystal translation and

X-ray incidence point – which, in (1), are encoded by the s and

x0 parameters – and originates a meaningless constant

contribution to the fringe phase.

Secondly, the misalignment stems from the shear strain �ðxÞ
of the bent crystal. It is seen in the p� term in the argument of

the reflection and transmission coefficients, which now depend

on the X-ray incidence point. When scanning the X-ray inci-

dence point, this misalignment mimics a continuous rotation

of the crystal and it is equivalent to misalignments investigated

by Mana & Vittone (1997a,b) and Sasso et al. (2022). The

implied phase changes are very small in all practical cases.

APPENDIX A
List of the main symbols

x̂x, normal to the diffracting plane.

ẑz, normal to the crystal surface.

h0 ¼ �2�x̂x=d0, reciprocal vector (unstrained crystal).

d0, diffracting-plane spacing (unstrained).

Ko;Kh ¼ Ko þ h0, Bloch-wave wavevectors.

2K sinð�BÞ ¼ h0, Bragg law (unstrained crystals).

�B, Bragg angle (unstrained crystals).

� ¼ cosð�BÞ, Ko’s z direction cosine.

� ¼ sinð�BÞ, Kh’s x direction cosine.

Kz ¼ K�, z component of Ko;h.

�0;h, Fourier components of the electric susceptibility.

� ¼ �h=j�hj.

�e ¼ 	�=j�hj, Pendellösung length.

 ¼ �e tanð�BÞp=�, dimensionless resonance error.

� ¼ �z=�e, dimensionless propagation distance.

tS; tM; tA, crystal thicknesses.

zS; zD, source and detector distances.

xS, start separation of the rays interfering collinearly.

sx̂x, crystal displacement.

h0, reciprocal vector (unstrained crystals).

gz; g0; gt, reciprocal vectors (strained crystal, x components).
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qz; q0; qt, resonance errors (normal strain).

uz; u0; ut, displacement fields.

g ¼ ðg0 þ gtÞ=2, mean of the input and output surfaces.

q ¼ ðq0 þ qtÞ=2, mean of the input and output surfaces.

u ¼ ðu0 þ utÞ=2, mean of the input and output surfaces.

u ¼ ðu1 þ u2Þ=2, mean of the i ¼ 1; 2 paths.

�g ¼ ðgt � g0Þ=2, input–output difference.

�u ¼ ðut � u0Þ=2, input–output difference.

p�, resonance error (shear strain).

n ¼ o; h, wavefield components (subscript).

i ¼ 1; 2, interferometer arm (subscript).

z ¼ 0; t, crystal surfaces (subscript).

�;	, the first sign applies to the o state, the second to the h

one.
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References

Apolloni, A., Mana, G., Palmisano, C. & Zosi, G. (2008). Acta Cryst.
A64, 549–559.

Authier, A. (2001). Dynamical Theory of X-ray Diffraction, IUCr
Monographs on Crystallography 11. IUCr/Oxford University Press.

Bonse, U. & Graeff, W. (1977). X-ray Optics: Applications to Solids,
edited by H.-J. Queisser, pp. 93–143. Berlin: Springer.

Bonse, U. & Hart, M. (1965). Appl. Phys. Lett. 6, 155–156.
Bonse, U. & te Kaat, E. (1968). Z. Phys. 214, 16–21.
Deslattes, R. D. (1969). Appl. Phys. Lett. 15, 386–388.
Fujii, K., Massa, E., Bettin, H., Kuramoto, N. & Mana, G. (2018).

Metrologia, 55, L1–L4.

Guigay, J.-P. & Sanchez del Rio, M. (2022). J. Synchrotron Rad. 29,
148–158.
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