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Corrections of the travelling-fringe period for the
interference of aberrated beams
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E-mail: g.mana@inrim.it

Abstract. When laser beams are used for length measurements by interferom-
etry and the realisation of the meter, they are approximated by plane waves.
Hence, from the measured frequency, the dispersion relation of plane waves gives
the wavelength in a vacuum and, consequently, the period of the interference sig-
nal. However, this relation does not hold exactly and the wavelength is not a
well-defined quantity. Aberrations of the wavefront and intensity profiles bias the
phase accumulation and originate measurement errors. This paper gives the cor-
rections for the period of the integrated interference of aberrated paraxial beams.
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1. Introduction

A practical realisation of the metre is the wavefront
spacing λ of laser beams whose frequency ν is
linked to primary frequency standards [1]. For
the primary measurements, two-beam interferometers
are used, where the reference arm is fixed and
the measurement one is continuously changed while
sensing the interference fringes, whose period is
assumed to be equal to λ. The dispersion relation
for monochromatic plane waves in vacuum λ = c/ν
– where the speed of light c = 299792458 ms−1

is prescribed by the International System of units –
relates wavelength and frequency. However, plane
waves are never realised in practice and limited
monochromaticity [2–5], geometric phase [6–8], and
diffraction [9–22] threaten the λ = c/ν relationship.

In addition to length metrology, the kilogram
realization [23], gravimetry [13, 15, 17], precision γ-
ray spectroscopy [24], the measurements of the Si
lattice parameter [22, 25] and molar volume [18,
19, 26], and the foreseen space-based gravitational
wave detector LISA [27, 28] need low-noise, sensitive,
and accurate measurements and require more reliable
determinations of the accumulated phase and fringe
period. Some of these applications need only stable
and low-noise signals. In this case, our work helps to
quantify the phase noise induced by the coupling of the
alignment jitter to the wavefront aberrations [29].

Aberrations are this paper’s focus. Because of
them, the wavefronts bend, their spacing varies from
one point to another, and the wavelength is badly
defined. Therefore, optical interferometry must rely
on an effective wavelength, λe, that depends on how
measurements are carried out.

We consider two-beam interferometers where the
interference pattern is integrated over an infinite
detection plane. In the case of misaligned Gaussian
beams it is possible to calculate the interference
phase for arbitrary and mismatched parameters [30].
Furthermore, if the beams are paraxial, but matched,
the fractional correction of the fringe period – which,
typically, ranges from parts in 10−7 to parts in 10−9 – is
proportional to the trace of the second central-moment
of the angular power spectrum of the interfering beams
[31,32].

A combined X-ray and optical interferometer
showed wavefront errors and local wavelength varia-
tions as large as ±20 nm [33] and ±10−8λ [34]. Surpris-

ingly, a numerical analysis brought into light that, on
the average, the increased spread of the angular spectra
does not affect the period of the travelling fringes [35].

Since these findings could not be explained
physically, we carried out an analytical analysis of the
interference of two (slightly) aberrated Gaussian beams
with the purpose to exclude that it is specific to the
numerical examples considered and to unveil its origin.

In section 2 we establish the modal spectrum
representation, using the Hermite-Gauss modes as a
basis [36, 37]. Section 3 uses this decomposition to
study the interference of aberrated beams and to
calculate the period of their interference. Section
4 investigates the interference of matched and
mismatched Gaussian beams. Eventually, in section
5, we average the correction for the fringe period
over white modal spectra constrained to fixed root-
mean-square aberrations. The results confirm that the
average correction does not depend on the aberrations.

2. Hermite-Gauss modes

The Hermite-Gauss beams, or TEMlm mode having
rectangular symmetry,

ulm(ξ1, ξ2; ζ) = ul(ξ1; ζ)um(ξ2; ζ), (1a)

form a complete orthogonal base for the separable
solutions of the paraxial approximation of the scalar
wave equation [37]. In (1a) [38]

un(ξ; ζ) =
cn

4
√

1 + ζ2
Hn

( √
2ξ√

1 + ζ2

)
×

× exp

[
−ξ

2(1 + iζ)

1 + ζ2
+

i(2n+ 1)

2
arctan(ζ)

]
, (1b)

where

cn =

√√
2/π

2nn!
(1c)

is the normalising factor and Hn(ξ) is the Hermite
polynomial of degree n. Also, we omitted the
plane wave e−ikz+iωt term – where k = ω/c is the
wave-number, ω is the angular frequency, z is the
propagation distance, and t is time – and used the
dimensionless coordinates ξ1,2 = x1,2/w0 and ζ =
z/zR, where x1,2 are the transverse coordinates, w0

is the radius of the u0’s waist (which occurs at
ζ = 0), and zR = kw2

0/2 is the Rayleigh distance.
In the following, we restrict the study to a single
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transverse dimension. The extension to two orthogonal
dimensions is straightforward.

Orthogonality and completeness mean that any
separable paraxial beam can be written as a
superposition of TEMl modes as

ψ(ξ; ζ) ∝ u0(ξ; ζ) +
∑
n≥1

anun(ξ; ζ), (2)

where, without loss of generality, the (possibly
complex) coefficients,

an =

∫ +∞

−∞
ψ(ξ; 0)un(ξ; 0)∫ +∞

−∞
ψ(ξ; 0)u0(ξ; 0) dξ

, (3)

are evaluated in ζ = 0.
Since the w0 value and the z-axis direction and

origin are arbitrary, the representation (2) is not
unique. For instance, we can set w0 = 2/(kθ0),
where θ20 is the second central moment of the ψ’s
angular spectrum, ζ = 0 at the ψ’s waist, and the
z axis collinear to the ψ’s axis. This means that
the representation’s TEM0 mode is the best Gaussian
beam fitting ψ.

2.1. Mismatched Gaussian beams

With these choices, the representation of a Gaussian
beam is an = δn0, where δnm is the Kronecker delta
function. Different choices of the un’s axis and waist
location are possible. In this case, mismatches occur
because of lateral displacements, tilts, and different
waist location. Provided the mismatches are small,
only a few low-order modes need to be considered.

2.1.1. Wavefront tilt. By application of (3), the
beam,

ψ(ξ; 0) = exp
(
−ξ2 − iα̃ξ

)
, (4a)

tilted at the α = α̃/(kw0) angle, where α̃2 � 1, can be
expanded as

ψ(ξ; ζ) ∝ u0(ξ; ζ)− iα̃

2
u1(ξ; ζ)− α̃2

4
√

2
u2(ξ; ζ) + ... (4b)

By observing that, in the series expansion of
exp(−iα̃ξ), the α̃ powers higher than two multiply ξ3

and higher powers, the coefficients of the un modes
higher than u2 are proportional to α̃3 and higher
powers. Similar considerations hold in the following.

2.1.2. Beam axis mismatch. The beam,

ψ(ξ; 0) = exp
[
−(ξ − ξ0)2

]
, (5a)

laterally displaced by a small amount ξ0, can be
expanded as

ψ(ξ; ζ) ∝ u0(ξ; ζ) + ξ0u1(ξ; ζ) +
ξ20√

2
u2(ξ; ζ) + ... (5b)

2.1.3. Waist location mismatch. The beam

ψ(ξ; 0) = exp
[
−ξ2/(1− iζ20 )

]
, (6a)

whose waist is located at ζ = −ζ0, where ζ20 � 1, can
be expanded as

ψ(ξ; ζ) ∝ u0(ξ; ζ)− ζ0(2i− ζ0)

4
√

2
u2(ξ; ζ)

−
√

3

2

ζ20
8
u4(ξ; ζ) + ... (6b)

2.1.4. Waist radius mismatch. The beam

ψ(ξ; 0) = exp
[
−ξ2/(1 + υ)2

]
, (7a)

whose waist radius is (1 + υ)w0, where υ2 � 1, can be
expanded as

ψ(ξ; ζ) ∝ u0(ξ; ζ) +
υ(2− υ)

2
√

2
u2(ξ; ζ)

+

√
3

2

υ2

2
u4(ξ; ζ) + ... (7b)

2.1.5. Wavefront curvature mismatch. The beam

ψ(ξ; 0) = exp
(
−ξ2 − iκξ2

)
(8a)

where κ2 � 1, can be expanded as

ψ(ξ; ζ) ∝ u0(ξ; ζ)− κ(2i + κ)

4
√

2
u2(ξ; ζ)

−
√

3

2

κ2

8
u4(ξ; ζ) + ... (8b)

It is worth noting that κ is the wavefront curvature
at ζ = 0. The beam waist is located at ζ = −κ or
ζ = −(1− κ2)/κ and has radius (1− κ2/2)w0 or κw0,
respectively.

3. Correction for the interference period

A two-beam interferometer displaces axially a measure
beam ψms (the one travelling through the variable arm)
against a ψrf reference (the one travelling through
the fixed arm) by s. By leaving out the exp(−ikzD)
and exp[−ik(zD + s)] terms, where z = zD is the
observation plane, the interference signal, integrated
over an infinite-area detector, is

I(ς) =

∫ +∞

−∞
|ψms(ξ; ζD) + ψrf(ξ; ζD + ς)|2 dξ, (9)

where ς = s/zR and we considered one dimension only.
The signal phase in excess or defect to −ks is given by

φ(ς) = arg[Ξ(ς)], (10)

where

Ξ(ς) =

∫ +∞

−∞
ψ∗rf(ξ; ζD)ψms(ξ; ζD + ς) dξ, (11)
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4

and the star indicates the complex conjugation.
Therefore, the period of the travelling fringe is

λe = λ

(
1 +

∂ςφ
∣∣
ς=0

kzR

)
= λ

(
1 +

θ20 ∂ςφ
∣∣
ς=0

2

)
, (12)

where θ20 = 2/(kzR) is the squared divergence of u0
and the positive sign is dictated by the −ikz choice for
the cumulated phase, k = 2π/λ relationship, and the
conjugation choice in (11).

For the sake of simplicity, we limited the λe
calculation to the ς = 0 case. This simplification
does not mean that we are limiting ourselves to a null
difference of the optical paths. However, to ensure that
the contamination of the otherwise identical TEM0

modes is small, the optical-path difference must be
smaller than the Rayleigh distance. To go beyond
this approximation, we must set the waists of the
TEM0 modes at different distances from the detector
or, which is the same, extend the λe calculation to the
ς 6= 0 case.

The extension of (12) to two dimensions is

λe = λ

(
1 +

θ201 ∂ςφ1
∣∣
ς=0

2
+
θ202 ∂ςφ2

∣∣
ς=0

2

)
, (13)

where θ01,02 are the principal divergences of the TEM0

mode of the chosen beam decomposition.
The derivative of φ(ς) is

∂ςφ
∣∣
ς=0

=
Im(Ξ′0Ξ∗0)

|Ξ0|2
, (14)

with Ξ0 = Ξ(ζD) and Ξ′0 = ∂ςΞ
∣∣
ς=0

. It must be noted

that, as shown in [14, 31], Ξ0 and Ξ′0 are independent
of ςD. Therefore, without loss of generality, we set
ςD = 0.

Our results do not depend on how we draw the
phase difference (10) out of the interference signal.
Therefore, they apply equally well to the homodyne
and heterodyne detections.

3.1. Mismatched beams

We can use the newly developed formalism to study
the interference of mismatched beams. Hence, let

ψrf(ξ; ζD) = u0(ξ; ζD) +
∑
n≥1

anun(ξ; ζD) (15a)

ψms(ξ; ζD) = u0(ξ; ζD) +
∑
n≥1

bnun(ξ; ζD) (15b)

be the interfering beams. Therefore,

Ξ0 = 1 +
∑
n>0

a∗nbn. (16a)

Furthermore,

Ξ′0 =

∫ +∞

−∞
ψ∗rf(ξ; 0)

[
∂ςψms(ξ, ς)

]
ς=0

dξ

= γ00 +
∑
n,m>0

a∗nbmγnm, (16b)

where

γnm =

∫ +∞

−∞
un(ξ; 0)

[
∂ςum(ξ, ς)

]
ς=0

dξ =
icncm

4∫ +∞

−∞
e−2ξ

2

Hn(
√

2ξ)

[
4m+ 1− 1

2
H2(
√

2ξ)

]
Hm(
√

2ξ) dξ

=
i

4


2n+ 1 if m = n

−
√
n(n− 1) if m = n− 2

−
√

(n+ 2)(n+ 1) if m = n+ 2
0 otherwise

. (17)

In (17), we used [39]

∂ςum
∣∣
ς=0

=
i

4

[
4m+ 1− 1

2
H2(
√

2ξ)

]
× cmHm(

√
2ξ)e−ξ

2

, (18a)∫ +∞

−∞
Hn(
√

2ξ)Hm(
√

2ξ)e−2ξ
2

dξ =
δnm
cncm

, (18b)

∫ +∞

−∞
H2(
√

2ξ)Hn(
√

2ξ)Hm(
√

2ξ)e−2ξ
2

dξ =

1

cncm


4n if m = n

2
√
n(n− 1) if m = n− 2

2
√

(n+ 2)(n+ 1) if m = n+ 2
0 otherwise

. (18c)

Eventually, (16b) can be rewritten as

Ξ′0 =
i

4

[
1 +

∑
n>0

(2n+ 1)a∗nbn

−
∑
n>1

√
n(n− 1)(a∗nbn−2 + a∗n−2bn)

]
. (19)

Eventually, when considering a small contamina-
tion by parasitic modes of otherwise matched Gaussian
beams, by using (19), (16a) and (14) in (12) and con-
sidering only the lowest order terms, we obtain

∆λ

λ
=
θ20
8

[
1 + 2

∑
n>0

nRe(a∗nbn)

−
∑
n>1

√
n(n− 1)Re(a∗nbn−2 + a∗n−2bn)

]
(20)

where ∆λ = λe − λ and θ20 = 2/(kzR) is the squared
divergence of the TEM0 mode.

3.2. Matched beams

The correction for the interference of matched
(paraxial) beams is [31],

∆λ

λ
=
θ2

8
, (21)

where θ is the beams’ divergence, we take ψrf(ξ; ζD) =
ψms(ξ; ζD) = ψ(ξ; ζD).
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5

By setting an = bn in (20), we obtain

∆λ

λ
=
θ20
8

[
1 + 2

∑
n>0

n |an|2

− 2
∑
n>1

√
n(n− 1) Re(a∗nan−2)

]
, (22)

which, therefore, expresses θ in terms of θ0 and the ψ’s
modal expansion.

To reobtain (21) via the new formalism, we can
differentiate Ξ under the integral sign. Hence,

Ξ′0 =

∫ +∞

−∞
ψ∗(ξ; 0)

[
∂ςψ(ξ, ς)

]
ς=0

dξ. (23a)

Next, from the paraxial approximation of the wave
equation, we derive the identity ∂ς = −i∂2ξ/4, where

−∂2ξ/w2 is the direct space representation of the square

of the linear- momentum operator, p2, and w is the
1/e2 radius of the ψ’s waist. Hence,

Ξ′0 = − i

4

∫ +∞

−∞
ψ∗(ξ; 0)∂2ξψ(ξ, 0) dξ =

iσ2
pw

2

4
, (23b)

where σ2
p is the variance of the ψ’s momentum-space

representation. Without loss of generality, we can
assume the optical field normalised. Hence,

Ξ0 =

∫ +∞

−∞
ψ∗(ξ; 0)ψ(ξ, 0) dξ = 1 (24)

and, by using (24) and (23b) in (14),

∂ςφ
∣∣
ς=0

= Im(Ξ′0) =
σ2
pw

2

4
. (25)

Eventually, since θ = 2σp/k is the ψ’s divergence,

∆λ

λ
=

σ2
p

2k2
=
θ2

8
(26)

reproduces (21).

4. Gaussian beam interference

Now, we set the z axis collinear to the measure beam
axis, whose divergence and waist location fix w0 and
the Hermite-Gauss basis. Therefore, ψms = u0 and the
coefficients the ψms’s modal expansion are bn = δ0n.

4.1. Matched beams.

If the measure and reference beams are coaxial and
share the waist size and location, that is, if ψrf =
ψms = u0, their modal expansion are an = bn =
δ0n. Hence, (20) predicts correctly that the fractional
correction of the interference period of two identical
(one-dimensional) Gaussian beams is

∆λ

λ
=
θ20
8
, (27)

where θ0 =
√

2/(kzR) is the divergence of both the
reference and measure beams.

According to (6b), if we use a basis having the
waist displaced by ζ0, the lowest-order coefficients of
the beams’ expansion are

a = b =

{
1, 0,−ζ0(2i− ζ0)

4
√

2
, 0,−

√
3

2

ζ20
8

}
. (28)

In this case, Ξ0 = 1 − ζ20/8 and Ξ′0 = (i + ζ0 −
iζ20/8)/4. By calculating ∂ζφ

∣∣
ζ0

according to (14),

∆λ/λ = θ20/8 follows again. This confirms that the
beam representation does not affect the λe calculation.

4.2. Beam axis mismatch.

If the interfering beams are not coaxial, from (5b), their
modal expansions are a = {1, ξ0, ξ20/

√
2} and bn = δ0n,

where ξ0 is a small axis offset. Therefore, Ξ0 = 1 and
Ξ′0 = i(1− ξ20)/4. Eventually, from (14) and (12),

∆λ

λ
=
θ20
8

(1− ξ20), (29)

which confirms the result obtained in [14] via Fourier
optics.

4.3. Wavefront tilt.

From (4b), the modal expansion of tilted beams are
a = {1,−iα̃/2,−α̃2/(4

√
2)} and bn = δ0n, where

α̃ = kw0α and α is a small tilt angle. Therefore, Ξ0 = 1
and Ξ′0 = i(1− α̃2/4)/4. Eventually,

∆λ

λ
=
θ20 + α2

8
, (30)

which agrees with the result given in [14]. It is worth
noting that θ20+α2 is the second moment of the angular
spectrum of ψrf calculated with respect to the direction
of the ψms axis.

4.4. Waist location mismatch.

If the beam path-lengths through the interferometer
differ by ζ0, their waists are spaced by ζ0, where
ζ20 � 1 ensures the validity of the approximations
made. Hence, from (6b), the modal expansion of the
interfering beams are

a =

{
1, 0,−ζ0(2i− ζ0)

4
√

2
, 0,−

√
3

2

ζ20
8

}
(31)

and bn = δ0n. Therefore, Ξ0 = 1 and Ξ′0 = (i + ζ0 +
iζ20/8)/4. Eventually,

∆λ

λ
=
θ20
8

(
1− ζ20

4

)
. (32)

which was never derived before.
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6

4.5. Waist radius mismatch.

When the interfering beams have not the same waist
radius, from (7b), their modal expansions are a ={

1, 0, υ/
√

2
}

and bn = δ0n, where (1+υ)w0 and w0 are
the waist radii. Therefore, Ξ0 = 1 and Ξ′0 = i(1−υ)/4.
Eventually,

∆λ

λ
=
θ20
8

(1− υ), (33)

which was never derived before.
In (20), apart from the υ =

√
2Re(a2 + b2) term,

all the fractional corrections to θ20/8 are of the second
order. Therefore, the mismatch of the waist radii
causes the most significant deviation from θ20/8. Also,
identical mismatches, that is, Re(a2) = Re(b2), only
means that the choice of the TEM0 mode was not
optimal.

To investigate further into the matter, let θ2 =
(θ2rf +θ2ms)/2 be the mean of the squared divergences of
the reference and measure beams, θrf = θ0/(1 +υ) and
θms = θ0, respectively. Hence, (33) can be rewritten as

∆λ

λ
=
θ2

8
. (34)

Furthermore, if the mismatches are identical, that is,
if a = b =

{
1, 0, υ/

√
2
}

, then, as expected,

∆λ

λ
=
θ20
8

(1− 2υ) =
θ2

8
, (35)

where θ ≈ θ0(1−υ) is the divergence of the interfering
beams.

4.6. Wavefront mismatch.

If the interfering beams share neither the waist location
nor the radius, from (8b), their modal expansions are

a =

{
1, 0,−κ(2i + κ)

4
√

2
, 0,−

√
3

2

κ2

8

}
(36)

and bn = δ0n, where κ is the curvature of the ζ = ζD
reference wavefront. Therefore, Ξ0 = 1 and Ξ′0 =
(i− κ/2− iκ2/4)/4. Eventually,

∆λ

λ
=
θ20
8

(
1 +

κ2

4

)
. (37)

After noting that the waist of the reference beam,
having 1 − κ2/2 radius, is located in ζrf = −κ, by
using (32), the correction is

∆λ

λ
=
θ2

8

(
1− ζ2rf

4

)
, (38)

which, by using θrf = θ0/(1− κ2/2) and θms = θ0, can
also be proven identical to (34).

4.7. Hermite-Gauss beams

In the case of matched Hermite-Gauss beams, that is,
when ψrf = ψms = un, the modal expansion of the
interfering beams are al = bl = δln. Therefore, Ξ0 = 1
and Ξ′0 = (2n+ 1)i/4. Eventually,

∆λ

λ
=
θ2l
8
, (39)

where
√

2n+ 1 θ0 is the un divergence.

5. Statistical considerations

Estimating of the correction of the fringe period (20)
requires the knowledge of the complex amplitudes
of both the interfering beams. In the absence of
such a detailed information, we can rely on statistical
considerations. To this end, we fix the norm of the
beam residuals from the TEM0 mode. Hence,∫ +∞

−∞

∣∣ψrf(ξ; ζ)− u0(ξ; ζ)
∣∣2dξ =

N∑
n=1

|an|2 = ρ2 (40a)

and∫ +∞

−∞

∣∣ψms(ξ; ζ)− u0(ξ; ζ)
∣∣2dξ =

N∑
n=1

|bn|2 = ρ2, (40b)

where we assumed the same bandwidth, N , and
residual norm, ρ. Also, by taking advantage of the
non-uniqueness of the Hermite-Gauss decomposition,
we minimise ρ2 by choosing the TEM0 mode
simultaneously best fitting both ψrf and ψms.

In the absence of additional information, the joint
probability distribution of the an and bn coefficients
is uniform over two 2N -spheres about the origin of ρ
radius. Consequently, the average correction is〈

∆λ

λ

〉
=
θ20
8

[
2πN

Γ(N)

]−2
×
∫
Sa

∫
Sb

[
1 + 2ρ2

N∑
n>0

nRe(α∗nβn)− ρ
√

2Re(α∗2 + β2)

−ρ2
N∑
n>2

√
n(n− 1)Re(α∗nβn−2 + α∗n−2βn)

]
dςadςb

=
θ20
8
, (41)

where αn = an/ρ, βn = bn/ρ, Sa and Sb are 2N -
spheres about the origin of unit radius, 2πN/Γ(N) is
the (2N−1)-dimensional area of Sa,b, and dςa,b are the
relevant elements of area. Reference [40] explains how
integrating a polynomial over a hypersphere. Equation
(41) shows that θ20/8 is an unbiased estimate and
confirms and extends the validity of the numerical
results given in [35].
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Figure 1. Fractional standard deviation σλe/λ of the effective
wavelength normalised to the residual norm ρ.

The fractional variance of λe is(σλe

λ

)2
=

[
2πN

Γ(N)

]−2
×
∫
Sa

∫
Sb

[
2ρ2

N∑
n>0

nRe(α∗nβn)− ρ
√

2Re(α∗2 + β2)

−ρ2
N∑
n>2

√
n(n− 1)Re(α∗nβn−2 + α∗n−2βn)

]2
dςadςb

=


2ρ4 if N = 1

4ρ2

N
+

(N3 +N2 − 2)ρ4

N2
if N ≥ 2

.

(42)

The 4ρ2/N term comes from the first order correction
to θ0/8 due to the mismatch of the waist radii – the√
n(n− 1)Re(a∗nbn−2 + a∗n−2bn), where n = 2, term

in (20). All the other aberrations and mismatches
originate second-order corrections. Consequently,
their contributions to the fractional variance are
proportional to ρ4. Figure 1 shows how the fractional
standard deviation of the effective wavelength depends
on the residual norm and bandwidth.

From these results, we guess that calculations
based on the divergences of the interfering beams
overestimate ∆λ/λ, as empirically observed in [35]. To
confirm this heuristic we can average (22) over the Sa
hypersphere. Hence,〈
θ2
〉

= θ20
Γ(N)

2πN

= ×
∫
Sa

[
1 + 2ρ2

∑
n>0

n |αn|2 − 2
√

2ρRe(α2)

−2ρ2
∑
n>1

√
n(n− 1) Re(α∗nαn−2)

]
dςa

= θ20
[
1 + (1 +N)ρ2

]
. (43)

confirms the overestimation.
By using the σλe/λ = 0.12 and (〈θ2〉 − θ20)/θ20 =

0.63 values obtained in [35] in (42) and (43), and
excluding a mismatches of the waist radii (not
considered in [35]), the estimates ρ ≈ 0.15 and N ≈ 27
follow. Although the numerical simulation in [35] did
not fix these parameters, these values are in reasonable
agreement with what is expected.

6. Conclusions

Unless they are plane waves, optical fields do not
have well defined wavelengths. In fact, because of
diffraction, the distance travelled by wavefronts during
one oscillation period differs from the plane wave one
and varies from one point to another. Therefore, the
relationship between the accumulated phase and the
distance travelled requires corrections that depend on
the measurement procedure and modal spectra of the
interfering beams.

When two matched Gaussian beams interfere and
the arm difference is much smaller than the Rayleigh
distance, the period of the integrated interference
differs from the plane-wave wavelength by a quarter of
the beams’ squared-divergence (in relative terms) [31].
We reported an analytical study of additional errors
related to mismatches and contaminations by parasitic
modes [34].

Firstly, we re-obtained and strengthen known
results by using a new mathematical approach based
on the modal expansion of the optical field. Secondly,
the newly developed formalism was used to study
analytically the effect of mismatches and aberrations
that we previously tackled only numerically [35].

To calculate the sought correction, it is necessary
to know the wavefront profiles of the interfering
beams, which are difficult to measure with the needed
resolution and accuracy. Therefore, we resorted
to statistical considerations and proved that an
estimate based on the divergence of the TEM0 mode
simultaneously fitting both the interfering beams is
unbiased. This result was previously only inferred from
numerical simulations [35].

Also, we evaluated the uncertainty of this esti-
mate, in terms of the fit-residuals norm. Eventually, we
confirmed that the divergence of the interfering beams
is a biased estimator and that, on the average, it over-
estimates the correction.
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Our results indicate that the beams used in
high accuracy length measurements by interferometry
need to be also characterised as regards as the
modal spectra. Statements quantifying or excluding
contaminations by parasitic modes should be added to
those dealing with the frequency.

Appendix

In the subsections from 2.1.1 to 2.1.5, we decomposed
the complex amplitudes of paraxial beams into
superpositions of Hermite-Gauss modes. Next, the
modal amplitudes were expanded up to the second
order of the small mismatches. This appendix gives
some details of the calculations [41].

Wavefront tilt (section 2.1.1). By substituting (4a)
for ψ(ξ; 0) in (3), we get the integrals

A0 =

∫ +∞

−∞
e−ξ

2−iα̃ξu0(ξ; 0) dξ, (A.1)

an =
1

A0

∫ +∞

−∞
e−ξ

2−iα̃ξun(ξ; 0) dξ. (A.2)

Eventually a0 = 1 and,

A0 = 4
√
π/2 e−α̃

2/8, (A.3)

a1 = −iα̃/2, (A.4)

a2 = −α̃2/(4
√

2). (A.5)

The modes higher than TEM2 are omitted because
their amplitudes involve only powers of α̃ higher than
two.

Beam axis mismatch (section 2.1.2). By substituting
(5a) for ψ(ξ; 0) in (3), we get integrals similar to (A.1-
2). Hence a0 = 1 and,

A0 = 4
√
π/2 e−ξ

2
0/2, (A.6)

a1 = ξ0, (A.7)

a2 = ξ20/
√

2. (A.8)

The modes higher than TEM2 are omitted because
their amplitudes involve only powers of ξ0 higher than
two.

Waist location mismatch (section 2.1.3). By using
(6a) in (3), we get a0 = 1 and

A0 =
4
√

2π

√
i + ζ0
2i + ζ0

, (A.9)

a2 =
ζ0√

2(2i + ζ0)
, (A.10)

a4 =
√

3/2 a22. (A.11)

The odd-mode amplitudes are null. The modes higher
than TEM4 are omitted because their amplitudes
involve ζ0 power higher than two.

Waist radius mismatch (section 2.1.4). By using (7a)
in (3), we get a0 = 1 and

A0 =
4
√

2π(1 + υ)√
2 + υ(2 + υ)

, (A.12)

a2 =
υ(2 + υ)√

2
[
2 + υ(2 + υ)

] , (A.13)

a4 =
√

3/2 a22. (A.14)

The odd-mode amplitudes are null. The modes higher
than TEM4 are omitted because their amplitudes
involve upsilon power higher than two.

Wavefront curvature mismatch.(section 2.1.5). By
using (8a) in (3), we get a0 = 1 and

A0 =
4
√

2π√
2 + iκ

, (A.15)

a2 =
κ√

2(2i− κ)
, (A.16)

a4 =
√

3/2 a22. (A.17)

The odd-mode amplitudes are null. The modes higher
than TEM4 are omitted because their amplitudes
involve κ power higher than two.
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