
24 April 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Highly Reliable Multicomponent MEMS Sensor for Predictive Maintenance Management of Rolling Bearings
/ Landi, Elia; Prato, Andrea; Fort, Ada; Mugnaini, Marco; Vignoli, Valerio; Facello, Alessio; Mazzoleni,
Fabrizio; Murgia, Michele; Schiavi, Alessandro. - In: MICROMACHINES. - ISSN 2072-666X. - 14:2(2023), p.
376. [10.3390/mi14020376]

Original

Highly Reliable Multicomponent MEMS Sensor for Predictive Maintenance Management of
Rolling Bearings

Publisher:

Published
DOI:10.3390/mi14020376

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/75664 since: 2023-02-14T13:28:36Z

MDPI



Citation: Landi, E.; Prato, A.; Fort, A.;

Mugnaini, M.; Vignoli, V.; Facello, A.;

Mazzoleni, F.; Murgia, M.; Schiavi, A.

Highly Reliable Multicomponent

MEMS Sensor for Predictive

Maintenance Management of Rolling

Bearings. Micromachines 2023, 14, 376.

https://doi.org/10.3390/mi14020376

Academic Editor: Ha Duong Ngo

Received: 22 December 2022

Revised: 20 January 2023

Accepted: 27 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Highly Reliable Multicomponent MEMS Sensor for Predictive
Maintenance Management of Rolling Bearings
Elia Landi 1,* , Andrea Prato 2 , Ada Fort 1 , Marco Mugnaini 1, Valerio Vignoli 1 , Alessio Facello 2 ,
Fabrizio Mazzoleni 2, Michele Murgia 3 and Alessandro Schiavi 2

1 Department of Information Engineering and Mathematical Sciences, University of Siena, 53100 Siena, Italy
2 Division of Applied Metrology and Engineering INRiM, National Institute of Metrological Research,

10135 Turin, Italy
3 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
* Correspondence: landi@diism.unisi.it

Abstract: In the field of vibration monitoring and control, the use of low-cost multicomponent MEMS-
based accelerometer sensors is nowadays increasingly widespread. Such sensors allow implementing
lightweight monitoring systems with low management costs, low power consumption and a small
size. However, for the monitoring systems to provide trustworthy and meaningful data, the high
accuracy and reliability of sensors are essential requirements. Consequently, a metrological approach
to the calibration of multi-component accelerometer sensors, including appropriate uncertainty
evaluations, are necessary to guarantee traceability and reliability in the frequency domain of data
provided, which nowadays is not fully available. In addition, recently developed metrological
characterizations at the microscale level allow to provide detailed and accurate quantification of the
enhanced technical performance and the responsiveness of these sensors. In this paper, a dynamic
calibration procedure is applied to provide the sensitivity parameters of a low-cost, multicomponent
MEMS sensor accelerometer prototype (MDUT), designed, developed and realized at the University
of Siena, conceived for rolling bearings vibration monitoring in a broad frequency domain (from
10 Hz up to 25 kHz). The calibration and the metrological characterization of the MDUT are carried
out by comparison to a reference standard transducer, at the Primary Vibration Laboratory of the
National Institute of Metrological Research (INRiM).

Keywords: multicomponent MEMS sensor; low-cost; traceability; broad-frequency band; IoT
condition monitoring

1. Introduction

Nowadays, the management of monitoring and control for early fault diagnosis in
equipment and industrial production processes is enormously enhanced, mainly thanks
to the development of Machine Learning (ML) [1–3], Deep Learning (DL) [4,5] and Ar-
tificial Intelligence (AI) [6,7]. The possibility to manage huge data flows, in real time,
from extensive sensors and multi-sensors networks [8], allows for monitoring the proper
functioning of systems and sub-systems in detail [9,10], early identification of possible
malfunctions [11], precisely localizing failures and planning proper decision making for
targeted and timely intervention actions [12]. As highlighted in the cited review articles,
high data quality is the premise and foundation of any functional and accurate monitoring
process, in order to achieve the goal of the ‘Zero Defect Manufacturing paradigm’ [13].

The modernization and automation of the manufacturing industry involves the use of
increasingly complex, interdependent (often interconnected), precise and fast mechanical
equipment. The onset of a defect [14], if not properly identified [15], can cause cascading
component failures [16], causing economic damage [17], financial losses [18] and industry
downtime [19]. However, for the evolved ML and DL algorithms to provide reliable
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and trustworthy information on the monitored process, data provided by interconnected
sensors must be truly accurate and traceable. Indeed, if data provided are incorrect or
affected by uncontrolled bias or unknown errors, the learning system can store and return
false or improper information. This, in turn, can generate a cascading effect of errors and
therefore an inaccurate and unreliable diagnosis of the process to be monitored.

Metrological characterizations and suitable calibration procedures of sensors used in
the monitoring networks are needed to guarantee the reliability of the measurements [20],
providing high quality [21] and trustworthy information [22], ensuring a learning process
based on reliable and accurate data [23]; moreover, in the case of sensor substitution, the cal-
ibration of data would allow to maintain the metrological traceability from sensor-to-sensor,
ensuring the continuity of data-flow trustworthiness. Nevertheless, at present, suitable
metrological calibration methods (traceable to the SI, International Systems of Units, and
supported by detailed uncertainty budgets), can be applied only to ‘measuring instruments’,
but not to ‘MEMS-based sensors’, since standard procedures are unavailable, and thus
proper sensitivity parameters cannot be accurately identified. This lack, which prevents a
functional and safe development of the latest generation monitoring systems, can be filled
by the recent progresses in metrological research applied to micro mechanical systems and
components [24]. This issue has been properly addressed by the Consultative Committee
for Acoustic, Ultrasound and Vibration (CCAUV) of the Bureau International des Poids et
Measures (BIPM), since «the deployment of such systems need to be underpinned by new
metrology to support reliable and safe operation» of these technologies [25].

In this work, a tailored calibration procedure is developed and applied to provide
traceability in the frequency domain (from 10 Hz up to 25 kHz) to a robust, lightweight,
low-cost and low-power consuming multicomponent MEMS accelerometer sensor (MDUT),
conceived for vibration monitoring of rolling-bearings. The MDUT is built by orthogonally
embedding three separated uniaxial analogue sensing elements in a resin cube. The
sensing elements are commercially available, low-noise, high frequency, uniaxial MEMS
accelerometers, provided by Analog Devices Inc. (ADXL1005Z) [26]. The sensing elements
independently detect the vibrations along three orthogonal axes, without cross-talk effects
and transverse overlap. Although the manufacturer provided a calibration statement for
individual ADXL1005Z MEMS sensor accelerometers, no information about traceability
and related uncertainties is made available. In the following, the calibration of the whole
assembled MDUT (realized by embedment of three sensing elements) is performed, in
order to identify the main sensitivities and the transverse sensitivities along the three axes
and the related uncertainties. Once the MDUT was opportunely calibrated, according to
metrological standard procedures, the information provided of the dynamic phenomena
under investigation is expected to be reliable and accurate enough to be managed, processed
and returned by DL and AI systems, with the due trustworthiness.

2. Vibration-Based Rolling Bearings Fault Diagnosis: A Brief Survey

Since 1934, when the classic book by J. P. Den Hartog “Mechanical Vibrations” was first
published [27], a very huge scientific and technical literature has amassed about rolling
bearings fault diagnosis and functional monitoring in mechanical industry and manufac-
turing (namely, about 60,000 papers, according to the public Google Scholar database). In
particular, during the last decades up to present day, thanks to the development of compu-
tational capabilities (e.g., ML, DL, AI and neural networks) and to the miniaturization of
sensors and measuring systems (e.g., MEMS and NEMS), the management of early fault
diagnosis, functioning monitoring, anomaly detection, as well as overall quality control
procedures, has been greatly enhanced, with perspectives of further improvements in the
near future.

In very general terms, applied procedures and methods for monitoring and early fault
diagnosis of rolling bearings and related industrial processes are mainly supported by time–
frequency–amplitude analysis of occurring vibrations [28–31], occasionally integrated with
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information on temperature fluctuations [32,33], noise levels [34,35] and other degradative
harsh working environmental conditions affecting the functionality [36–39].

Rolling bearings are composed of four basic elements: the outer ring/race, the inner
ring/race, a cage/train (to reduce friction and wear) and balls (or cylindrical rollers,
spherical rollers, tapered rollers and needle rollers). Rolling-element bearings can range
from ten millimeters to a few meters in diameter, with a load-carrying capacity from a few
tens of grams to many thousands of tons. In Figure 1 a schematic picture of a typical rolling
bearing and related elements and geometry are shown.

Figure 1. The basic elements of a rolling bearing and the related geometric parameters.

Once the geometrical parameters and shape of the rolling bearing elements, the
number of rotating balls/rollers (Nk) and the applied rotation velocity (RPM) are known,
it is possible to univocally define the characteristic frequencies of the cage rotation (FTF),
the ball passing at a given point of the inner race/ring (BPFI), the ball passing at a given
point of the outer race/ring (BPFO) and the ball/roller spin (BSF), on the basis of simple
formulae. Obviously, these formulae hold if no slips occur between the bearing elements.
If a fault occurs, it can be related to the presence of a defect in one of the elements forming
the rolling bearing, i.e., the inner ring/race, the outer ring/race or one ball. The rotation
of the elements causes periodic impacts of the defect with the other elements, which in
turn generate transient vibrations of the bearing components. Therefore, the vibrational
signals can be seen as signatures of the different types of faults as it is a train of vibration
transients with fundamental frequencies and spectral characteristics related to the location
of the fault. In Figure 2, on the left, typical fault signatures are shown and correlated to
the characteristic rotation frequencies of the elements of a rolling bearing (reported and
defined in the figure). In the same figure, on the right, a vibration signal generated by a
double fault (inner race and outer race) is plotted both in frequency (upper plot) and in the
time domain (lower plot).

As shown in Figure 2, the characteristic rotation frequency values can be considered as
a well-defined signature of the faulty element and can be clearly identified and monitored;
any variation occurring in returned spectra, in terms of onset of harmonics, amplitude,
width of peaks, clipping, as well as many other time–frequency–amplitude descriptors, are
indications of incoming failures. In particular, frequency domain analysis of the signal or of
the preprocessed signal (typically envelope extraction) involves extraction of features that
can be found in a particular frequency band, allowing to identify localized or distributed
bearing defects by means of spectrum analysis. Time domain analysis allows detecting
defects and assessing their related magnitude by means of several statistical indicators, such
as the peaks, peak-to-peak, energy content (Root Mean Square—RMS), the crest factor (CF),
kurtosis (KU), skewness or the energy index (EI). In addition, combined time–frequency
domain analysis allows capturing the progressive changes in spectrum components of the
vibration signals in both frequency and time [40–43]. More recently, these classical methods
have been replaced or reinforced by AI or ML techniques, used to identify defects and cope
with noise or reduced measurement system bandwidth.
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Figure 2. Example of characteristic rolling bearings frequency, and a typical time–frequency analysis.
Left figure from [40].

The earliest detectable indications of rolling bearings malfunctioning appear at very
high frequencies, also beyond 20 kHz. At this early stage of deterioration, microscopic
cracks appear, creating elastic waves with very low energy content. Once the deterioration
progresses, the level of high frequency “noise” increases and the intensity of the impact
forces excitation of the natural frequencies of the various bearing components; typically,
depending on the rolling bearings dimensions and mounting, the natural frequencies range
between 2 kHz and 6 kHz. When degradation increases, some sidebands above and below
natural frequency resonances appear. After these early signals, the process of deterioration
of the rolling bearings moves towards an irreversible damage and total failure. During this
process, the clearances within the bearing increase substantially, and as a result, the overall
vibration velocity amplitudes noticeably increase, the discrete bearing defect frequencies
disappear and random vibrations appear in the form of a background noise. At this stage,
total catastrophic failure of the machine can occur at any time. In Figure 3, an explicative
summary of a typical spectrum of incoming failure in rolling bearings is shown.

Figure 3. Spectral components of vibration signals due to a fault occurring in rolling bearings, with
related frequency regions.
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In depth and accurate amplitude–time–frequency analysis of the rolling bearings
signatures allows to properly identify the process of deterioration of the elements and the
location and the typology of defects. Nevertheless, the accuracy of the analysis strongly
depends on the quality of occurring vibrations measured quantities. The accuracy and the
reliability of the sensors thus plays a crucial role in order to provide trustworthy information
to be processed by the ML algorithms, as well as other computational processes.

3. Materials and Method
3.1. The MDUT and Embedded Sensing Elements

The MDUT is a multicomponent MEMS accelerometer sensor, realized at the Univer-
sity of Siena. Three individual sensing elements are orthogonally embedded in an epoxy
resin cube. The MDUT is designed to be not very pervasive in terms of mass and size (it
is a 30 g cube with sides of 2.5 cm). The sensing elements embedded in the MDUT are
low-noise, high frequency uniaxial MEMS accelerometers, provided by Analog Device Inc.
(Analog Devices, Norwood, London, England, MA, ADXL 1005Z), as shown in Figure 4.

Figure 4. The MDUT elements: (a) single sensing element board, (b) multicomponent assembly,
(c) epoxy encapsulation.

The sensing element (ADXL 1005Z), according to the manufacturer’s information,
has a frequency response from 0 Hz (DC) to 23 kHz (3dB frequency), with a resonant
frequency at 42 kHz. The linearity is within ±0.1% of the full-scale range, with a cross axis
sensitivity of ±1% along the perpendicular axes. The low-noise density is 30 µg/

√
Hz, it

has a low-power consumption (current adsorption is 1.0 mA with 5 V power supply) and
the single-supply operation is from 3.3 V to 5.25 V. The three sensing elements are installed
on three specific demo boards, mounted by orienting the sensing axes orthogonally. The
boards were initially fixed together with cyanoacrylate glue then they were coated with
commercial epoxy resin.

3.2. Calibration Procedures

As a first step, the sensing element ADXL 1005Z was individually calibrated to eval-
uate the intrinsic responsiveness as a function of deterministic mechanical vibrations.
Calibration was carried out by gluing (Loctite®) the sensing element on a hexagonal prism
mass and the assembly was screwed on a vertical instrumented vibrating table (PCB
Piezotronics, Depew, NY, USA), as shown in Figure 5.

The instrumented vibration table was equipped with a single axis reference transducer
(PCB Piezotronics, Depew, the United States, NY model 080A199/482A23), calibrated
according to ISO 16063-11:1999 [44] against INRiM primary standard and integrated within
the stroke of the shaker, allowing to measure the reference acceleration along the vertical
axis, aref (parallel to g). The calibration of the individual sensing element was carried
out according to ISO 16063-21:2003 [45]. The reference acceleration was acquired by an
acquisition board NI 4431 (National Instruments, Austin, TX, USA) with a sampling rate of
50 kHz, fed to the PC and processed through LabVIEW® 22 software to provide the RMS
reference value in ms−2. Actually, the calibration of the individual sensing element, by
using the set-up shown in Figure 5, was affected by some systematic errors induced by
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the vibrational modes of the hexagonal prism mass, and by the small (but not negligible)
damping of the glue. The errors depend on both frequency and amplitude and cannot be
experimentally evaluated with this calibration setup; thus, it needs to be considered in the
evaluation of the overall uncertainty [46–48].

Figure 5. The individual sensing element ADXL 1005Z on the vertical instrumented vibration table.

Once the sensitivity of the individual sensing element was known, the calibration of
the MDUT, embedded in resin, was carried out. Calibration was performed by screwing
the MDUT directly onto the vibrating instrumented table, as shown in Figure 6. The aim of
the investigation was to characterize the possible effects on the sensing elements response
due to the embedding resin and to quantify the occurring transverse accelerations in the
horizontal direction.

Figure 6. The vertical axial calibration of the MDUT embedded in the resin case: the MDUT on the
instrumented vibrating table and a schematic picture of the calibration assembling.

3.3. Calibration Results

Calibration was carried out from 10 Hz up to 25 kHz and the sensitivity values were
determined with different values of power supply, namely 3.5 V, 4 V, 4.5 V and 5 V. Since the
standard deviation of calibration at different values of power supply was negligible (<1%),
the overall average values were considered representative of the actual sensitivity of the
individual sensing element under investigation. In the graphs in Figure 7, the sensitivity of
the individual sensing element ADXL 1005Z with associated uncertainties is shown. Data
expressed in dB are referred to as the sensitivity at 10 Hz, which is 2.004 mV/(ms−2).

Sensitivity values were determined with the calibration set-up shown in Figure 5. By
applying this procedure, it could be seen that the 10% accuracy bandwidth is 12 kHz. The
effect of the intrinsic resonance (at 47 kHz, according to the manufacturer’s information)
amplifies the sensitivity of 3 dB to 18 kHz (slightly lower than the typical value provided
by the manufacturer’s specifications) and 6 dB to 21.5 kHz.
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Figure 7. Sensitivity expressed in mV/ms−2 and in dB of the individual sensing element.

The sensitivity of the vertical single axis of the MDUT was then determined by screw-
ing the resin case onto the instrumented vibrating table. Calibration was performed
according to the set-up shown in Figure 6, from 10 Hz up to 25 kHz, and the sensitivity
values were compared with the sensitivity of the individual sensing element not embedded
in resin. Figure 8 shows a comparison of the calibration experimental results in the whole
tested frequency range in the left-hand plot, and in detail between 2 kHz and 25 kHz in the
right-hand plot.

Figure 8. Full scale range (left plot) and high-frequency range detail with related calibration uncer-
tainties (right plots) of the comparison between the sensitivity of the individual sensing element and
the sensitivity of the embedded sensor along the vertical axis.

As observed, the effects due to the resin of the embedding case affect the amplitude
of the frequency response of the sensing element with respect to the individual calibrated
sensor. In particular, the embedding case acts as a “damper” (or mechanical low-pass filter)
by smoothing the intrinsic resonance peak. The amplification due to the intrinsic resonance
of the embedded sensing element was limited to 2 dB up to 10 kHz, and increased to
5 dB at 20 kHz. Beyond 21.5 kHz, the external vibrations were fully dampened. Once
the amplification was quantified, a proper correction factor can be applied, e.g., between
5 kHz and 20 kHz, allowing to provide accurate measurements of the vibration amplitude
in the typical frequency range of bearing resonance frequencies, with the related onset
of sidebands near the resonance and the onset of random vibration noise, as shown in
Figure 3.

The following graph in Figure 9 shows the measured relative transverse sensitivities
on the horizontal plane (along the x and y directions) by the sensing elements embedded
perpendicularly with respect to the vertical direction (z) of the applied dynamic acceleration.
The transverse sensitivities can be considered negligible up to 14 kHz, where the amplitudes
values are in general below −6 dB and around −3 dB up to 25 kHz.
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Figure 9. Full scale range of the relative amplitude of transverse sensitivity (grey dotted lines, square
X axis, cross Y axis) on the horizontal plane with respect to the sensitivity measured along the vertical
axis, which is the direction of reference acceleration (parallel to g).

3.4. Metrological Characterization

The main sensitivities along the three axes were also evaluated in order to define
the actual responsiveness of the MDUT in dynamic conditions. Once the sensitivity of
the vertical axis of the individual sensing elements embedded in the resin was known,
the MDUT was mounted on an inclined plane screwed on to the vibrating table. This
experimental set-up allowed to generate a projection of the vertical reference acceleration,
aref, along the three axes simultaneously. In this application, a specific system suitable for
the simultaneous amplitude calibration of multicomponent MEMS sensors was used. The
calibration method and the experimental set-up, shown in Figure 10, have been described
in detail in [49,50].

Figure 10. The multicomponent calibration system: inclined plane allows to generate a projection of
the vertical reference acceleration along three axes simultaneously.

By means of simple geometrical laws, it is possible to define the expected acceleration
along the three main axes as follows:

ax =
∣∣∣are f sin(α) cos(ω)

∣∣∣
ay =

∣∣∣are f sin(α) sin(ω)
∣∣∣

az =
∣∣∣are f cos(α)

∣∣∣ , (1)

where α is the tilt angle (α = 55◦ ± 0.1◦) andω is the rotation angle (ω = 45◦ ± 0.1◦).
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A nearly constant peak amplitude of 1 m/s2 was applied between 100 Hz and 1 kHz
and the corresponding experimental sensitivities were determined according to the incli-
nation and rotation angles. Any difference observed between the experimental values of
acceleration along the three axes and the expected values of acceleration, from Equation (1),
were dependent on both the possible differences in individual sensitivities of the embedded
sensors and on possible misalignment due to the gluing and embedding of the sensing ele-
ments in the resin cube. Once these differences were known it was possible to definitively
adjust the sensitivities of the MDUT.

As shown in Figure 11, by measuring the occurring accelerations along the three axes
of the MDUT on the inclined plane during calibration, and by calculating the difference
between the expected acceleration (from Equation (1)) and the measured ones, the possible
misalignment among the three sensitivity axes, as well as the possible differences in the
proper sensitivities of the sensing elements orthogonally glued and embedded in the
resin cube, were quantified. These differences can be considered as systematic effects to
be adjusted.

Figure 11. Quantification of differences between the measured acceleration and expected acceleration.

As is possible to notice, very small differences were observed between measured and
expected values of MDUT sensitivities. This means that systematic effects due to possible
misalignments among sensing elements and differences among the proper sensitivities
were negligible, at less than 1 dB. The complete description of the method to be applied
for calculation can be found in [51]; in this application the misalignment was assessed in
dynamic conditions in the gravity field instead of in static conditions.

3.5. The Role of the Embedding Resin Case: Actualization of a “Mechanical Filter”

The frequency response of the embedded sensing element was “dampened” by the
mechanical dissipative behavior of the epoxy resin, as shown in Figure 8. As a matter of fact,
the cube (in which sensing elements are encapsulated) acted as a mechanical filter [52–54]
due to the intrinsic elastic and dissipative properties of the constitutive polymeric material.
In order to quantify the mechanical behavior of the embedding resin case, once subjected
to vertical acceleration, the actual vibrations occurring on the MDUT during calibration
were monitored by single-point Laser-Doppler velocimetry (Laser head Polytec GmbH,
Waldbronn, Germany, model OFV 505, vibrometer controller Polytec GmbH, Waldbronn,
DE, model OFV 5000), acquired by an acquisition board NI 4431 (sampling rate of 50 kHz)
integrated in a PC and processed through LabVIEW® software. The laser beam hits the
upper surface of the MDUT, returning the frequency response of the resin case, as shown
in Figure 12.

The frequency response, measured on the upper surface of the MDUT, allows to eval-
uate the mechanical behavior of the epoxy resin case during dynamic vertical excitation. In
the graph in Figure 13, the comparison between the relative amplitude of acceleration mea-
sured by the sensing elements within the resin case, az, and the corresponding amplitude
of acceleration measured on the resin case, acase, along the vertical axis with respect to the
reference acceleration amplitude, aref, are represented.
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Figure 12. Characterization of the mechanical behavior of the embedding resin case during MDUT
calibration in dynamic conditions: (a) the whole measuring system and (b) the MDUT on the vibrating
table hit by the single-point Laser-Doppler vibrometer beam on the upper surface.

Figure 13. Comparison between the acceleration amplitude, acase, measured on the upper surface of
MDUT by the Laser-Doppler Vibrometer (red curve), the acceleration amplitude, az, measured from
the signal output of the sensing element embedded in the resin case (black curve) and a schematic
picture of the mechanical behavior and deformations occurring during calibration.

As it is possible to notice, the acceleration amplitude measured by the sensing element
embedded in the resin case was modelled according to the resonant modes of the resin cube.
This mechanical effect has two very useful practical advantages which can be favorably
exploited in the early fault diagnosis monitoring process: the deep attenuation of the sensor
resonance and the mechanically controlled amplification of the signal in a well-defined
frequency range. Indeed, since the amplification due to the intrinsic resonance frequency
of the free sensing element rapidly increases, according to the slope of sensitivity shown in
Figure 7, serious waveshape distortions could occur in the frequency range starting from
0.1 times the resonance frequency (namely from 4.7 kHz), and more relevant measurement
uncertainties are expected beyond 12 kHz, where the accuracy of the bandwidth exceeds
10%. Once the amplitude of the intrinsic resonance of the sensing element is dampened, the
frequency range exploitable for measurements can be extended up to 25 kHz or beyond,
depending on the measurement capabilities. Moreover, since the mechanical amplification
occurs in a well-defined frequency range, with a known quality factor and peak amplitude,
it is possible to exploit this effect to identify the onset of microscopic cracks beyond 20 kHz
and up to 25 kHz early, by considering the amplification as kind of a “magnifying glass”
pointed at a certain frequency range. In consequence, it is possible to opportunely design
the embedding case with different resins in order to build up tunable mechanical filters
and amplifiers, depending on the frequency range to be monitored.



Micromachines 2023, 14, 376 11 of 17

In the following, a comparison between the mechanical behavior of four different
embedding resins (including only epoxy) is carried out by using the method and the proce-
dure described above. In this analysis, only the embedding resin material is investigated in
order to identify the performance of different types of materials. To this aim, four cubes
were characterized, the first of which was bare epoxy resin, whereas the other three were
obtained by reinforcing the resins with nanoparticles of SnO2 (5% v/v), TiO2 (5% v/v) and
WO3 (5% v/v). The comparison is shown in the graph in Figure 14.

Figure 14. Mechanical behavior of four resins subjected to dynamic excitation. The resonant frequency
peaks are clearly identified, as well as the quality factor and amplification factor of each sample.

The experimental characteristics of the embedding resins resonant modes are sum-
marized in Table 1. These parameters allow to define the properties of the cases acting as
mechanical filters and amplifiers.

Table 1. Characteristics of the mechanical filters.

Resin Case Resonant Frequency
/kHz

Quality Factor
/-

Relative
Amplification Factor

/dB

Epoxy only resin 13.1 3.0 4
Epoxy with 5% SnO2 11.5 13.1 6
Epoxy with 5% TiO2 15.2 2.6 4
Epoxy with 5% WO3 10.8 2.4 3.5

4. Reinforced Resins: MDUTs Realization and Test through Case Studies

From the experimental characterization of the different reinforced resins, it is possible
to notice that the epoxy filled with 5% (v/v) TiO2 is the one with the highest resonant
frequency. A second embedded MDUT was realized by exploiting this reinforced resin.

The realization follows the same procedure as the one used for the MDUT in bare
epoxy, adopting three ADXL1005 MEMS accelerometers in a triaxial configuration.

Tests were performed exploiting the test bench described in [55], which adopted
a modified loudspeaker as a vibration source. The actuator consists of a loudspeaker
magnetic motor and a moving assembly realized exploiting the speaker voice coil. The
MDUT and a reference accelerometer were mounted on an aluminum disc firmly fixed at
the edge of the voice coil.

The responses of the two MDUTs were compared with the one of a triaxial piezoelec-
tric reference accelerometer (B&K, Nærum, Denmark, model 4426) characterized by 10%
accuracy bandwidths of 9 kHz, 8 kHz and 16 kHz along the x, y and z axes, respectively.
The z-axis was mounted in the direction of the aluminum plate displacement. All the
accelerometers were tested by screwing them on to the aluminum plate with an M3 thread.
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For all the accelerometers, the signals of the three axes were acquired with an ac-
quisition board (National Instruments, Austin, TX, USA, model DAQ PCI 6259 1.2 MS/s,
16 channels, 16 bits) with a sampling frequency of 160 kHz.

To test the DUTs in realistic conditions, excitation signals emulating the bearing fault
vibration signatures were chosen as excitation signals with a harmonic content up to 50 kHz;
the bandwidth of a power amplifier equal to 100 kHz. In this context, the loudspeaker
acts as a mechanical filter for the higher frequencies. Tests performed with the reference
accelerometer proved that the harmonic content of the acceleration generated by exciting
the loudspeaker with the emulated signals was extended up to 20 kHz. The reported
results are the responses of the two MDUTs and the piezo reference accelerometer along
the excitation axis (z axis).

The devices were tested individually since the emulated signals were stationary and
the payload given by the two different devices was comparable in terms of added mass.

In particular, vibration signatures of different types of single faults, i.e., outer race,
inner race and ball faults, were emulated exploiting the technique presented in [56], based
on the following model for the vibration signature, s(t):

s(t) =
(

1 + KF sin
(

2π fF
60

))
∑
i
[ AC1

2

(
1− (−1)i

)
+ AC2

2

(
1− (−1)i+1

)
e−

t− i
FC

τ sin
(

2π fres

(
t− i

FC

))
u
(

t− i
FC

)
+ARPM sin

(
2πRPM

60 t + φ
) (2)

where the first term of the sum is the acceleration signal due to the presence of the fault,
given by a train of transient vibration of the bearing components started by each defect
impact, and u(t) is the step function with u(t) = 1 if t ≥ 0, u(t) = 0 if t < 0. FC = BPFO in
the case of an outer race fault, FC = BPFI in the case of an inner race fault and FC = BSF
in the case of a ball fault. AC1 = AC2 = A0 and KF = 0 in the case of an outer race fault;
AC1 = AC2 = A0, KF 6= 0 and fF = RPM in the case of an inner race fault; and AC1 > AC2,
KF 6= 0 and fF = FTF in the case of a ball fault. fres is the resonance frequency of the bearing
components, τ is the time constant characterizing the component transient vibration and
ARPM is the amplitude of the component related to the shaft rotation. The leftmost term
in Equation (2) represents the vibration of the accelerometer due to the vibration of the
rotating part of the engine and can be seen as a low frequency noise.

Obviously, this mathematical model of bearing failures holds if no slipping occurs
in the bearing components. In real applications, this is true when the failures are at early
stages and the mechanical load on the bearing itself is not critical. When the defect increases
in severity, slipping starts to occur, especially in the case of ball failures. Moreover, in real
life, the accelerometers can be mounted far from the bearings or shafts; in this case, the
vibration components, which are present near the bearing structure, can be attenuated by
the path between the vibration source and the sensor itself and disturbed by other vibration
signatures generated by other mechanical sources.

Many different conditions were considered, accounting for different roller bearing
types, machine RPMs and component resonant frequencies, fres, and in all cases the perfor-
mance of the MDUTs proved to be satisfactory in accordance with what was expected from
the calibration study. Resonance frequencies up to 10 kHz were considered. The following
figures show some examples of the results obtained considering a roller bearing (22209E1K
bearing), an RPM = 3000 rev/min and resonant frequency of the bearing components,
fres = 10 kHz, by emulating an outer race fault characterized by BPFO = 361 Hz, an inner
race fault with BPFI = 488 Hz and finally a ball fault with BSF = 161 Hz and FTF = 21 Hz.
In detail, Figure 15 presents three different cases of fault signature vibration signals in the
time domain, whereas Figure 16 shows the same signals in the frequency domain. As it can
be seen, both the presented MDUTs allow for an accurate detection of faults in both the
time and frequency domains, even considering the high frequency band of the component
resonant (modal) vibrations emulated in this test. As expected, reinforcing the epoxy resin
with TiO2 provided a larger bandwidth and a higher fidelity.
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Figure 15. Measured fault signature vibration signals in the time domain. Sampling
frequency = 160 kHz. (a) Outer race fault; (b) inner race fault; and (c) ball fault. Upper plots—signals
measured by the reference piezoelectric accelerometer; middle plots—signals measured by the pro-
posed MDUT encapsulated in epoxy resin; and lower plots—signals measured by the proposed
MDUT encapsulated in epoxy resin filled with TiO2.
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Figure 16. Measured fault signature vibration signals spectra. Sampling frequency = 160 kHz.
(a) Outer race fault; (b) inner race fault; and (c) ball fault. Upper plots—signals measured by
the reference piezoelectric accelerometer; middle plots—signals measured by the proposed MDUT
encapsulated in epoxy resin; and lower plots—signals measured by the proposed MDUT encapsulated
in epoxy resin reinforced with TiO2.

5. Conclusions

In this paper, we present a low-cost, multicomponent MEMS sensor accelerometer
prototype (MDUT), designed, developed and realized at the University of Siena, to be
applied for rolling bearings vibration monitoring in a broad frequency domain. The tech-
nical performance of the MDUT is evaluated from calibrations and suitable metrological
characterizations at the Primary Vibration Laboratory of the National Institute of Metrolog-



Micromachines 2023, 14, 376 15 of 17

ical Research (INRiM). In particular, both the sensitivity of the individual sensing element
and the sensitivity of the MDUT embedded in resin are determined, according to ISO
16063-21:2003. Calibration of MDUT is carried out from 10 Hz up to 25 kHz, and the main
sensitivities along the three axes are evaluated in order to define the actual responsiveness
of the MDUT in dynamic conditions; this approach allows to identify and quantify possible
misalignments among the axes and to quantify the occurring transverse accelerations and
cross-sensitivities. Moreover, the mechanical behavior of the embedding resin case, once
subjected to vertical acceleration, is determined in order to evaluate the actual vibrations
occurring on the MDUT during operative conditions. Since it is observed that the resin
cube acts as a “mechanical filter”, four different kinds of embedding resins; namely, epoxy
resin alone and epoxy resins filled with nanoparticles of SnO2 (5% v/v), TiO2 (5% v/v)
and WO3 (5% v/v), are investigated and their mechanical behaviors compared. The epoxy
filled with 5% (v/v) TiO2 is the one with the highest resonant frequency; therefore, a MDUT
embedded with this reinforced resin is applied for case studies to test the DUTs in realistic
operative conditions. Tests were undertaken exploiting a previously realized test bench
which allows to emulate different vibration signatures of bearing failures considering the
different bearing characteristics. As expected, the device realized with reinforced epoxy per-
forms better than the one realized with epoxy alone in terms of fidelity of the reproduction
and bandwidth.
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