
29 April 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Towards European standards for quantum technologies / van Deventer, Oskar; Spethmann, Nicolas;
Loeffler, Marius; Amoretti, Michele; van den Brink, Rob; Bruno, Natalia; Comi, Paolo; Farrugia, Noel;
Gramegna, Marco; Jenet, Andreas; Kassenberg, Ben; Kozlowski, Wojciech; L??nger, Thomas; Lindstrom,
Tobias; Martin, Vicente; Neumann, Niels; Papadopoulos, Homer; Pascazio, Saverio; Peev, Momtchil;
Pitwon, Richard; Adriaan Rol, M.; Traina, Paolo; Venderbosch, Pim; Wilhelm-Mauch, Frank K.. - In: EPJ
QUANTUM TECHNOLOGY. - ISSN 2662-4400. - 9:1(2022). [10.1140/epjqt/s40507-022-00150-1]

Original

Towards European standards for quantum technologies

Publisher:

Published
DOI:10.1140/epjqt/s40507-022-00150-1

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/76192 since: 2023-02-28T15:19:22Z

SPRINGER



van Deventer et al. EPJ Quantum Technology            (2022) 9:33 
https://doi.org/10.1140/epjqt/s40507-022-00150-1

R E V I E W Open Access

Towards European standards for quantum
technologies
Oskar van Deventer1*, Nicolas Spethmann2, Marius Loeffler3, Michele Amoretti4, Rob van den Brink5,
Natalia Bruno6, Paolo Comi7, Noel Farrugia8, Marco Gramegna9, Andreas Jenet10, Ben Kassenberg11,
Wojciech Kozlowski12, Thomas Länger13, Tobias Lindstrom14, Vicente Martin15, Niels Neumann16,
Homer Papadopoulos17, Saverio Pascazio18,19, Momtchil Peev20, Richard Pitwon21, M. Adriaan Rol22,
Paolo Traina9, Pim Venderbosch11 and Frank K. Wilhelm-Mauch23

This is a revised submission to the Special Issue on Quantum Standardization of EPJ Quantum Technology, see also
https://epjquantumtechnology.springeropen.com/qs.

*Correspondence:
oskar.vandeventer@tno.nl
1CEN-CENELEC FGQT, TNO, Anna
van Buerenplein 1, 2595 DA, Den
Haag, The Netherlands
Full list of author information is
available at the end of the article

Abstract
The Second Quantum Revolution facilitates the engineering of new classes of sensors,
communication technologies, and computers with unprecedented capabilities.
Supply chains for quantum technologies are emerging, some focused on
commercially available components for enabling technologies and/or
quantum-technologies research infrastructures, others with already higher
technology-readiness levels, near to the market.
In 2018, the European Commission has launched its large-scale and long-term

Quantum Flagship research initiative to support and foster the creation and
development of a competitive European quantum technologies industry, as well as
the consolidation and expansion of leadership and excellence in European quantum
technology research. One of the measures to achieve an accelerated development
and uptake has been identified by the Quantum Flagship in its Strategic Research
Agenda: The promotion of coordinated, dedicated standardisation and certification
efforts.
Standardisation is indeed of paramount importance to facilitate the growth of new

technologies, and the development of efficient and effective supply chains. The
harmonisation of technologies, methodologies, and interfaces enables interoperable
products, innovation, and competition, all leading to structuring and hence growth of
markets. As quantum technologies mature, the time has come to start thinking about
further standardisation needs.
This article presents insights on standardisation for quantum technologies from the

perspective of the CEN-CENELEC Focus Group on Quantum Technologies (FGQT),
which was established in June 2020 to coordinate and support the development of
standards relevant for European industry and research.

Keywords: Quantum technologies; Standardisation; CEN-CENELEC; Roadmap;
Review; Quantum computing; Quantum communication; Quantum metrology; Focus
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1 Introduction
1.1 Quantum technologies
Even though quantum physics is over a century old, the last twenty years of progress in
science and technology have led to a tremendous level of control over actual quantum
systems at the most elementary level. It is now possible to routinely prepare, trap, manip-
ulate and detect single quantum particles, such as artificial and actual atoms, electrons,
and photons. Together with the possibility of creating and controlling distinct quantum
states, such as superposition states and entangled states, this second quantum revolution
facilitates engineering of new classes of sensors, communication techniques, and comput-
ers with unprecedented capabilities.

Quantum Technologies (QT) allows the engineering of novel devices and infrastruc-
tures with the promise of many new applications in a number of domains that can con-
tribute to the solution of some of today’s most pressing social and economic challenges.
These technologies offer capabilities beyond any classical technique. Examples include
achieving higher sensitivity, lower power consumption and higher-security and automatic,
maintenance-free, quantum-referenced operation for more reliable industrial facilities,
etc. Furthermore, QT paves the way for novel methods as for instance for earth surveys
in times of climate change, exploration of natural resources as well as information trans-
mission and processing, and, specifically, with respect to the last item, novel methods for
unprecedented security in communication. QT-based applications are approaching the
market and will be a pivotal factor for success in a wide and diverse range of industries
and businesses. These technologies are vital to European independence and safety, as the
fields of information processing, storage, transmission and security at large are affected
by them.

We argue in this article that standardisation and mapping standardisation opportunities
at a relatively early stage of the technology value chain is beneficial. We observe among re-
search communities sometimes a reluctance to engage in standardisation activities at an
early stage of the Technology Readiness Level (TRL) scale. Indeed, in bridging research
and innovation with markets, standardisation plays a fundamental role in the valorisation
of research results and knowledge transfer, particularly for matured research fields. How-
ever, for many scientists it remains unclear how standardisation can benefit science at an
early TRL. The establishment of the CEN-CENELEC Focus Group on Quantum Tech-
nologies (FGQT), which was tasked with a road mapping, took place at a comparatively
early moment. Quantum technologies vary stark in regard of TRL among the different
technologies packed under the umbrella of quantum technologies, with several at a fairly
low level.

This article highlights those domains in which focus group stakeholders see that stan-
dardisation activities would be beneficial. While traditionally standards are made by in-
dustry for industry, in the here described context also science benefits and is an important
beneficiary of standardisation activities. Using standardisation as a mean for valorisation
and knowledge transfer, researchers are motivated to perceive their research results in a
technology context in which interoperability and system integration are important factors.

1.2 Standardisation as a catalyst for innovation
Traditionally, standardisation has often been perceived as standing in contradiction to in-
novation [1]. On the contrary, standardisation is one of the most adequate and powerful
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tools to quickly capitalise and disseminate knowledge and have it implemented in the in-
dustry and thus to transfer research results to the market. In addition, the standardisation
process, as such, is a knowledge sharing and knowledge production process because it
serves as a common platform for actors with heterogeneous backgrounds, capacities and
knowledge, i.e. research, industry, academia, public administration, and the wider society.

The European standards developing organisations CEN-CENELEC and ETSI define a
standard as “a document, established by consensus and approved by a recognised body
that provides, for common and repeated use, rules, guidelines or characteristics for ac-
tivities or their results, aimed at the achievement of the optimum degree of order in a
given context. Standards should be based on consolidated results of science, technology
and experience, and aimed at the promotion of optimum community benefits” [2].

Standards bring along a number of benefits. They enable a reduction of costs and an
improvement of efficiency, they ensure the quality, safety, and security of products and/or
services, and support compliance with relevant legislation including EU regulations. Stan-
dards satisfy customer expectations and requirements, enable access to markets and to
customers in other countries. Standards achieve compatibility and interoperability be-
tween products and components and increase knowledge about new technologies and
innovations [3].

Generally, standards are developed by groups of experts from industry and research.
However, other interested parties, such as from policy and administration, or environ-
mental or consumer protection, also participate in the development of relevant standards.
The development can take place at different levels: If the experts convene on a national
level, national standards are developed by a consensus-based process in National Stan-
dardisation Bodies (NSBs). However, the NSBs may also delegate experts to the respon-
sible committees at European level (CEN, CENELEC) or international level (ISO, IEC),
where they develop the technical content as representatives for the respective countries
in consensus with other delegated experts. This makes it possible to combine the positions
of different countries in one standard, securing the best possible outcome for all involved
parties. Other standards developing organisations, like ETSI and ITU-T, form groups and
committees from delegates of commercial companies and research organisations.

There are different types of standards, whereby the type of standards actually being de-
veloped often depends on the [4], of the innovation. For example, terminology standards
and measurement standards are more likely to be developed at the beginning. As the TRL
increases, performance, benchmark or interface standards are required. At the end of the
innovation, when the product has reached a certain market maturity, interface or certifi-
cation standards will be necessary. This is not a rule, but it provides a basis for considering
which standards can be developed in which order. Nevertheless, standardisation is a pub-
lic and voluntary process. This means that anyone who has the knowledge in a specific
area can be empowered by their national standardisation body to set informed standards.
The actual questions of which topic to standardise and when are decided independently
by the community itself in a consensus-based process.

1.3 CEN-CENELEC focus group on quantum technologies
In 2018, the European Commission launched its large-scale (up to one billion euro) and
long-term (10 years) Quantum Flagship research initiative to “(. . . ) kick-start a compet-
itive European industry in Quantum Technologies and to make Europe a dynamic and
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attractive region for innovative research, business and investments in this field” [5]. Its
Strategic Research Agenda stresses that to achieve the goals of the Quantum Flagship “(. . . )
it is necessary to accelerate the development and take-up by the market, which would be
further enhanced through dedicated standardisation and certification efforts” [6].

In order to coordinate and support the development of relevant QT standards, the Euro-
pean standards developing organisation CEN-CENELEC in June 2020 kicked off its Focus
Group on Quantum Technologies (FGQT) [7]. The group is developing its FGQT Stan-
dardisation Roadmap (publication planned for early 2023) to systematically address ongo-
ing and prospective standardisation efforts. This activity evolves in conjunction with an
identification of relevant use cases, potential QT-related transactions and supply chains,
and specifically includes an analysis of aspects of QTs that would benefit most from stan-
dardisation, and within which time frame. The FGQT has currently more than 100 mem-
bers from industry, research, and administration, and operates on a European level. Nev-
ertheless, it aims at interaction with other standards developing organisations and QT-
alliances world-wide, including ETSI, ITU-T, ISO/IEC, IEEE, IRTF, QuIC, etc. Another
objective of the FGQT is the definition of terms-of-reference that would trigger the ac-
tual standards development in technical committees. The authors of this article are all
delegates and contributors to the FGQT.

1.4 This review article
This article is a review of insights gained by the FGQT during its work on standardisation
relevant to quantum technologies.

Section 2 and Appendix A review related work, including ongoing and planned stan-
dardisation and pre-standardisation activities by other Standards Developing Organisa-
tions (SDOs) and industry forums. Section 3 provides a view on how the FGQT aims to
structure the standardisation discussions. Next, it provides initial analyses in the areas
of quantum communication, quantum computing & simulation, and quantum metrology,
sensing & imaging. Section 4 and Appendix B present views from individual FGQT del-
egates, explaining their rationale of why their organisations are contributing to standards
work for quantum technologies. Section 5 concludes by highlighting the early-stage work-
in-progress nature of standardisation for quantum technologies.

2 Related work
Whereas the CEN/CENELEC FGQT may likely be the first standards developing organi-
sation (SDO) aiming at developing a standardisation roadmap for the entire spectrum of
quantum technologies, it is definitely not the first organisation to address standardisation
of quantum technologies. Appendix A provides an overview of past and current activities
in the field being undertaken by SDOs and other organisations, on a European level and
beyond, as well as references to published QT standards. This section summarises this
related work, see also Fig. 1.

Quantum-computing standards development has been started with ISO/IEC, fo-
cussing on quantum-computing terminology. IEEE is developing standards for quantum-
computing performance metrics and technical architecture.

Quantum-communication standards are being developed by several SDOs. Both ETSI
and ITU-T are telecom-industry driven SDOs. Both have a focus on Quantum Key Dis-
tribution (QKD), which may be the first application of quantum communication in gen-
eral. Security standards for QKD are being developed by ETSI, ITU-T as well as ISO/IEC.
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Figure 1 Standardisation activities on quantum technologies. Solid lines: standards development. Dotted
lines: pre-standardisation activities

IEEE and IRTF work on the management and control of a wider category of quantum-
communication networks, including entanglement-based quantum networks and quan-
tum internet.

Quantum-metrology standardisation is still in an emergent phase. EURAMET has re-
cently started coordination activities for this.

Other relevant initiatives in the European context are QuIC, the European Quantum In-
dustry Consortium, which supports European quantum-technology standardisation with
industry surveys, and StandICT.eu, which provides funding to individual European ICT
standardisers including some of the co-authors.

At the time of writing this article, DIN, the German National Standardisation Body
(NSB) proposed to establish a European CEN-CENELEC Joint Technical Committee
on Quantum Technologies, JTC22-QT, based on intermediate results from FGQT. This
new technical committee will develop and coordinate European standardisation activities
on quantum computing, quantum communication and quantum metrology, sensing and
imaging. JTC22-QT will kick off in Berlin, March 2023

3 Analysing standards needs for quantum technologies
3.1 General
This section provides ingredients for the standardisation roadmap that FGQT is currently
developing.

As mentioned in the Introduction, FGQT has been analysing standards need for QT
since mid 2020, and publication of a first release of its standardisation roadmap is planned
early 2023. Developing a standardisation roadmap is usually a complex process. There
are many inputs to consider, including standards development elsewhere (Appendix A),
other relevant roadmaps like that of the European Quantum Flagship [6], and the interests
of a plethora of stakeholders. All the work is carried out by volunteers in the sense that
CEN-CENELEC is not paying any of the delegates for their contributions. This means the
work would be seen as an investment by the organisations that provide delegates. In some
cases, the own investment is augmented by European or national grants. The purpose of
the roadmap is to coordinate and align interests between delegates to a point that next
steps can be made, like the starting of actual standards development.



van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 6 of 41

The “ingredients” to the FGQT roadmap development are of different types. Sec-
tions 3.2, 3.3, and 3.4 look at standardisation from the technological perspective for quan-
tum computing & simulation, quantum communication, and quantum metrology, sensing
& imaging, respectively. Section 3.5 looks at standardisation from the use-case perspec-
tive, discussing a selection of specific applications of quantum technologies. Section 3.6
provides an abstract market model, that aims to connect standards needs to concrete
products and services, as well as to their vendors and purchasers. Section 3.7 attempts
to converge the storyline of the FGQT roadmap, and to provide some structuring to the
various aspects of quantum technologies.

As all of this remains work-in-progress, none of the insights and views are complete or
definitive.

3.2 Quantum computing & simulation
Quantum Computing and Simulation as an area covers many different implementations,
and several enterprises are developing solutions for a mature quantum computer. The
concept of a “Modular Quantum Computer”, well known from digital computing, has cre-
ated a new market which has attracted many small enterprises to develop dedicated mod-
ules which are competing with more monolithic full-stack organisations. The availabil-
ity of a supply chain of such modules from different vendors will enable research teams
to concentrate their research on breaking new grounds, without spending much effort
on duplicating known solutions. This is where standardisation can play an important
role.

From a standardisation point of view, this market requires a subdivision of the field of
Quantum Computing and Simulation into a variety of modules that can interwork with
each other through well-defined interfaces (hardware and software), and a consensus on
the functional and performance requirements of each module of interest. Instead of com-
municating such requirements with a single or small number of local suppliers, research
teams can save effort by communicating these requirements with relevant standardisa-
tion bodies. It will increase the availability of mature hardware and software solutions in
return, as well as knowledge on requirements and solutions from others.

It may be worth noting that a Quantum Simulator is a dedicated Quantum Computer,
designed for solving specific problems as well as studying well defined quantum systems.
They may be programmable up to a certain level. The modularity described in this pa-
per covers both Quantum Computers and Quantum Simulators, since they use the same
hardware components.

Hardware Stack. A first standardisation challenge that has been tackled is achieving
consensus on how to subdivide the field of Quantum Computing into smaller and less-
complex chunks. A convenient way of doing that is via a stack of layers. Figure 2 be-
low illustrates the present state of consensus within FGQT of CEN-CENELEC, cover-
ing mainly the lowest-level (hardware) layers. The layering is chosen in such a manner
that their functionality can be described independently and that the interworking be-
tween different layers can be described through well-defined interfaces at their bound-
aries. A module from a single supplier may cover functionality within a single layer or
span multiple layers. In the latter case, interfaces may be virtual (hidden internally within
a module).

So far, the following low-level hardware layers have been identified:
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Figure 2 A possible break-down of quantum computing into layered stacks, accounting for different
architectures

1) Quantum device(s), which may include the housing, shielding, magnets, I/O
connection, etc. around one or more holders with quantum devices.

2) Control Highway, which may include the wiring and/or fibres, free-space optics,
active devices (amplifiers), passive devices (attenuators, filters, couplers),
opto-electronics (photo diodes), thermalisation means, vacuum feed-through and i/o
connectors to implement a full i/o chain between quantum devices and control
electronics.

3) Control Electronics/Optics, which may include output generators, input analysers,
signal processing, i/o connection, as well as low-level firmware to guide the
generation of signals and the read-out of their response.

4) Control Software, which may include calibration means and low-level code to
translate instructions from higher software layers into commands for guiding the
control electronics/optics.

The software layers above the control software later described later further on in this
section. Some of the hardware layers are a mix of both hardware and software, which is
illustrated via different colours in Fig. 2.

The layered approach allows for using different hardware stacks for specifying the re-
quirements of dedicated architecture families. Each architecture family can have multiple
members (A, B, C, . . . ) and the description of its hardware layers (1, 2, 3, 4) may account for
differences between these members. This is illustrated symbolically via different “boxes”
per layer and family, but may be merged when different members share the same func-
tionality.

So far, the following architecture families have been identified (in arbitrary order):
Cryogenic Solid State based. This family covers superconducting solutions (transmons,

flux qubits), semiconductor spin qubits, topological qubits and artificial atoms in solids.
Room Temperature Solid state based, which cover artificial atoms in solids (such as NV

Centres) and quantum dots.
Trapped Ions, covering both room-temperature and cryogenic (4K) solutions such as

optical qubits, Raman qubits and spin (microwave) qubits.
Neutral Atoms, covering both collision-based and Rydberg-based solutions.
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Photonic Quantum Computing, covering solutions based on continuous variables, clus-
ter states/measurement based, Knill-LaFlamme-Milburn and Boson sampling.

This classification is currently work-in-progress within FGQT of CEN-CENELEC, and
may be improved/revised as new insights arise.

A next step in standardisation is identifying functional requirements for modules within
these layers, and there is no need to wait for the field to fully mature before starting this
work. If we take cryogenic solid-state quantum computers as an example, one may con-
sider the following types of requirements:

• Quantum devices: The modules of this architecture family are typically operating at
cryogenic temperatures and may be implemented stand-alone, as chip and/or on
printed circuit board. Relevant requirements of general nature are related to shielding,
materials compatibility, operating temperature, electrical and magnetic aspects,
vacuum properties, and interconnectivity.

• Control highway: These modules cover all infrastructure needed for routing light and
microwave signals, RF and DC signals between the control electronics at room
temperature and the quantum device at cryogenic temperatures. It is a mix of
transmission lines, filtering, attenuation, amplification, (de)multiplexing, etc. Relevant
requirements of general nature are related to low thermal conductance, good
thermalisation, materials with low outgassing, vacuum feed-throughs, small footprint
(for high-density i/o channels), interconnection, bandwidth, filtering properties, low
noise, etc.

• Control electronics: This covers all electronics for generating, receiving, and
processing microwave, RF and DC signals. Some implementations make use of
routing/switching and/or multiplexing of control signals at room temperatures and at
cryogenic temperatures. It may also have some firmware on chip/board to route signal
preparation, control, and processing/readout. Relevant requirements for
consideration are dealing with signal shapes and levels, sensitivity and functionality.
But also dealing with the instruction set and software interfacing with higher layers.

• Control software: This covers a mix of hardware and low-level driver software for
instructing the control electronics, and should provide means for calibration. Relevant
requirements for consideration are dealing with the software interface to higher layers
for receiving sequences of instructions about when, where and what pulses or signals
are to be generated, how to process and read-out the response, and means for
performing calibration.

Software Stack. Another standardisation challenge that has been tackled is achieving
consensus on how to subdivide the software stack on top of the hardware stack. The soft-
ware layers above the control software layer may include operating system, communi-
cation primitives, software drivers, hardware abstractions, assembly / register level pro-
gramming, high-level programming environments and applications/services supporting
use cases. The higher software layers are assumed to be more agnostic to differences in
hardware.

Figure 3 illustrates the present state of consensus within FGQT of CEN-CENELEC, cov-
ering the layers in the software stack. This layering is currently work-in-progress within
FGQT of CEN-CENELEC, and may also be improved/revised as new insights arise. So far,
the following software layers have been identified:
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Figure 3 A possible break-down of the software stack into layers

• Control Software: The lowest layer in the software stack in Fig. 3 (control software) is
the same layer as the highest layer in the hardware stack in Fig. 2. It may include
calibration means, low-level code to translate instructions from higher software layers
into commands for guiding the control electronics/optics, and comprises the
techniques used to define error-robust physical operations and associated supporting
protocols designed to tune-up and stabilize the hardware. Control software for
quantum hardware is typically stored on digital computers, i.e. there is a very strict
separation between the place where the control software is stored and the quantum
registers. In the long term, control software may work in concert with Quantum Error
Correction (QEC), which is supposed to lay at the assembly / register level
programming layer, to provide broad coverage of various error types. More
specifically, control software could improve the efficiency of QEC, i.e., reduce
resource overheads required for encoding, by homogenising error rates and reducing
error correlations.

• Operating system communication systems: A quantum computer must be provided
with an operating system (OS), which is a resource manager for the underlying
quantum hardware, provided with built-in networking functions allowing multiple
users and applications to use the resources as remote clients. To an application, it
appears as if it has its own resources and is protected from other applications.
Applications can make use of facilities only as offered by the OS. For example, the OS
provides communication primitives (e.g., based on the POSIX standard for the
sockets interface [8]) and only by means of these primitives should it be possible to
pass messages between client applications and the quantum computer.

• Software drivers: These are components that are plugged into the operating system
and allow hardware-abstraction programs to call the control software of the
underlying quantum hardware. If the hardware changes, the software drivers must
change as well.

• Hardware Abstraction Layer (HAL): The hardware abstraction layer (HAL) should
allow quantum computer users, such as application developers, platform and system
software engineers and cross-platform software architects, to abstract away the
quantum computer implementation details while keeping the performance. The
hardware may change, but programs written in a quantum assembly language such as
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QASM, or even written in a register level programming layer, should still be able to
work. Among all software layers for quantum computing, this is the one that requires
the most urgent standardisation effort. The hardware abstraction layer should provide
Application Programming Interfaces (APIs) to the upper layer, decoupling from the
different types of quantum hardware technologies.

• Assembly/register level programming: This layer concerns QASM (i.e., quantum
assembly) languages that describe quantum computations according to one specific
model (e.g., circuit model, measurement-base model, quantum annealing model),
with a per-architecture instruction set. An example is OpenQASM [9], which targets
IBM Q devices and enables experiments with small depth quantum circuits.
OpenQASM can define universal circuits, that are build-up from gates like CNOT,
and supports straight-line code that includes measurement, reset, fast feedback, and
gate subroutines. OpenQASM possesses a dual nature as an assembly language and as
a hardware description language. A different example is NetQASM [10], which is a
platform-independent and extendable universal instruction set with support for local
quantum gates, digital logic, and quantum networking operations for remote
entanglement generation. NetQASM consists of a specification of a low-level
assembly-like language to express the quantum parts of quantum network program
code. Due to the huge diversity of quantum computing architectures, it is not likely
that a unique, widely accepted QASM would emerge and later become a standard.

• Programming layers: The specification of quantum algorithms using QASM languages
is not easy for programmers. Indeed, QASM programs are usually generated by a
software library, from a piece of code written in a common programming language,
such as Python. In general, the programming layers include all the languages, libraries,
and software development facilities (e.g., software development kits, debugging tools,
quantum compilers) used by developers for coding quantum algorithms or high-level
applications that use predefined quantum algorithms as subroutines. Quantum
compilation is the problem of translating an input quantum circuit into the most
efficient equivalent of itself, considering the characteristics of the device that will
execute the computation and minimizing the number of required two-qubit gates.
The most advanced quantum compilers are noise-adaptive, i.e., they take the noise
statistics of the device into account.

• Applications / Services supporting use cases: To effectively support industrial and
research use cases, quantum applications must be executed in suitable environments.
Currently, some vendors provide access to quantum devices via user-friendly cloud
platforms. The quantum programs must be locally compiled for a specific device and
submitted for batch processing to the remote platform. However, other paradigms are
emerging. For example, the Quantum Internet will enable networked quantum
applications, whose execution will involve multiple quantum nodes and will be
characterised by interleaved digital and quantum message passing.

3.3 Quantum metrology, sensing & imaging
Quantum Metrology & Sensing and quantum enhanced Imaging (QMSI) exploit the prop-
erties of quantum states and peculiar phenomena, such as entanglement and non-classical
correlations, to significantly improve the accuracy and precision with which parameters
of a wide range of systems can be estimated and to step over limitations related to conven-
tional classical measurement strategies, as the environment-induced noise from vacuum
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fluctuations (the so-called shot noise), or the dynamically induced noise in the position
measurement (the standard quantum limit), or the diffraction limit [11–14].

Every aspects of the physical reality, including the measuring devices used to extract in-
formation about our real world are governed by quantum mechanics, and although this
imposes unavoidable fundamental limits to each measurement process—in the specific
defined by the Heisenberg uncertainty principle together with other quantum constraints
on the speed of evolution—the aforementioned conventional semi-classical bounds to
measurement precision are not the ultimate limits and can be beaten using suitable quan-
tum strategies. To this purpose, these QMSI new paradigms require development of tech-
niques robust to noise and imperfections i.e., fit to real-world scenarios, spanning from
very fundamental to very practical applications, and ranging from the nanoscale, by means
of localised spins to the planetary scale, based on photons.

QMSI systems and devices are very promising, and in recent years an exponential
growth in the interest toward applications of these technologies was observed, and now
encompasses a broad range of topics [3, 15–18]. However, the diffusion in the industrial or
commercial world of QMSI devices is still extremely limited. Prototypes already exist, but
a mass market and standardisation of these prototypes do not. This is mainly due to the
lack of reliable tools and structured facilities to characterise, test and validate the current
and future prototype devices. Moreover, there is a high variety of readiness level among
the different technologies in this field and the maturity level is technology dependant.

From the standardisation perspective, as stated in [3], standards in the field of QMSI
are understood in different ways. Quantum Technology has enabled the discovery of new
magnitudes of fundamental measurements and a redefinition of primary reference stan-
dards of the International System of Units (SI) [19, 20]. With the purpose to create a com-
mon ground of understanding, a first important aspect to be clarified is that on one side,
the metrology vocabulary defines the fundamental reference standards of weight and mea-
surements (SI), while the standardisation vocabulary generally leads to documentary stan-
dards.

In general, documentary standards represent a key step for fostering QMSI technology
spreading, both for stand-alone sensors and for those to be integrated in more complex
systems. The standardisation process that has just began aims to provide the way for a pos-
sible construction of a general hardware platform at a reasonable cost, a step that would
represent a key enabler for these QTs, in particular in fields in which commercial prod-
uct are emerging, e.g. quantum sensors based on NV-centers in diamond, atomic-based
sensors, etc.

So far, the two major domains of applications and related standardization needs cur-
rently envisaged by the CEN-CENELEC FGQT are: (a) novel applications enabled by
QMSI devices; (b) characterization, benchmarking, and evaluation for reliable QT.

In analogy with the approach adopted in the Quantum Computing and simulation tech-
nologies, also in this case the following layers can be established to subdivide the ensemble
of issues related to standardization concerning QMSI:

1. Quantum device(s)
2. Control electronics / optics / opto-mechanics
3. Control software

The first focus would be in the standardization of tools and technologies related to the
quantum device, i.e. the quantum sensor. The central concept of a quantum sensor is that
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a probe interacts with an appropriate system, which changes the state of the probe. This
effect known as quantum back action is intrinsically related to the physical nature of the
measurement process: in this way, measurements of the probe reveal the parameters that
characterise the system.

In quantum-enhanced sensors, the probe is generally prepared in a particular non-
classical state. The best classical sensors exhibit a precision that scales proportionally to
the square root of the number of particles N in the probe (i.e., the Standard Quantum
Limit, SQL) whereas the best quantum sensors can in principle attain a precision that
scales as N (i.e., the Heisenberg limit).

From the point of view of the quantum device, a useful classification [15] of the different
domains and applications for implementing QMSI protocols (over various QT platforms,
diversified from atomic systems to solid state and photonic devices) is schematized in the
following:

• Quantum Electronics: such as, single-electron sources (for the Sl-realization of the
ampere and single-electron quantum optics, realization of the “quantum metrological
triangle”), Josephson junctions (for quantum voltage standard); quantum Hall effect
(for quantum resistance standard)

• Quantum Clocks: such as, ultra-cold atoms used for optical atomic or lattice clocks
atomic clocks (for new time standards and chip scale atomic clocks to address Global
Navigation Satellite System resilience, network synchronization, Time Stamping,
Basic research, etc.)

• Atomic Sensors: such as, atom interferometers for gravimeter (for climate research,
civil engineering, hydrocarbon and mineral exploration, GNSS-free navigation),
magnetometers based on cold atoms or NV-centers in diamonds and nanodiamonds
(for brain imaging, heart imaging, metrology, navigation); atomic vapour cells (for
high precision electric magnetic and RF measurements)

• Quantum Photonics: such as, single-photon sources and detectors (for ultraprecise
quantum interferometers, phase discrimination for quantum communication, twin
beam and squeezed light, super-resolution, Sub-shot-noise imaging, quantum
enhanced microscopy, quantum enhanced displacement sensing, quantum
illumination and quantum radar/LiDAR, quantum reading, quantum ghost imaging
and spectroscopy, quantum photometry and quantum physics based primary
standards).

Each individual QT platform can be cross-sectional with respect to the various domains,
e.g. NV-centers platform is adopted both for magnetometer atomic sensors and for single-
photon sources in quantum photonics; ultracold-atom optical lattice clocks are at the same
time genuine atom interferometers and also atomic sensors leading to improved time and
frequency standards, etc. Moreover, it is worth to mention that the examples above include
both SI measurement standards used for traceability and novel QT-based measurement
devices.

The requirements for proceeding towards the standardization are mostly platform spe-
cific, for instance, in the field of NV-centers in diamond one can outline the following
list:

• Quantum device(s): requirements are related to technique of synthesis of the base
material (native defect concentration spatial distribution, lifetime, coherence, lattice
orientation), doping technique, and resolution of the implantation (a major
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breakthrough being the achievement of deterministic implantation),
photo-luminescence properties (photon flux, spectrum)

• Control Electronics/Optics/Opto-mechanics: requirements are related to the
parameters for DC and RF signal generation and processing, microwave power and
polarization, geometry of the antenna delivering the microwave, eventual excitation
pulse sequences

• Control Software: requirements are related to the programming of the measurement
protocols and sequences, data displaying and storage

Concerning the domain related to the characterization, benchmarking, and evaluation
for reliable QMSI devices, the CEN-CENELEC FGQT envisaged that a general aspect to
be taken into account in QMSI field refers to the complexity of its devices, which are based
on the interplay of components from different partners. Constructing complex quantum
devices out of these components requires dependable characterization with a “reliable
data sheet” for the component under test as a result. This can be thought of in terms of
a supply chain, one typical example being a foundry on one hand and a system integrator
on the other hand. Only with this reliable data sheet, the quality and interoperability of
QT components can be guaranteed—a prerequisite for practical applications with com-
mercial perspective. Currently, offers for such independent characterization and testing
capabilities are being developed in several National and European Programmes [21, 22],
NMIs [23] and EMN-Q [15]. Testing and characterization capabilities need to be har-
monised between testbeds. To put all this on a basis, standardised measurement proto-
cols are needed. Ideally, this development goes hand-in-hand with the development of
measurement capabilities and metrology for QT components not yet existing in many
cases.

Benchmarking these devices can be non-trivial since the choice of performance indi-
cators is not obvious and/or incompatible between different architectures. A set of stan-
dardised parameters and figures of merit allows benchmarking and comparing different
approaches with respect to the application at hand. Quantum sensing devices can then,
for instance, be measured against physical standards. Furthermore, standardised measure-
ment protocols facilitate the comparison of quantum sensing/imaging against classical de-
vices, crucial to evaluate perspectives of the technology. Advancing the capabilities above
further facilitates future certification of QT components.

In conclusion, from an organisational point of view, given the general and cross-
sectional character of QMSI field, the CEN-CENELEC FGQT emphasizes the need for
a rationalization of efforts, to ensure that documentary standards that have been already
prepared by existing SDO WGs/TCs for first generation Quantum Technologies (e.g. sta-
ble lasers, cryogenics, fibre-technology, chip-scale optical frequency comb, high-speed
phase-coherent control of RF/microwave fields, integrated circuits, micro- and nano-
fabrication capabilities for diverse materials, etc.) will be considered and upgraded tak-
ing into account Quantum-enabled technologies. In parallel, novel Technical Committees
dedicated to Quantum Technologies should be created to oversee the standardisation pro-
cess for the ‘native’ second generation QT (e.g. miniature atomic clocks, chip-scale magne-
tometers, microwave field imaging, atomic gyroscopes and Rydberg gas sensor, waveguide
photonics, etc.) [3, 15].
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3.4 Quantum communication
A general feature of all classes of Quantum Communication is the utilisation of a quan-
tum channel for communication purposes. A quantum communication channel enables
the spatial distribution of quantum states with high fidelity over an optical fibre, or with
the help of optical telescopes through free space. Quantum communication can serve two
purposes: either to perform more optimally a certain “classical” information communi-
cation task using a quantum channel, or to enable the transfer of quantum mechanical
states over a distance with the goal of some subsequent utilisation in quantum computing
or quantum metrology. While the first of these tasks in principle allows multiple applica-
tions, it has turned out that the only realistically efficient application to date is the simulta-
neous generation of cryptographic secrets at both communication ends. In contrast to the
usual methods in conventional cryptography, these secrets (keys) remain secure against
potential attackers independently of the attackers’ resources. This cryptographic primitive
is well known as Quantum Key Distribution (QKD). In this sense, both seemingly differ-
ent Quantum Communication tasks are nevertheless based on the distribution of specific
resources over a distance using quantum channels. Both tasks build on the transmission
of quantum states, while for QKD these states have an auxiliary nature and it is the char-
acteristics of measurements of these states (distant correlations), which are used to create
the main resource, the cryptographic key, while the states themselves are being discarded.
In contrast, in the second case, the quantum states themselves are the resource that is
relayed between two communicating parties, either directly or indirectly. It needs to be
underlined that the term “quantum communication” might sound misleading, as if it were
a replacement of classical digital communication. Quite the opposite is true: essentially
quantum communication needs always to be supported by classical digital communica-
tion in order to enable the distribution of additional quantum-enabled resources.

Quantum Key Distribution. Quantum Key Distribution is a general method [24–26] en-
tailing two steps:

1. Utilisation of a quantum channel: distribution of quantum states end-to-end between
two parties and ensuing distant measurements, yielding non-classical correlations in
measured random data;

2. Classical post-processing: subsequent iterative communication rounds between the
distant parties, involving local processing of the measurement data to distil identical
random bit strings, completely unknown to external third parties. These strings can
then be used as cryptographic keys in conventional cryptographic applications.

There is a huge diversity in QKD systems, as realised and even industrially produced al-
ready today (several of these can be seen in the equipment rack in Fig. 4). With QKD, there
are two main challenges: to ensure that the channel is really quantum (rather than some
potentially flawed approximation), and to be able to perform the classical post-processing
stage faithfully and efficiently. Often, advanced protocols utilise very clever combinations
of both stages to ensure the final objective–an efficient generation of an end-to-end secure
key.

Traditionally, QKD systems have been using a point-to-point communication medium
(e.g. an optical fibre) to transfer quantum states (pulses of light). If we speak of light, en-
suring the quantum nature of the signal means that very weak pulses need to be used.
Light is unavoidably absorbed after some attenuation, i.e. communication distance, and
this means that the range is restricted to typically a few hundreds of kilometres at best. The
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Figure 4 One of the central nodes in the Madrid QKD testbed, showing several QKD systems by different
vendors in an equipment rack (Courtesy Vicente Martín, UPM Madrid)

distribution of cryptographic keys over longer distances can only be achieved by means
of composite systems, connecting several QKD links by means of “secure locations” (or
trusted nodes) as interconnection points. These composite infrastructures are known as
QKD networks of the first generation [27, 28].

Technologically still in the future, but otherwise conceptually realistic, is QKD over long
distances by creating indirect quantum channels. This requires long-distance end-to-end
quantum teleportation supported by end-to-end entanglement distribution relying on so-
called quantum repeaters. These composite systems are the prospective Quantum Com-
munication Networks of the second generation.

Quantum State end-to-end Distribution. At first glance, it appears that this is a task
identical to the first step of the QKD general method. Unfortunately this is an oversimpli-
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fication, as even if a quantum state is successfully distributed to a receiving party, there is
presently no quantum mechanism for this state to be “taken over” (actually received in the
direct sense) by this party. The existing approaches rely on the mentioned quantum tele-
portation, in which the receiving party manages to create a state, identical to the one sent,
at the price of destroying the first one and thus complying with the quantum no-cloning
theorem. Similarly, as discussed above, an indirect quantum channel needs to be created,
and only then, the input state can be teleported from the sender to the receiver.

Technically this is identical to the creation of an end-to-end quantum communication
channel, as outlined above in the description of a Quantum Communication Networks of
the second generation. For such networks, the second step of the general QKD method,
namely the measurement of the “transmitted” state and the subsequent post-processing,
is not needed.

It is, however, not actually reasonable to distinguish the design of (long-distance) end-
to-end quantum communication channels for QKD or “just” for quantum state transfer:
they are fundamentally identical. In this sense, all expressions of Quantum Communica-
tion Networks can be subsumed as Second Generation Networks (also known as Quan-
tum Information Networks, or more expressively, although also a bit misleadingly, as the
“Quantum Internet” [29]).

From the point of view of Quantum Technology, it is the development of these networks
involving in turn the development of quantum repeaters, entanglement purification and
teleportation protocols, which still represent future challenges of major importance.

It was actually in the field of Quantum Communication, where the standardisation of
quantum technologies started in 2008 with the foundation of the ETSI Industry Specifi-
cation Group for QKD (ETSI ISG-QKD), when the need arose for respective standards
in a European funded research project. In the FP6 Integrated Project SECOQC, a first at-
tempt toward security certification of QKD technologies was undertaken, which identified
missing standards as a major roadblock. Since then, the group has produced several base
standards, standards for interfaces, for components of QKD systems, for security proofs
and security certification, and in other areas usually subject to standardisation. For about
ten years, the ETSI was the only standards developing organisation active in this field—
until other SDOs began to join in. Today, QT standardisation has become a major issue,
with many SDOs active in the field, among them ISO/IEC, ITU-T, CEN-CENELEC, IEEE,
the IRTF, as well as industry consortia, like the QuIC, and several metrology institutes.
See Appendix A for a summary of ongoing standardisation activities.

While several areas in quantum communication standardisation are already substan-
tially covered, there are still gaps and blank spaces where much needed standards are
missing. This is especially true for the field of QKD security certification, where the ETSI
ISG-QKD has produced a sample ISO/IEC 15408 “Common Criteria” protection profile
for a prepare and measure QKD link, and the ISO/IEC JTC1 SC27 WG3 has produced two
standards for requirements and test and evaluation methods for QKD products: Any secu-
rity specification for a QKD product will need to rely on additional so-called background
documents, especially where cryptographic protocols and algorithms need to be specified.
All these cryptography-related choices will need to be based upon widely recognised and
accepted background documents, like standards, or technical specifications. The specifi-
cation of the quantum optical subsystem too will need to rely on compliance with external
standards, e.g. for the employed QKD protocol, including its security proof, for specific
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components, like photon sources and detectors required by the QKD protocol, for ran-
dom number generators, for attack methods and for attack rating methodologies. This
issue has only arisen recently, and a timely identification of required background docu-
ments, i.e. standards, as well as the coordination of an efficient generation of these by
standards developing organisations active in the field has become a major issue to prevent
a potential major roadblock on the way to certified QKD products. Here the European
CEN/CENELEC FGQT, as well as its envisioned CEN/CENELEC Joint Technical Com-
mittee successor, intends to assume a coordination function with the maintenance and
dissemination of its QT standardisation roadmap.

After all, coordination of standardisation activities is becoming increasingly important
in quantum communication (QKD) standardisation: It seems that most of the involved
standards developing organisations are trying to cover the entire field of QKD standard-
isation by themselves, without looking much at the activities of other SDOs. This has
currently already led to incompatible standards for security certification in the ETSI and
ISO/IEC, as well as to several competing developments towards standards for crypto-
graphic key management in QKD networks. If no effective steps are being taken to coun-
teract that trend, the situation might end up as in the sector of IT cloud standardisation
where dozens of standardisation developing organisations have developed virtually hun-
dreds of competing standards, while the mostly used (de-facto) standards are set by major
industrial players (Amazon AWS) outside the participative processes of actual standards
developing organisations.

While in some fields multiple parallel approaches represent a potential “danger” and
inefficiency, other areas, besides that of the mentioned background documents, still re-
main a blank slate: Currently there are no standards available e.g. for QKD protocols and
for specific classes of photon sources and detectors. Networks for transferring quantum
mechanical states (“full quantum networks”) are even not at all covered in QT standard-
isation. Therefore, there is ample room for additional work to be carried out in quantum
communication standardisation—with a substantial need for active coordination of activ-
ities to avoid the pitfalls of inefficiencies and double work.

3.5 Use cases and applications
With quantum technologies being a very broad field, so are the possible application areas.
Developments in all areas of quantum technology bring these applications ever closer.
However, even the best technology has little use if it is impractical in operational settings. It
is therefore important that different aspects of quantum technology can properly interact
and that they align with the classical technology already in place.

We identify two ways for a seamless interaction of new quantum technology with itself
and with already existing technology. The first is one party developing everything them-
selves, which is reserved only for a small handful of parties. The far more common option
is one party developing a part of a larger technology pipeline. This requires the input and
output of the developed technology of one party to align with that of another party, as
otherwise these cannot directly interoperate. Standards help interoperability as shown in
the previous section.

This directly poses a challenge, as with the high-paced developments, interoperabil-
ity and standards usually form a secondary priority and specifications can furthermore
rapidly change. Additionally, if applications are still unclear, standard requirements might
be hard to define.
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Use cases can help identify future applications of quantum technology and different
functionalities this technology should offer. Use cases also allow users to envision ideal
situations in which the technology is used and the accompanying functionalities.

Below we identify a few use cases and we identify why they might help developing new
future standards.

Historically, the first application of secure-key distribution for enabling subsequent se-
cure communication is one of the first use case of quantum technologies. From a practical
point of view key distribution has to be performed without distance restrictions. To avoid
the intrinsic limitation that absorption poses on quantum signals, the enabling quantum
technology has been and will be augmented by the utilisation of composite quantum com-
munication networks (of different generations as outlined below). First realisations are al-
ready near practical utilisation in telecom and government domains. For practical usage,
it is also important how the generated secure key material is used in securing the future
communication, as incorrect usage might leak (part of ) the generated key.

Cloud-based quantum computing is expected to become important in a number of fu-
ture use-cases. The quantum computers will act as a secondary processor hosted in the
cloud and integration with classical high performance computers, allowing many compu-
tationally hard problems to be solved efficiently. This requires standard protocols for in-
teraction between the quantum computer and classical devices. We also require standard
methods to decompose workflows in smaller steps, each of which can be implemented
on their respective device [30]. Finally, different components of the underlying quantum
hardware have to interact, which requires standards if these components come from dif-
ferent vendors.

Examples of applications of Quantum Metrology & Sensing include: (i) quantum mag-
netometers (based on cold atoms or Nitrogen-vacancy centres in diamonds and nanodi-
amonds) for highly sensitive magnetic-field sensors, which have the potential to improve
navigation and various imaging applications in arenas such as healthcare and brain imag-
ing [31]; and (ii) Quantum-enhanced imaging, exploiting non-classical states of light to
enable improved imaging performance, which is at the basis of ghost imaging (improv-
ing signal-to-noise ratio for applications at few photons level), quantum multiphoton mi-
croscopy, quantum coherence tomography, quantum interferometry and quantum lithog-
raphy [16]. Standards for these applications include metrics to quantify the quality of the
devices and calibration routines.

3.6 Supply-chain model for quantum technology standards
This section provides an abstract supply-chain model for QT standards. The purpose of
this section is to provide inspiration for the initiation and development of standardisation
for quantum-technologies.

The markets for quantum technologies are mostly still embryonic, and it is not known
what these different markets or their full supply chains may look like. However, some mar-
kets are already emerging. In particular, there are emerging markets of scientists and tech-
nology developers who are building quantum platforms and systems from components
that implement enabling technologies. Associated are markets for measurement equip-
ment and measurement methods.

Let us start with an example from Sect. 3.2 on quantum computing.
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Figure 5 Abstract supply-chain model: a business transaction related to standards

Example Supply Chain (Cabling of quantum computers) Cryogenic quantum comput-
ers (e.g. transmon type) require a lot of cabling to control and read out the potentially
thousands qubits. Whereas cabling and connectors are existing products, this extreme en-
vironment and specific applicant poses requirements that are different from regular (e.g.
computer) cabling. Transmission requirements are different (e.g. on attenuation of control
signals, and possible embedded passive or active functions), there are additional require-
ments on signal density, thermal isolation, vacuum insulation, outgassing and likely even
more.

As a consequence, this cabling (“control highway”) is a specialised product with its spe-
cialised vendors, and it has a dedicated supply chain to purchasers that are developing and
integrating cryogenic quantum computers.

Standards will help both vendors and purchasers to characterise the relevant parameters
of this product. Vendors can use the standard for marketing through benchmarking of
their product against competitors. Purchasers refer to the standard to reduce the risk of a
mispurchase.

This example can be abstracted into a more general supply-chain model for quantum
technologies, see Fig. 5. This model includes two or more counterparties (“Party A”, “Party
B”) that engage in a transaction, e.g. a purchase. The transaction involves a product or
service. Several aspects of that product or service may be standardised.

The following are further examples, albeit a bit more abstract, of where standards could
be relevant in supply chains for quantum technologies.

Example 1 (Purchasing an ion trap) Ion traps are a versatile quantum-technology compo-
nent that can be applied to a variety of platforms and systems. A hypothesis is that there
will be a market, where ion traps can be purchased as a unit that could be integrated into
a platform or system. Standards may help enhance this emerging market for ion traps.
One standardisable aspect is the characterisation of ion traps that enable comparing and
benchmarking between different ion-trap products and vendors. Another standardisable
aspect may be the connection interfaces to integrate an ion trap into a platform or system.

The product in this example is an ion-trap product. The counterparties are the vendors
and purchasers of these ion traps. Standardisable aspects are technical characterisation
and interface specification of ion traps. A benefit of standardisation would be the creation
and growth of a market for ion-trap products.
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NOTE: This example may be applicable to many more enabling technologies that could
be productised.

Example 2 (Configuring a quantum simulator) Quantum simulators enable the simula-
tion of e.g. chemical processes, for the study of electronic and magnetic properties of
particular systems or even design of new materials. A quantum simulator needs to be
configured for a specific simulation task. Standardisation of the hardware components of
a quantum simulator may provide information on its technical performance (e.g. quanti-
fying with which fidelity the simulator can prepare an initial state and reproduce a specific
Hamiltonian). On a more generalised level, non-system-dependent standards may provide
a language to configure a quantum simulator.

The product in this example is a configurable quantum simulator. The counterparties
are a chemical engineer who orders a quantum simulation, and a quantum engineer who
configures/constructs the requested quantum simulator. A standardisable aspect is the
language that describes the configuration. A benefit of standardisation would be the cre-
ation and growth of a market for quantum simulators.

Example 3 (Developing an algorithm for a cloud quantum computer) Similar to the pre-
vious example would be quantum-computing capacity that is offered as a cloud service by
multiple competing cloud-quantum-computing service providers.

The service in this example is a cloud-computing service. The counterparties are a devel-
oper with a quantum-computing task and a cloud-quantum-computing service provider.
A standardisable aspect is an application programming interface. A benefit of standardisa-
tion would be the creation and growth of a market for cloud-quantum-computing services.

Example 4 (Installing a QKD ground station) Quantum Key Distribution (QKD) enables
a highly secure generation and distribution of cryptographic keys that does not rely on
the unbreakability of mathematical algorithms. QKD has already been demonstrated in
the space domain, involving orbital satellites. It is envisioned that a QKD network could
be constructed with multiple satellites, multiple ground stations and multiple operators
that operate different parts of the QKD network.

The product in this example would be the installation of a new QKD ground station.
The counterparties are the operator of the ground station and the equipment vendor that
provides the QKD equipment for the ground station. A benefit of standardisation would
be the creation and growth of a market for QKD equipment, as well as avoidance of vendor
lock-in towards a specific QKD technology provider.

Example 5 (Purchasing quantum-technology measurement equipment) The specifica-
tions of quantum-technology platforms and systems, as well as their enabling technolo-
gies need to be verifiable. Measurement equipment is required for this. Standards would
specify the measurable aspect, and what are the technical requirements that a specific
measurement should satisfy.

The product in this example would be measurement equipment that is used in a
quantum-technology context. The counterparties are the purchaser and vendor of the
measurement equipment. Standardisable aspects are the measurement method itself, as
well as characterisations of the fidelity of the measurements. A benefit of standardisation
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would be the creation and growth of a market for measurement equipment for quantum
technology set-ups.

Example 6 (Submitting a scientific article for peer review) Related to the previous exam-
ple are scientific articles that involve measurements. If a measurement method is specified
in a standard, then the author can reference that standard, instead of completely detailing
it.

The product in this example is the submitted scientific article. The counterparties are
the author and the peer reviewer. The standardisable aspect would be the applied mea-
surement method. A benefit of this standardisation is that it would make scientific articles
on a specific measured feature better comparable, enabling benchmarking the results from
the scientific article against its cited references.

3.7 Structuring standardisation of quantum technologies
This section concludes with an attempt to converge the storyline of the FGQT roadmap,
and to provide some structuring to the various aspects of quantum technologies.

Quantum Technologies are commonly structured in domains. The European Quantum
Flagship roadmap [6, 17, 18], for instance, features four domains or ‘pillars’ covering the
whole range of QT. For the identification of standardisation needs, however, this classifi-
cation brings the disadvantage that there are strong commonalities between those pillars,
as for example some enabling quantum technologies that are equally applicable to all do-
mains with associated parallels in their standardisation perspective. Within discussions in
FGQT, this challenge was tackled and an overarching framework for the identification of
standardisation needs was developed that underlies the work-in-progress roadmap. The
remainder of this section highlights the view on this framework developed by FGQT dur-
ing 2021.

A common way to categorise the range of QT is to think in terms of pillars, namely quan-
tum communication, quantum computing & simulation and quantum metrology, sensing
& enhanced imaging. This is, however, an oversimplification due to many matrix-like con-
nections as we discuss below.

Indeed, this is common for all QT underlying hardware or “enabling technology” that fa-
cilitates the design and prospective manufacturing in the QT pillars/domains mentioned
above. Accordingly, the tools, as for instance software, used for controlling quantum states
are typically universal. Combining elements from enabling technologies and tools facili-
tates the assembly of subsystems, which can be combined to create QT platforms, systems
and higher-level composite systems or infrastructures. These various technological levels
then give rise to societally relevant applications to be grouped in general use cases.

We propose to consider these horizontal layers common to several or all fields of QT,
representing different levels of technological complexity and proximity to applications and
use cases jointly with the traditional pillars. Naturally the latter are still highly relevant, but
their connections to each individual horizontal layer, representing a “matrix structure”,
need to be included. In Fig. 6, we illustrate this idea of a hierarchy or matrix of QT with
the architecture of a temple. In this structure, standardisation needs can naturally be iden-
tified by connections between the different horizontal and vertical layers. For instance,
interoperability between the different layers requires well defined interfaces. This idea is
further reflected in Fig. 7, where we explicitly show some connections, which are natural
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Figure 6 Quantum technology “temple” structure (Source: [32])

points of identification of standardisation needs. Working in this picture that includes all
fields of QT requires a group of experts with the corresponding breadth of expertise. We
note that these connections strongly depend on the development of QT components and
might not be obvious to identify, but the matrix structure helps to guide the development.
Furthermore, the nature of the standardization need might also depend on the layers in
Fig. 7. For instance, whereas in the “enabling technology” layer, specifying characteristic
properties (for example, material properties like NV center purity or density; or heating
rate of an ion trap, or noise figure of a TWP amplifier) might be typical, in the “platform”
layer a performance characteristic might play a significant role, as for instance, sensitivity
of a sensing device.

There is currently a multitude of standardisation activities worldwide in quantum tech-
nology and some but not all sub-areas. In many cases, these activities are constrained to a
certain sub-field and, correspondingly, to a specialised expertise. While this has the advan-
tage of providing a relatively straight-forward means to arrive at specific standardisation
actions, the larger picture of QT as sketched in this document cannot be addressed. The
underlying matrix structure as discussed above cannot easily be represented. In particu-
lar, standardisation needs common to several of the sub-fields might be addressed in an
incompatible way, potentially leading to roadblocks later on. Consider a component from
the “enabling technologies” layer that is used in two QT domains/pillars. For example, a
certain material might require standardized parameters to qualify for a quantum sensing
application (could be a NV-center). The same material could be used for a quantum com-
puting application, however, the relevant parameters are not necessarily identical. Another
example could be a control software, or a device (laser) for manipulating a quantum state.
In all those cases, one common standardized set of parameters (of course, with values
ranges corresponding to the application at hand) constitutes a sufficient and complete de-
scription. At the same time an incoherent, incompatible or incomplete description, valid
for one application but not for the other, is prevented. In the worst case, different and
specialized standards are developed specifically and independently for each application
and domain which might limit the usefulness and thus create a roadblock for effective
standardization.
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Figure 7 Connections between different technology levels (Source: [32])

4 Organisations perspectives
4.1 General
Organisations may have many reasons why to contribute to standardisation. Standardis-
ation is a good place for networking with other organisations that have similar interests.
Academic and research organisations may use standardisation to showcase their technolo-
gies and competence. Organisations that purchase technologies may use standardisation
to coordinate use cases and requirements, making sure that upcoming products address
their market needs, and less need for expensive proprietary solutions and their associated
vendor lock-in risk. Service providers may use standardisation to coordinate with their
suppliers, using the regulated SDO environment to assure fair competition. Suppliers of
technologies may coordinate with competitors on non-competitive aspects of their prod-
uct, to reduce market fragmentation and achieve critical mass for new product categories.
Regulators may contribute to standardisation, to ensure that regulatory requirements can
be technologically met. Other organisations may have other reasons, which include con-
sultancy and patent licensing.

Section 4.2 provides some statistics on FGQT and its delegates. Section 4.3 summarises
the rationale of the co-authors and their organisations to actively contribute to FGQT.
Appendix B provides more detailed insights from these organisations, why they have been
contributing to FGQT, and what they would like to achieve.

4.2 FGQT statistics
When FGQT kick-off mid-2020, the delegates were asked about their affiliation from
which they participate in FGQT. More than 50% of the delegates had an academic affilia-
tion, 30% industry, and 11% standards, see Fig. 8. This highlights the early stage that QT
standardisation is still at, as standardisation for mature markets is dominated by delegates
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Figure 8 Background of FGQT delegates (mid 2020)

Figure 9 FGQT interest from the various European countries (mid 2020)

with an industrial affiliation, contributing to standards with a specific product or service
interest.

Most European countries are represented in FGQT, with some dominance of Germany,
Italy, UK, Switzerland and Netherlands, See Fig. 9.

Mid-2022, the FGQT member list counts over 110 delegates. FGQT has had 27 meet-
ings to this point, mostly via video and two physical meetings. There have been over 250
contributions to the FGQT roadmap and use-cases deliverables.

4.3 Rationale of FGQT delegates
Figure 10 summarises the main area of contribution of the most active FGQT contributors,
the co-authors of this article. Appendix B provides more detailed about each. Note that
the organisations labelled as “academic/research” each contribute to one or more of the
areas quantum computing, quantum communication and/or quantum metrology.
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Figure 10 Active FGQT contributors (mid-2022)

5 Conclusion: work in progress
This review article makes clear that standardisation for quantum technologies is still at
a very early stage. Most quantum technologies still have low technology readiness levels.
Nevertheless, supply chains are already emerging for some quantum technologies. For ex-
ample, research infrastructures for quantum computing are quite capital intensive, and
standardisation may help rationalise and speed up this research. Commercial products
are also becoming available in quantum sensing, metrology and imaging, where standard-
isation may help structuring and growing the market. Published standards on quantum
key distribution are already available. On the other hand, entanglement-based intercon-
nection between quantum computers only exists as a concept.

More analyses are needed to determine “standardisation readiness” of the different
quantum technologies, and when the market is expected to be ready for formal SDO
development of technical guidelines (best practises), technical reports (use cases, re-
quirements), and technical specifications (interoperability). For this purpose, the CEN-
CENELEC FGQT has developed a roadmap for standardisation relevant to quantum tech-
nologies. Its work includes coordination with other SDOs and industry forums, and actual
standardisation work will be spun off from this in CEN-CENELEC JTC22 on Quantum
Technologies.

Appendix A: Related work
A.1 General
This Appendix provides further details about relevant quantum-technologies-related
standardisation activities for Sect. 2.

A.2 ETSI: quantum key distribution
The ETSI Industry Specification Group on Quantum Key Distribution (ISG-QKD [33])
was the first forum aiming at standardisation of quantum communication technologies.
It was created in 2008 by a group of QKD manufacturers, telecommunications providers,
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universities and research institutions, mostly from Europe. Since then the group has grown
with the incorporation of new members. Today it has representatives from the main actors
in QKD in Europe and also from the USA, South Korea and Japan.

ISG-QKD has produced well over 20 documents. Although several of them (e.g. Vocab-
ulary Group Specification GS QKD 002 [34], Use Cases GS QKD 007 [35]) had a general
scope, the group has concentrated more on specific technical aspects than on framework
documents. To some extent, this reflected the interest of its members, who are more con-
cerned with the necessity to have standards supporting the creation of QKD products
than with general paradigms of Quantum Technology. It also reflects the fact that when
the ISG-QKD started, the technology was less mature and many technical aspects had to
be covered before dealing with broader views. As such, fundamental interfaces, like those
needed to extract a key from a QKD device (GS QKD 004 [36] and GS QKD 014 [37]) or
to control devices (GS QKD 015 [38]) have been published. Fundamental aspects of QKD
Security such as “QKD security implementation white paper” [39], GS QKD 005 [40], GS
QKD 008 [41] have been addressed. A further field of interest has been the characteriza-
tions of QKD components or security proofs and specifications have also been addressed
(GS QKD 003 [42], GS QKD 011 [43]). At present a number of the mentioned documents
are being updated. Areas of intensive work are related to security certification of QKD
(Work on Common Criteria Protection Profile in collaboration with BSI Germany) and
the analysis of existing approaches on standardisation of QKD-Networks.

The current work continues with the definition of other interfaces (e.g. network orches-
tration GS QKD 018, and authentication GS QKD 019), that will be needed to create larger
networks, and with the important task of security certification, where an ISO/EN 15408
“Common Criteria” Protection Profile [44] for a QKD link is being finished (GS QKD 016).
Although this is likely the most advanced effort of any SDO towards QKD security certifi-
cation, it is only the first step within the Common Criteria scheme, albeit a much needed
one to have QKD fully accepted as a high security technology in a broad market.

A.3 ITU-T: quantum information technology for networks
ITU’s work has been concentrated mainly in the area of quantum communication and
more generally has been limited to implications of quantum technologies on communi-
cation and communication networks. The work on QKD networks and security aspects
of the latter is led by ITU-T Study Group 13 (Future networks and cloud [45]) and ITU-T
Study Group 17 (“SG17 Security” [46]). Some work on quantum random number gen-
eration has also been carried out in SG17. The centrepiece has been the outline of ITU
standards for QKD networks, including provision of foundational concepts (ITU Y.3800
[47]), address functional requirements (ITU Y.3801 [48]), architecture (ITU Y.3802 [49]),
key management (ITU Y.3803 [50]), and control and management (ITU Y.3804 [51]). ITU
standards also provide a security framework for QKD networks (ITU X.1710 [52]), key
combination methods (ITU X.1714 [53]), and the architecture of a quantum noise ran-
dom number generator (ITU X.1702 [54]).

These ITU standards for QKD networks aim at enabling the integration of QKD tech-
nology into large-scale ICT networks and provision of the security of the latter.

The ITU-T Focus Group on Quantum Information Technology for Networks (FG-
QIT4N) [55] studied the evolution of quantum information technologies in view of their
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foreseen applications in ICT networks. The group was conducting exploratory ‘pre-
standardisation’ studies to identify emerging standardisation demands and anticipate de-
mands to arise in future.

The FG-QIT4N was established in September 2019 to provide a collaborative platform
for interested stakeholders—such as researchers, engineers, practitioners, entrepreneurs
and policy makers—to share knowledge, best practices and lessons learned to take full
advantage of the ability and potential of QIT in networks. Its main objectives were:

• to study the evolution and applications of QIT for networks;
• to focus on terminology and use cases for QIT for networks;
• to provide necessary technical background information and collaborative conditions

to effectively support QIN-related standardisation work in ITU-T Study Groups;
• to provide an open cooperation platform with ITU-T Study Groups and other SDOs.
The Focus Group had been organised as follows: two main research groups—one ded-

icated to Quantum Key Distribution Networks (QKDN), one dedicated to Quantum In-
formation Networks (QIN) that are beyond QKDN—and a management group The term
of the FGQIT4N expired in December 2021 and resulted in 9 deliverables/reports [56].
The management group continues to work on a summary of the outcomes.

A.4 ISO/IEC JTC1: quantum technologies standardisation
The ISO and IEC in their Joint Technical Committee JTC1 have quantum technologies
standardisation activities in two working groups (WG): WG14 on Quantum Computing,
and Sub-Committee SC27 WG3 for security certification of QKD systems.

Working Group 14 on Quantum Computing [57] was established with the following
objectives: to serve as a focus of and proponent for JTC1’s standardisation program on
Quantum Computing; to identify gaps and opportunities in Quantum Computing stan-
dardisation; to develop and maintain a list of existing Quantum Computing standards pro-
duced and standards development projects underway in ISO/TCs, IEC/TCs and JTC1.
Another objective is to develop further deliverables in the area of Quantum Computing.
As a systems integration entity, it maintains relationships with other ISO and IEC tech-
nical committees and with other organisations that are involved in Quantum Computing
standardisation.

The first work item of WG14 is ISO/IEC-4879 [58] which is to develop a standard for
terminology and vocabulary for quantum computing. Work started in 2020 and the com-
mittee draft is expected to be ready during the first half of 2022. A full standard should
be ready towards the end of 2022. When ready, this will be the first standard specifically
developed for quantum computing by a standards development organisation.

SC27 WG3 [59] is the working group that develops and maintains the ISO/EN 15408
“Common Criteria for Information Technology Security Evaluation” [60] and has two
standards for the security evaluation and certification of QKD systems in a quite advanced
“Committee Draft” stage (planned publication still in 2022): “ISO/IEC 23837-1 Informa-
tion security—Security requirements, test and evaluation methods for quantum key dis-
tribution” Part 1 “Requirements” (containing predefined security functional requirements
for use in QKD PPs) and Part 2 “Test and evaluation methods” [61].

A.5 IEEE: emerging quantum information market
The U.S. Quantum Economic Development Consortium (QED-C) and international
counterparts have expressed interest to IEEE in developing standards appropriate for the
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emerging quantum information market [62]. According to IEEE, quantum information
standards are likely to evolve over time from informal efforts to formal specifications [63].
A formal, international quantum standard starts when companies or individuals working
in an area approach IEEE with a proposal called a Project Authorization Request (PAR).
Currently, there are four active quantum standards projects, which are briefly described
below.

• P1913—This standard defines an application-layer protocol denoted as
Software-Defined Quantum Communication (SDQC) that communicates over
TCP/IP and enables configuration of quantum endpoints in a communication
network to dynamically create, modify, or remove quantum protocols or applications.
Moreover, SDQC includes a set of commands that control the transmission, reception,
and operation (i.e., preparation, measurement, and readout) of quantum states. [64]

• P7130—This standard is related to specific terminology for quantum technologies,
establishing definitions necessary to facilitate clarity and understanding to enable
interoperability and compatibility. [65]

• P7131—This standard covers quantum computing performance metrics, with the
objective to standardise performance benchmarking of quantum computing hardware
and software. The considered metrics and performance tests enable the evaluation of
quantum computers standalone or by comparison against quantum and classical
computers. [66]

• P3120—This standard defines technical architectures for quantum computers,
including hardware components and low-level software (e.g., quantum error
correction). [67]

A.6 IRTF: quantum Internet research
The Internet Research Task Force (IRTF) has hosted the Quantum Internet Research
Group (QIRG) [68] since the IETF 101 meeting in March 2018. The QIRG has no official
membership and participation is open to everybody. The Research Group communicates
primarily through its mailing list which can be freely subscribed and posted to [69, 70].
The entire mailing list archive is publicly available online [71]. The QIRG also holds two
or three meetings per year, virtually or in-person, usually at the IETF meetings.

The scope of the QIRG’s work is defined in its charter [68]. A key goal of the QIRG is
the development of an architectural framework delineating network node roles and defi-
nitions that will serve as the first step toward a quantum network architecture. However,
it is important to note that the QIRG focuses on fully entanglement-based quantum net-
works. QKD and trusted repeater networks are also often discussed, but usually in the
context of being a stepping stone towards such a full quantum internet.

The QIRG, just like all the other IRTF Research Groups, does not work on standards.
It is instead focused on developing research collaborations and teamwork in exploring
research issues related to the Internet. Nevertheless, the Research Group does also work
on producing technical documents on quantum networks [71]. Currently, it is working
on two Internet Drafts which the group aims to publish as informational RFCs (i.e. not
standards specifications):

• Architectural Principles for a Quantum Internet [72],
• Application Scenarios for the Quantum Internet [73].
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Since quantum networks are so different when compared to classical networking, the
QIRG is also focused on educating the classical networking community on this new sub-
ject. In addition to discussions on the mailing list, the QIRG also hosts seminars with
speakers from both industry and academia. So far three such seminars have taken place:

• “Practical Quantum Networking at Room Temperature” by Mehdi Namazi (Qunnect
Inc.) [74],

• “Genuine and Optimized Entanglement-Based Quantum Networks” by Wolfgang Dür
(University of Innsbruck) [75],

• “Building Quantum Networks at the Local-Area Scale” by Marc Kaplan (VeriQloud)
[76].

A.7 EURAMET EMN-Q: quantum metrology coordination
A group of European National Metrology Institutes (NMIs) have recently created a Euro-
pean Metrology Network for Quantum Technologies (EMN-Q) [15] under the auspices
of EURAMET [77] to tackle this technological paradigm shift. Large companies, as well
as start-ups, have started to develop and engineer quantum devices or begun to integrate
them into their products: the commercial success of QT, together with progress in re-
search and development, relies on certification and reliability built upon internationally
agreed standards and metrological traceability.

Therefore, the objective of the EMN-Q is to coordinate the activities of the European
NMIs to ensure their efficient support for European competitiveness in quantum tech-
nologies. A special focus of the EMN-Q will be to develop new calibration and measure-
ment capabilities and dedicated services to serve the rapidly-growing needs of industry
and research institutions in this field.

Industry, governmental agencies, academic sectors or any other type of stakeholder are
welcome to contact the EMN-Q and discuss their metrology needs. These can relate not
only to quantum characteristics of quantum devices, but also to metrology of key enabling
technologies, metrology that can improve the supply chain of industrial quantum devices
or other industrial needs connected with quantum technologies.

The commitment of the EMN-Q is to become the unique contact point to stakeholders
interested in metrology for quantum technologies by:

• contributing to standardisation & certification of quantum technologies;
• promoting the take-up of metrology in the development of these technologies;
• supporting industrial needs in synergy with the technological objectives of the EC

Quantum Flagship and national quantum technology programs;
• promoting the use of quantum measurement techniques where advantageous for

“classical” technical areas.
The EMN-Q is developing Roadmaps and a Strategic Research Agenda to identify prior-

ities for research by Europe’s national metrology institutes and designated institutes and
to identify collaboration partners for such research.

The European Metrology Network (EMN) for Quantum Technologies will support the
integration of measurement science with quantum technologies in three sections: Quan-
tum Clocks and Atomic Sensors, Quantum Electronics and Quantum Photonics [23].

A.8 QuIC: industrial coordination for standardisation
The European Quantum Industry Consortium (QuIC [78]) is a European not-for-profit
business association aiming to build a strong, vibrant ecosystem between business actors
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and leading research and technology organisations in the Quantum Technology domain.
QuIC believes that only a strong and unified quantum technology community in Europe
will be able to succeed in the current global race to become the center of the next techno-
logical revolution. QuIC organises the work toward its objectives in Working Groups.

As QuIC is the voice of quantum industry in Europe, the Standards Working Group aims
to become the unified voice of quantum industry in Europe on standardization issues.
It will provide a single point of contact to voice the needs for standardization from the
industry to decision makers, politics, and standardization bodies.

The Standards Working Group plans the following actions.
• Foster communication between the QuIC members and the Standardisation bodies

and facilitate the creation and interchange of information. Within this realm, the
Standards Working Group will organise communication events with SDOs and other
relevant Groups to build awareness and promote standardisation activities for
Quantum technologies among the members of the QuIC;

• Set up a methodology and the tools for eliciting the standardisation needs coming
from the Industrial members of the QuIC and communicate these needs with the
SDOs.

• Develop a living document “State-of-the-art on standardisation activities in Quantum
Technologies”. The document will present among the others the updated information
on the activities of SDOs and the upcoming standards;

• Create twinning activities with the other Working Groups of QuIC
• Support QuIC in running projects such as QUCATS-CSA.
The QuIC Standardisation Working Group will develop standards itself, since its role

will be supportive of SDOs activities.

A.9 StandICT.eu: EU funding for ICT standardisation
The StandICT.eu 2023 project is a Coordination and Support Action of the EU Horizon
2020 framework programme. It started in Sept. 2020 and has as its “(...) central goal to
ensure a neutral, reputable, pragmatic and fair approach to support European and Asso-
ciated states presence in the international ICT standardisation scene.” [79] To this goal,
the project issues ten open calls with funding opportunities for European experts in sev-
eral strategic fields, including the field of Quantum Technologies. Currently, the Stan-
dICT project supports an editor of the FGQT’s Quantum Technologies Standardisation
Roadmap.

Appendix B: Organisations perspectives
B.1 General
This Appendix provides further insights from the co-author’s organisations, why they have
been contributing to FGQT, and what they would like to achieve. A summary overview is
provided in Sect. 4.

B.2 TNO: quantum technologies & standards
TNO, The Netherlands Organisation for Applied Scientific Research [80], is the largest
Dutch national institute for applied research. Its research portfolio includes a wide spec-
trum of quantum technologies [81], as well as their applications and quantum-safe cryp-
tography. As the mission of TNO is to bridge the innovation gap between technology and
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market, TNO has always invested heavily in standardisation activities as a great place to
develop and coordinate technology knowledge, to be applied in joint projects with Euro-
pean partners, Dutch industry and government.

TNO is one of the co-founders of FGQT and provides its first chair position, partially
financed by the European funding from the QFlag-CSA [82], QUCATS-CSA [83], Dutch
funding from QDNL [84], as well as own TNO-internal investment. TNO was also one
of the co-founders of the Dutch NEN-FGQT “mirror group” where Dutch FGQT contri-
butions are coordinated. Specific quantum-technology standardisation areas for TNO are
the concept of quantum cloud computing, and the coordination with subsystem vendors
for cryogenic quantum computers for the Delft QuTech collaboration.

B.3 PTB: quantum metrology
The Physikalisch-Technische Bundesanstalt (PTB) [85] is the National Metrology Insti-
tute of Germany and is responsible for the realisation and dissemination of the SI units,
as well as basic metrology research for society and for industry. Pushing precision metrol-
ogy to its limits usually requires quantum technology. PTB offers extensive resources and
infrastructure for a large scope of precision measurements.

In 2019 the PTB founded the Quantum Technology Competence Centre (QTZ), which
supports industrial developments in the field of quantum technologies. The QTZ oper-
ates dedicated user-facilities for the testing of emerging quantum technologies, including,
for instance, quantum electronic devices, optical components and ion traps employed for
atomic clocks and quantum computing. PTB is developing independent characterisation
capabilities for QT components, ensuring quality and reliability. This goes hand-in-hand
with pushing forward standardisation of QT. PTB provides the vice-chair of FGQT and
member of the European Metrology Network for Quantum Technologies (EMN-Q).

B.4 DIN: standards for Germany
DIN, the German Institute for Standardisation [86], is the independent platform for stan-
dardisation in Germany and worldwide. It was founded in 1917 and celebrated its 100 year
anniversary in 2017. As a partner for industry, research and society as a whole, DIN plays a
major role in helping innovations to reach the market in areas such as the digital economy
or society, often within the framework of research projects.

More than 36,000 experts from industry, research, consumer protection and the public
sector bring their expertise to work on standardisation projects managed by DIN. The re-
sult of these efforts are market-oriented standards and specifications that promote global
trade, and encourage rationalisation, quality assurance, and the protection of society and
the environment, as well as improving security and communication.

DIN represents German interests in international organisations such as CEN, the Euro-
pean standards body, and ISO, the International Standards Organization. Today, roughly
85 % of all national standards projects are European or international in origin. Interna-
tional standards provide a common language for the technical world, supporting global
trade.

Particularly when it comes to innovative topics, such as quantum technologies, DIN tries
to identify standardisation potential at an early stage and helps the experts to develop the
necessary standards. In the field of quantum technologies, DIN holds the secretariat of the
CEN-CENELEC Focus Group on Quantum Technologies (FGQT), the recently established



van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 32 of 41

CEN-CENELEC JTC 22 Quantum Technologies and the ISO/IEC JTC 1/SC 27 Information
security, cybersecurity and privacy protection.

B.5 Huawei Technologies Duesseldorf GmbH: advanced CV-QKD prototypes
The Quantum Communication group at the Munich Research Center (MRC) of Huawei
Technologies Duesseldorf GmbH [87] was initiated in the fall of 2015. It is part of the
Optical research in MRC. The goal from the very beginning has been to develop practical
Continuous Variables (CV) QKD technology. The applied research team has changed over
time but has comprised experts in theory and design of QKD, signal processing, as well as
software and FPGA design and development.

The goal has never been to implement laboratory systems that are suited for setting
specific performance records but rather wholesale prototypes suited for autonomous field
operation that are simultaneously software-defined and adapted to seamless steering and
control. This program has been successful and already in the spring of 2018 three pro-
totype devices (one sender and two receivers) has been prepared and shipped together
with OSN 1800 Huawei devices equipped with encryption cards for an initial test at the
premises of Telefonica in Madrid (a dedicated network but connecting real life central of-
fices with no direct access of the team to the devices). A revolutionary innovation has been
the ability of the sender to directionally switch to one of the two receivers on demand.

The team participates in the EC Quantum Flagship project CiViQ and later became a
member of the Industry Board of the European Open QKD project. In this capacity the
team delivered in the beginning of 2021 10 QKD devices to the OpenQKD Test Bed in
Madrid. This is a new generation that features both directional and wavelength switching
on demand, as well as dual optical polarisation and rapid FPGA-powered pre-processing,
The 5 senders and 5 receivers are situated in 7 locations across two operator networks in
Madrid, establish up to 25 links over significant distances and interoperate with optical
equipment, encryptors and QKD devices of other providers.

B.6 Delft Circuits: hardware for quantum engineers
Delft Circuits (founded in 2017, Delft, Netherlands [88]) is a rapidly growing company,
with a focus on creating hardware solutions for dense i/o chains in quantum computers.
Creating the control highway for quantum computers with 1000 qubits or more requires
another approach than just trying to put thousands of coaxial cables in a single cryogenic
fridge, with many interconnections at each thermal stage.

The present showpiece is a scalable cryogenic multi-channel i/o solution called Cri/
oFlex®, suitable from DC to microwave frequencies. This solution combines low-thermal
conductance with excellent thermalisation capabilities and (super)conducting circuits on
flexible substrates. The flex cabling has a very small overall footprint due to the integra-
tion of various components in a monolithic product (from top to bottom), with many I/O
channels in a row, and combined with a vacuum feed-through and thermalisation blocks.
Examples of these components are superconducting sections, IR-filters, low-pass filters,
attenuators and couplers, all up to microwave frequencies. By combining various compo-
nents on flex, Cri/oFlex® is suitable for different quantum computing architectures.

These products gain from standardisation. On one hand, for instance, to harmonise the
connectors with other modules, or to set clear and realistic signal, crosstalk, noise, ther-
mal, vacuum, footprint, mechanical and functional requirements. On the other hand, we
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need to learn requirements from customers so that we can create the products they need
and in high volumes as well. Being active in standardisation offers both.

B.7 INRIM: quantum metrology
INRIM [89] is a public research centre and is Italy’s national metrology institute (NMI).
INRIM realises, maintains, and develops the national reference standards of the measure-
ment units of the International System (SI), in order to ensure measurements that are
reliable and comparable on both a national and international scale.

The INRIM Quantum Metrology and Nanotechnologies (QN) Division handles the mu-
tual application between metrology and topics such as atomic and molecular physics,
photonics, quantum electronics, quantum devices and quantum measurements, quantum
sensing and enhanced imaging, and actively participates in the Quantum Technologies
standardisation initiatives at National, European and International levels, coordinating
among the others also EMPIR normative projects focused on QT [90]. INRIM imple-
ments and coordinates the Italian quantum fibre-optic backbone infrastructure [91], with
the goal to connect to the European Quantum Communication Infrastructure (EuroQCI)
which should result from the EU Quantum Flagship.

INRIM is one of the co-founders of the European Metrology Network for Quantum
Technologies (EMN-Q) [15, 23], it is member of the CEN CENELEC FGQT since its foun-
dations, and co-founder member of the Italian UNI-FGQT “mirror group” where Italian
FGQT contributions are coordinated.

B.8 CINI: software research for quantum computing
CINI [92] is the main point of reference for the national academic research activities in the
fields of Computer Science and Information Technology in Italy. The Consortium involves
1300+ professors of both Computer Science and Computer Engineering, belonging to 39
public universities. In very strict cooperation with the national scientific communities, the
Consortium promotes and coordinates scientific activities of research and technological
transfer, both basic and applicative, in several fields of Computer Science and Computer
Engineering. CINI supports:

• Joint research activities with Universities, Institutes of higher education, research
institutions, industries, and Public Administrations.

• The access and the participation in projects and scientific activities of research and
technology transfer.

• The creation and development of national research Labs.
• Customised higher education tracks.
Regarding quantum technologies, within CINI’s HPC-KTT Laboratory [93], a focus

group on quantum computing has been recently established. CINI is also very interested
in the standardisation aspects of quantum software. For this reason, a CINI delegate par-
ticipates in FGQT from its very beginning.

B.9 Quantumalta: quantum communication
The Quantumalta [94] group within the University of Malta has researchers working on
Quantum Communication, mainly QKD as well as Quantum Computing. The QKD team
is working on contributing to the standardisation of the software side of QKD compo-
nents. The Quantumalta group is also active on the physical side of Quantum communi-
cation where a quantum link between Malta and Sicily [95] over the telecommunications
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network has been established which has been subsequently extended to a round-trip be-
tween Malta and Sicily [96].

B.10 Italtel: QKD for secure communications
Italtel [97] is a multinational ICT company that combines the traditional business in net-
works and communications services with the ability to innovate and develop solutions and
applications for digital transformation. Italtel designs and offers end-to-end solutions that
address key issues for productivity and business success as well as for the evolution and
simplification of network infrastructures. System Design and System Integration are core
competencies of Italtel. System Design for us means close interaction with our customer
for clearly understanding their needs and goals, tuning to a common language, bring-
ing to the design of the global system and its specific components. Moreover, Italtel has
strong System Integration competencies including software development of the compo-
nents needed for the actual integration of the overall end-to-end system.

Italtel’s commitment in quantum technologies is in the design and development of future
networks exploiting quantum capabilities for better communication and services.

We recognize Quantum Key Distribution (QKD) as the enabling technology for secure
communications. Our work is to design geographical networks for the distribution of un-
conditionally secure encryption keys using QKD as the enabling technology and to inte-
grate it into business applications.

Standardisation plays a strategic role because in a production network we shall inte-
grate and orchestrate devices made by different vendors with different performance levels
and set of features. Clear feature, functional and performance description of each node
is paramount important for creating an effectively working network. For us having good
standards is definitely a must for moving quantum technologies out of the labs.

B.11 National Physical Laboratory: quantum metrology and standards
coordination

The National Physical Laboratory (NPL) [98] is the UK’s National Measurement Insti-
tute and a world-leading centre of excellence in developing and applying the most accu-
rate measurement standards, science and technology available. For more than a century,
NPL has developed and maintained the nation’s primary measurement standards. These
standards underpin an infrastructure of traceability throughout the UK and the world.
NPL employs over 700 scientists, based in south-west London, in a laboratory, which is
amongst the world’s most extensive and sophisticated measurement science buildings.
NPL’s work on standards for quantum technologies is done by the Quantum Metrology
Institute, which provides measurement standards for the emerging quantum technology
industry. The QMI brings together NPL’s leading-edge quantum science and metrology
research and provides the expertise and facilities needed to test, validate and commer-
cialise new quantum research and technologies.

The QMI is heavily focused on developing the metrology needed for the emerging quan-
tum industry. This includes developing quantitative measurement methods for future
measurements services in areas such as computing, communication, sensing and timing
as well as establishing capabilities for certification/validation of quantum technology and
devices. The work within the QMI is done in collaboration with academia and industry
as well as with international partners; and also includes pre-normative research for future
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international standards which makes the work done within the FGQT highly relevant. The
QMI works closely with the British Standards Institute (BSI) and its researches represents
the UK’s interests in quantum technology and serve as experts within a number of stan-
dards developing organisations (SDOs) such as ISO, ETSI an CEN-CENELEC, including
the FGQT.

B.12 Universidad Politécnica de Madrid: quantum networking
Universidad Politécnica de Madrid (UPM [99]) is the largest Spanish technological uni-
versity. With two recognitions as Campus of International Excellence, it is outstanding in
its research activity together with its training of highly-qualified professionals. It is among
the Spanish universities with the greatest research activity and first in the capture of ex-
ternal resources in a competitive regime. UPM signs around 600 contracts with private
businesses annually, due to its traditional and close relationship with the industrial and
business sectors in all Engineering fields.

Due to its industrial and tech transfer activities, UPM has been involved in QKD stan-
dardisation since the very beginning. It was a founding member of the ETSI Industry Spec-
ification Group on QKD in 2008, where it chaired (rapporteur) four approved specifica-
tions, mostly about quantum network interfaces. It has also participated in the ITU-T
activities, both in the Study Group 13 on future networks and in the Focus Group for
Quantum Information Technologies for Networks (FGQIT4N). Currently it also partic-
ipates in the CEN-CENELEC FGQT and is part of the Quantum activities at UNE (the
official Spanish Standardisation body). UPM also coordinates the National program on
Quantum Communications.

B.13 Quix Quantum: photonic quantum computing
QuiX Quantum (Enschede, Netherlands) [100] is a quantum computing company based
in Enschede, the Netherlands. The goal of QuiX Quantum is to build a photonic quantum
computer. The core product is a quantum photonic processor (QPP), which is currently
available with 20 modes, i.e. the world’s largest QPP [101]. QuiX Quantum processors are
based on Silicon Nitride TriPleX™ waveguide technology, which provides our systems with
very low photon loss.

QuiX Quantum is part of the expert group on standardisation of NEN (Dutch stan-
dardisation institute), through which we are contributing to the FGQT (focus group on
quantum technology) of CEN-CENELEC. The roadmap that is being developed by the
FGQT sets out a path to standardisation of quantum technologies, where QuiX Quantum
contributed frequently on the topic of photonic quantum computing. The existence of
the roadmap is crucial for good standardisation, so that standards are created at the right
moment to enable technological progress, but gives no limitations to progress. The impor-
tance of standardisation is very high for QuiX Quantum. Standardisation leads to better
connectivity and compatibility of the software and hardware interfaces of the products.

B.14 Orange Quantum Systems: characterising quantum devices
Orange Quantum Systems (Delft, Netherlands) [102] is a systems integrator that is tack-
ling the calibration & characterization bottleneck of (solid-state) quantum processing
units. Our products range from customised experiment control software to full-stack
quantum characterization systems. Orange Quantum Systems is part of Quantum Delft’s
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ecosystem for innovation of quantum technologies. There are two main areas within quan-
tum technologies where standardisation would greatly benefit our organisation.

As a company focusing on providing the tools to rapidly and reliably characterise quan-
tum devices, we require commonly adopted (standardised) characterization protocols that
provide clearly defined, relevant, and explainable metrics. For this purpose, we rely on
advanced characterization protocols such as randomised benchmarking and gate set to-
mography. However, these techniques have been developed for ideal two-level systems
(qubits). The assumptions that are required for these protocols are typically violated in
physical implementations of quantum systems. Because of this, it requires expert knowl-
edge of both the underlying physics as well as of the protocols to determine what protocol
to use, if a protocol needs a custom modification, and to be able to interpret the reported
metrics.

As a systems integrator, we need to integrate different components from different man-
ufacturers in our products. Currently the interfaces between these components are not
well defined, providing a clear opportunity for standardisation efforts.

B.15 CNR: quantum technologies
The Italian National Research Council (CNR) [103] is the largest research institution in
Italy, funded in 1923. Within CNR, actively involved in the field of Quantum Technolo-
gies is the department of Physical Sciences and Technologies of Matter, which started a
national program for Quantum Science and Technologies, dedicated in particular to the
development of quantum co-processors based on atoms and photons. This will involve
integrated packaging systems and microelectronics components as well as the study and
characterisation of new nano-structured materials, and infrastructure for the fabrication
of semiconductor and superconductor devices, quantum measurements at cryogenic tem-
peratures, devices for the development of quantum computers and sensors, photonics and
optoelectronics.

B.16 NCSR Demokritos: quantum technologies
The National Centre of Scientific Research “Demokritos” (NCSRD [104]) is a self-
governing research organization under the supervision of the Greek Government (the
biggest research centre in applied sciences and engineering in Greece). A new Quantum
Institute in NCSRD has been established to promote excellence in quantum communica-
tions, quantum informatics and relevant technologies at a world-class level. It aspires to
become the Greek pole for the advancement of quantum communication and computing
and AI-powered quantum research and technology, offering in parallel an effective link
to private actors and a wider ecosystem of stakeholders in Greece and the world. NC-
SRD is participating in the Greek QCI network (HellasQCI) utilizing its mathematical
and modelling knowledge and technical expertise regarding QKD systems.

NCSRD’ Spin Off company Syndesis Ltd (Syndesis [105]) is leading the Standardization
Working Group and the National Chapter of QuIC for Greece. Syndesis Ltd is utilizing
quantum technologies to bring HealthCare industry into the Post-Quantum Era.

B.17 European Commission: valorising research results and requesting
harmonised standards

The European Union has a long tradition of excellence in quantum research. The EU has
entered in a phase to develop a solid industrial base to valorise research results. To meet
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this challenge, the EC launched in 2018 the Quantum Technologies Flagship [106] and the
European High Performance Computing Joint Undertaking (EuroHPC JU) [107]. These
initiatives have as main output to build state-of-the-art pilot quantum computers by 2023.
All 27 MS, with the Commission and with the support of the European Space Agency,
are aiming to develop a quantum communication infrastructure covering the whole EU
(EuroQCI) [108]. The Joint Research Centre (JRC) of the European Commission, CEN-
CENELEC in collaboration with Quantum Flagship launched in 2019 a Putting Science
Into Standards workshop on quantum technologies which led to the establishment of a
community of quantum experts interested in standardisation. In 2020, the Commission
supported the setting-up of the CEN-CENELEC Focus Group on Quantum Technologies
(FGQT), with the aim developing a European roadmap on standardisation on quantum
technologies. In addition, the Commission has proposed several standardisation activi-
ties in quantum research, as part of the 2023 annual EU work programme for European
standardisation in support of the EU policies on Quantum Technologies. The JRC [109]
is involved in studying trends and developments in quantum technology application areas
such as secure communications, computing, simulation, sensing and timing and internal
security. While quantum safe communication has a direct contribution to safety and secu-
rity, using quantum computing resources will also provide new opportunities and capacity
to the challenge of encryption within criminal investigations.

B.18 IDQ Europe: quantum communication technologies
IDQ Europe Gmbh was founded in Vienna in spring 2022 with a mission to develop
and supply QKD solutions for securing European critical infrastructures. It has active
joint research and development projects focusing on the creation of European QKD sup-
ply chains, including the development of advanced integrated optics and electronics for
smaller and less expensive QKD devices and components. The company also has an active
project for the practical ISO/EN 15408 “Common Criteria” security certification of a QKD
device of its partner company IDQ Geneva, and is a reseller of their QKD and QRNG prod-
ucts. IDQ Europe is active in several standardisation committees, like CEN/CENELEC’s
FGQT, ETSI ISG-QKD, ISO/IEC JTC1 SC27, as well as in the European Quantum Indus-
try Consortium QuIC, in order to support the generation and coordination of quantum
technologies standards.

Acknowledgements
Parts of the work were funded by European Union’s Horizon 2020 and Horizon Europe research and innovation program
under the projects QFlag-CSA (Grant No. 820350), QUCATS-CSA (Grant No. 101070193), OpenSuperQ project (Grant Nr.
820363), Qombs (Grant No. 820419), CiViQ (Grant No. 820466) and QUANGO (Grant No. 101004341). Part of the work was
funded by the projects EMPIR 19NRM06 MeTISQ, 20IND05 QADeT and 19NET02 Quantum—these projects received
funding from the EMPIR program co-financed by the Participating States and from the European Union Horizon 2020
research and innovation program. Part of the work was funded by four individual subgrants from Horizon Europe
StandICT.eu 2023 (Grant No. 951972). Part of the work was funded by the UK department for Business Energy and
Industrial Strategy (BEIS) through the UK National Quantum Technologies Programme. Part of the work was funded by a
grant from the Quantum Delta Netherlands Foundation.

Funding
Horizon 2020 QFlag-CSA, 820350. Horizon 2020 OpenSuperQ, 820363. Horizon 2020 Qombs, 820419. Horizon 2020 CiViQ,
820466. Horizon 2020 QUANGO, 101004341. EMPIR MeTISQ, 19NRM06. EMPIR QADeT, 20IND05. EMPIR Quantum,
19NET02. Horizon Europe StandICT.eu 2023, 951972. UK National Quantum Technologies Programme, UK department for
Business Energy and Industral Strategy (BEIS). Stichting Quantum Delta Netherlands, Groeifonds.

Abbreviations
CEN, European Committee for Standardization; CENELEC, European Electrotechnical Committee for Standardization; EC,
European Commission; EMN-Q, European Metrology Network for Quantum Technologies; ETSI, European



van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 38 of 41

Telecommunications Standards Institute; EURAMET, European Association of National Metrology Institutes; FG-QIT4N,
ITU-T Focus Group on Quantum Information Technology for Networks; FGQT, CEN-CENELEC Focus Group on Quantum
Technologies; GNSS, Global Navigation Satellite System; IEC, International Electrotechnical Commission; IEEE, Institute of
Electrical and Electronics Engineers; IETF, Internet Engineering Task Force; IRTF, Internet Research Task Force; ISG, ETSI
Industry Specification Group; ISO, International Organization for Standardization; ITU-T, International Telecommunication
Union—Telecommunications sector; JTC, Joint Technical Committee (ISO/IEC, CEN-CENELEC); LIDAR, Light Detection and
Ranging; NMI, European National Metrology Institutes; NSB, National Standardisation Body; NV, Nitrogen-Vacancy center;
PAR, Project Authorization Request; QED-C, U.S. Quantum Economic Development Consortium; QIN, Quantum
Information Networks; QIRG, Quantum Internet Research Group; QIT, Quantum Information Technology; QKD, Quantum
Key Distribution; QKDN, Quantum Key Distribution Networks; QMSI, Quantum Metrology & Sensing and quantum
enhanced Imaging; QT, Quantum Technology; QuIC, European Quantum Industry Consortium; RFC, Request for
Comments; SC, ISO/IEC Sub-Committee; SDO, Stands Developing Organisation; SDQC, Software-Defined Quantum
Communication; SG, ITU-T Study Group; SQL, Standard Quantum Limit; TCP/IP, Transmission Control Protocol/Internet
Protocol; TRL, Technology Readiness Level.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors consent for publication.

Competing interests
The authors declare no competing interests.

Author contributions
All authors contributed to the article.

Author details
1CEN-CENELEC FGQT, TNO, Anna van Buerenplein 1, 2595 DA, Den Haag, The Netherlands. 2CEN-CENELEC FGQT, PTB,
Bundesallee 100, 38116 Braunschweig, Germany. 3CEN-CENELEC FGQT, DIN, Berlin, Germany. 4CINI (Consorzio
Interuniversitario Nazionale per l’Informatica), University of Parma, Parma, Italy. 5Delft Circuits, Schieweg 15A, (entrance A,
Unit 17), 2627 AN Delft, The Netherlands. 6CNR-INO, LENS, Roma, Italy. 7Italtel, Milano, Italy. 8University of Malta, Msida,
Malta. 9INRIM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135 Torino, Italy. 10European
Commission, Brussels, Belgium. 11QuiX Quantum, Enschede, The Netherlands. 12QuTech/Delft University of Technology,
Delft, The Netherlands. 13IDQ Europe, Am Europlatz 2, 1120 Vienna, Austria. 14NPL, Teddington, United Kingdom. 15UPM,
Madrid, Spain. 16TNO, Delft, The Netherlands. 17NCSR Demokritos/Syndesis Ltd, Aghia Paraskevi, Greece. 18Department
of Physics, University of Bari, Bari, Italy. 19INFN (Istituto Nazionale di Fisica Nucleare), Bari, Italy. 20Huawei Technologies
Duesseldorf GmbH, Riesstrasse 25, 80992, Munich, Germany. 21Resolute Photonics, Eastleigh, United Kingdom. 22Orange
Quantum Systems, Vermeerstraat 19, 2612 XJ Delft, The Netherlands. 23Forschungszentrum Jülich GmbH., Jülich,
Germany.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 February 2022 Accepted: 8 November 2022

References
1. Blind K. Standardisation as a Catalyst for Innovation. Erasmus Research Institute of Management (ERIM). Erasmus

University and the Erasmus School of Economics (ESE). https://ideas.repec.org/p/ems/euriar/17558.html. 2009.
2. Standards developing organisations. https://www.hse.gov.uk/comah/sragtech/docspubstand.htm.
3. Jenet A, Trefzger C, Lewis AM, Taucer F, Van Den Berghe L, Tüchler A, Loeffler M, Nik S. Standards4Quantum: making

quantum technology ready for industry—putting science into standards. Luxembourg: EU Publications Office;
2020. https://doi.org/10.2760/882029. https://publications.jrc.ec.europa.eu/repository/handle/JRC118197.

4. Technology Readiness Level. https://en.wikipedia.org/wiki/Technology_readiness_level.
5. Website of the QFlag—Quantum Flagship Coordination and Support Action. funded by the European Commission.

Online (22.02.2022). https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship.
6. Quantum Flagship. Strategic Research Agenda.

https://qt.eu/app/uploads/2020/04/Strategic_Research-_Agenda_d_FINAL.pdf. April 2020.
7. CEN-CENELEC Focus Group on Quantum Technologies. FGQT.

https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/.
8. IEEE/Open Group 1003.1-2017. Standard for Information Technology—Portable Operating System Interface

(POSIX(TM)) Base Specifications, Issue 7. https://ieeexplore.ieee.org/document/8277153. 2017.
9. IBM. OpenQASM 3.x Live Specification. https://qiskit.github.io/openqasm/index.html. 2022.
10. Dahlberg A, et al. NetQASM—A low-level instruction set architecture for hybrid quantum-classical programs in a

quantum internet. https://arxiv.org/abs/2111.09823. 2021.

https://ideas.repec.org/p/ems/euriar/17558.html
https://www.hse.gov.uk/comah/sragtech/docspubstand.htm
https://doi.org/10.2760/882029
https://publications.jrc.ec.europa.eu/repository/handle/JRC118197
https://en.wikipedia.org/wiki/Technology_readiness_level
https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship
https://qt.eu/app/uploads/2020/04/Strategic_Research-_Agenda_d_FINAL.pdf
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/
https://ieeexplore.ieee.org/document/8277153
https://qiskit.github.io/openqasm/index.html
https://arxiv.org/abs/2111.09823


van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 39 of 41

11. Dowling JP, Milburn GJ. Quantum technology: the second quantum revolution. Philos Trans R Soc Lond A.
2003;361:1655–74. https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2003.1227.

12. Giovannetti V, Maccone L, Lloyd S. Quantum-enhanced measurements: beating the standard quantum limit.
Science. 2004;306(5700):1330–6. https://www.science.org/doi/10.1126/science.1104149.

13. Berchera IR, Degiovanni IP. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical
metrology. Metrologia. 2019;56:024001. https://iopscience.iop.org/article/10.1088/1681-7575/aaf7b2/pdf.

14. Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics. 2011;5:222–9.
https://doi.org/10.1038/nphoton.2011.35.

15. European Metrology Network for Quantum Technologies. www.euramet.org/quantum-technologies.
16. White Paper On Quantum Metrology & Sensing And Quantum Enhanced Imaging. ZEISS SYMPOSIUM 2018.

https://www.zeiss.com/content/dam/Corporate/innovation_and_technology/downloads/zeiss-symposium_
whitepaper_qms_qei.pdf.

17. Quantum Flagship. New Strategic Research Agenda on Quantum technologies. 2022.
https://digital-strategy.ec.europa.eu/en/news/new-strategic-research-agenda-quantum-technologies.

18. Acín A, et al. New J Phys. 2018;20:080201. https://iopscience.iop.org/article/10.1088/1367-2630/aad1ea.
19. Bureau International des Poids et Measures. The International System of Units (SI).

https://www.bipm.org/en/measurement-units.
20. Bureau International des Poids et Measures. BIPM Workshop: The Quantum Revolution in Metrology.

https://www.bipm.org/en/bipm-workshops/quantum-metrology.
21. QuantERA. Transnational co-funded Calls for Proposals. https://quantera.eu/quantera-funded-projects/.
22. European Quantum Flagship. Learn more about Quantum projects.

https://qt.eu/about-quantum-flagship/projects/.
23. Degiovanni IP, Gramegna M, Bize S, Sherer H, Chunilall CJ. EURAMET EMN-Q: the European metrology network for

quantum technologies. Meas Sens. 2021;18:100348.
https://www.sciencedirect.com/science/article/pii/S2665917421003111.

24. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE
international conference on computers, systems and signal processing. vol. 175. New York. 1984. p. 8.
https://arxiv.org/abs/2003.06557, https://doi.org/10.1016/j.tcs.2011.08.039.

25. Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys. 2002;74:145–95.
https://doi.org/10.1103/RevModPhys.74.145.

26. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key
distribution. Rev Mod Phys. 2009;81:1301–50. https://doi.org/10.1103/RevModPhys.

27. Peev M, et al. The SECOQC quantum key distribution network in Vienna. NJP. 2009;11:075001.
https://doi.org/10.1088/1367-2630/11/7/075001.

28. Martin V, et al. Quantum technologies in the telecommunications industry. EPJ Quantum Technol. 2021;8:19.
https://doi.org/10.1140/epjqt/s40507-021-00108-9.

29. Wehner S, Elkouss D, Hanson R. Quantum Internet: a vision for the road ahead. Science. 2018;362:6412.
https://www.science.org/doi/10.1126/science.aam9288.

30. Weder B, Barzen J, Leymann F, Zimmermann M. Hybrid quantum applications need two orchestrations in
superposition: a software architecture perspective. In: 2021 IEEE International Conference on Web Services (ICWS).
New York: IEEE; 2021. p. 1–13.
https://www.iaas.uni-stuttgart.de/publications/Weder2021_OrchestrationsInSuperposition.pdf.

31. OIDA. OIDA Quantum Photonics Roadmap: Every Photon Counts. Optica Ind Rep. 2020;3.
https://opg.optica.org/abstract.cfm?URI=OIDA-2020-3.

32. CEN-CENELEC FGQT Standardisation Roadmap for Quantum Technologies. Document N020, latest version via
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/.

33. ETSI. Industry specification group (ISG) on quantum key distribution for users (qkd).
https://www.etsi.org/committee/1430-qkd.

34. ETSI GS QKD 002. Quantum Key Distribution; Use Cases.
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/01.01.01_60/gs_qkd002v010101p.pdf. June 2010.

35. ETSI GR QKD 007. Quantum Key Distribution (QKD); Vocabulary.
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/007/01.01.01_60/gr_qkd007v010101p.pdf. December 2018.

36. ETSI GS QKD 004. Quantum Key Distribution (QKD); Application Interface.
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf. August 2020.

37. ETSI GS QKD 014. Quantum Key Distribution (QKD); Protocol and data format of REST-based key delivery API.
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf. February 2019.

38. ETSI GS QKD 015. Quantum Key Distribution (QKD); Control Interface for Software Defined Networks.
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/015/01.01.01_60/gs_QKD015v010101p.pdf. March 2021.

39. Lucamarini M, Shields A, Alléaume R, Chunnilall C, Degiovanni IP, Gramegna M, Hasekioglu A, Huttner B, Kumar R,
Lord A, Lütkenhaus N, Makarov V, Martin V, Mink A, Peev M, Sasaki M, Sinclair A, Spiller T, Ward M, White C, Yuan Z.
Implementation Security of Quantum Cryptography Introduction, challenges, solutions. ETSI White Paper No. 27,
ISBN No. 979-10-92620-21-4.
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp27_qkd_imp_sec_FINAL.pdf. July 2018.

40. ETSI GS QKD 005 Quantum Key Distribution (QKD); Security Proofs.
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/005/01.01.01_60/gs_qkd005v010101p.pdf. December 2010.

41. ETSI GS QKD 008. Quantum Key Distribution (QKD); QKD Module Security Specification.
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/008/01.01.01_60/gs_qkd008v010101p.pdf. December 2010.

42. ETSI GR QKD 003. Quantum Key Distribution (QKD); Components and Internal Interfaces.
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_qkd003v020101p.pdf. March 2018.

43. ETSI GS QKD 011. Quantum Key Distribution (QKD); Component characterization: characterizing optical
components for QKD systems.
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/011/01.01.01_60/gs_qkd011v010101p.pdf. May 2016.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2003.1227
https://www.science.org/doi/10.1126/science.1104149
https://iopscience.iop.org/article/10.1088/1681-7575/aaf7b2/pdf
https://doi.org/10.1038/nphoton.2011.35
http://www.euramet.org/quantum-technologies
https://www.zeiss.com/content/dam/Corporate/innovation_and_technology/downloads/zeiss-symposium_whitepaper_qms_qei.pdf
https://www.zeiss.com/content/dam/Corporate/innovation_and_technology/downloads/zeiss-symposium_whitepaper_qms_qei.pdf
https://digital-strategy.ec.europa.eu/en/news/new-strategic-research-agenda-quantum-technologies
https://iopscience.iop.org/article/10.1088/1367-2630/aad1ea
https://www.bipm.org/en/measurement-units
https://www.bipm.org/en/bipm-workshops/quantum-metrology
https://quantera.eu/quantera-funded-projects/
https://qt.eu/about-quantum-flagship/projects/
https://www.sciencedirect.com/science/article/pii/S2665917421003111
https://arxiv.org/abs/2003.06557
https://doi.org/10.1016/j.tcs.2011.08.039
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys
https://doi.org/10.1088/1367-2630/11/7/075001
https://doi.org/10.1140/epjqt/s40507-021-00108-9
https://www.science.org/doi/10.1126/science.aam9288
https://www.iaas.uni-stuttgart.de/publications/Weder2021_OrchestrationsInSuperposition.pdf
https://opg.optica.org/abstract.cfm?URI=OIDA-2020-3
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/quantum-technologies/
https://www.etsi.org/committee/1430-qkd
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/01.01.01_60/gs_qkd002v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/007/01.01.01_60/gr_qkd007v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/015/01.01.01_60/gs_QKD015v010101p.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp27_qkd_imp_sec_FINAL.pdf
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/005/01.01.01_60/gs_qkd005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/008/01.01.01_60/gs_qkd008v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_qkd003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/011/01.01.01_60/gs_qkd011v010101p.pdf


van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 40 of 41

44. ISO/IEC 15408 Evaluation criteria for IT security. https://www.noraonline.nl/wiki/ISO/IEC_15408. 2010–2011.
45. ITU-T Study Group 13 Future networks, with focus on IMT-2020, cloud computing and trusted network

infrastructure. https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx.
46. ITU-T Study Group 17. Security. https://www.itu.int/en/ITU-T/about/groups/Pages/sg17.aspx.
47. ITU-T Y.3800. Overview on networks supporting quantum key distribution.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13990. October 2019.
48. ITU-T Y.3801. Functional requirements for quantum key distribution networks.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14258. April 2020.
49. ITU-T Y.3802. Quantum key distribution networks—Functional architecture.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14407. December 2020.
50. ITU-T Y.3803 (12/2020). Quantum key distribution networks—Key management.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14408. December 2020.
51. ITU-T Y.3804. Quantum key distribution networks—Control and management.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14409. September 2020.
52. ITU-T X.1710 (10/2020). Security framework for quantum key distribution networks.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14452. October 2020.
53. ITU-T X.1714 (10/2020). Key combination and confidential key supply for quantum key distribution networks.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14453. October 2020.
54. ITU-T X.1702 (11/2019). Quantum noise random number generator architecture.

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14095. November 2019.
55. ITU-T Focus Group on Quantum Information Technology for Networks (FG-QIT4N).

https://www.itu.int/en/ITU-T/focusgroups/qit4n/Pages/default.aspx.
56. ITU-T Focus Group Publications. https://www.itu.int/pub/T-FG.
57. ISO/IEC JTC1 WG14 on Quantum Computing.

https://jtc1info.org/technology/working-groups/quantum-computing/.
58. ISO/IEC AWI 4879. Information technology—Quantum computing—Terminology and vocabulary.

https://www.iso.org/standard/80432.html. https://bds-bg.org/en/project/show/iso:proj:80432. Under
development, February 2022.

59. ISO/IEC JTC 1/SC 27/WG 3. Security evaluation, testing and specification.
https://standards.iteh.ai/catalog/tc/iso/56ffc1fc-b504-40a6-b4ab-3cacf8ff9f7d/iso-iec-jtc-1-sc-27-wg-3.

60. NEN-EN-ISO/IEC 15408-1. Evaluation criteria for IT security—Part 1: introduction and general model.
https://www.nen.nl/nen-en-iso-iec-15408-1-2020-en-269562. 2020.

61. ISO/IEC CD 23837-1.2. Security requirements, test and evaluation methods for quantum key distribution—Part 1:
requirements. https://www.iso.org/standard/77097.html. Under development, February 2020.

62. IEEE. Quantum Initiative Support for Standards. https://quantum.ieee.org/standards.
63. IEEE. Developing standards. https://standards.ieee.org/develop/index.html.
64. IEEE P1913. Software-Defined Quantum Communication. https://standards.ieee.org/project/1913.html.
65. IEEE P7130. Standard for Quantum Technologies Definitions. https://standards.ieee.org/project/7130.html.
66. IEEE P7131. Standard for Quantum Computing Performance Metrics & Performance Benchmarking.

https://standards.ieee.org/project/7131.html.
67. IEEE P3120. Standard for Quantum Computing Architecture. https://standards-dev21.ieee.org/ieee/3120/10751/.
68. Quantum Internet Research Group (QIRG). https://irtf.org/qirg.
69. Quantum Internet Research Group (QIRG) Mailing List. https://www.irtf.org/mailman/listinfo/qirg.
70. Quantum Internet Research Group (QIRG) Mail Archive. https://mailarchive.ietf.org/arch/browse/qirg/.
71. Quantum Internet Research Group (QIRG) Documents. https://datatracker.ietf.org/rg/qirg/documents/.
72. Kozlowski W, Wehner S, Van Meter R, Rijsman B, Cacciapuoti A, Caleffi M, Nagayama S. Architectural Principles for a

Quantum Internet. Work in Progress, Internet-Draft. https://datatracker.ietf.org/doc/draft-irtf-qirg-principles/. 14
February 2022.

73. Wang C, Rahman A, Li R, Aelmans M, Chakraborty K. Application Scenarios for the Quantum Internet. Work in
Progress, Internet-Draft. https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/. 20 August
2021.

74. Namazi M. Practical Quantum Networking at Room Temperature.
https://www.youtube.com/watch?v=2ELYL71tlD8. 26 March 2021.

75. Dür W. Genuine and Optimized Entanglement-Based Quantum Networks.
https://www.youtube.com/watch?v=j-Ri-RRfUXY. 23 September 2021.

76. Kaplan M. Building Quantum Networks at the Local-Area Scale. https://www.youtube.com/watch?v=D_Nb43-uicY.
3 February 2022.

77. Euramet. The gateway to Europe’s integrated metrology community. https://www.euramet.org/.
78. QuIC. European Quantum Industry Consortium. https://www.euroquic.org/.
79. StandICT. Supporting European Experts Presence in International Standardisation Activities in ICT.

https://standict.eu/about. online 1.2.2022.
80. TNO. The Netherlands Organisation for Applied Scientific Research. https://tno.nl.
81. Quantum technologies at TNO.

https://www.tno.nl/en/focus-areas/industry/roadmaps/semiconductor-equipment/quantum-technology/.
82. Horizon 2020 QFlag Coordination and Support Action.

https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship/qflag-quantum-flagship-
coordination-and-support-action/, https://cordis.europa.eu/project/id/820350. 2019–2022.

83. Horizon 2020 QUCATS Coordination and Support Action. https://qt.eu/about-quantum-flagship/projects/qucats/.
2022–2025.

84. Quantum Delta Netherlands. https://quantumdelta.nl/.
85. PTB. German National Metrology Institute. https://www.ptb.de/cms/.
86. DIN. German institute for Standardisation. https://www.din.de/en.

https://www.noraonline.nl/wiki/ISO/IEC_15408
https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx
https://www.itu.int/en/ITU-T/about/groups/Pages/sg17.aspx
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13990
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14258
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14407
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14408
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14409
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14452
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14453
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=14095
https://www.itu.int/en/ITU-T/focusgroups/qit4n/Pages/default.aspx
https://www.itu.int/pub/T-FG
https://jtc1info.org/technology/working-groups/quantum-computing/
https://www.iso.org/standard/80432.html
https://bds-bg.org/en/project/show/iso:proj:80432
https://standards.iteh.ai/catalog/tc/iso/56ffc1fc-b504-40a6-b4ab-3cacf8ff9f7d/iso-iec-jtc-1-sc-27-wg-3
https://www.nen.nl/nen-en-iso-iec-15408-1-2020-en-269562
https://www.iso.org/standard/77097.html
https://quantum.ieee.org/standards
https://standards.ieee.org/develop/index.html
https://standards.ieee.org/project/1913.html
https://standards.ieee.org/project/7130.html
https://standards.ieee.org/project/7131.html
https://standards-dev21.ieee.org/ieee/3120/10751/
https://irtf.org/qirg
https://www.irtf.org/mailman/listinfo/qirg
https://mailarchive.ietf.org/arch/browse/qirg/
https://datatracker.ietf.org/rg/qirg/documents/
https://datatracker.ietf.org/doc/draft-irtf-qirg-principles/
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/
https://www.youtube.com/watch?v=2ELYL71tlD8
https://www.youtube.com/watch?v=j-Ri-RRfUXY
https://www.youtube.com/watch?v=D_Nb43-uicY
https://www.euramet.org/
https://www.euroquic.org/
https://standict.eu/about
https://tno.nl
https://www.tno.nl/en/focus-areas/industry/roadmaps/semiconductor-equipment/quantum-technology/
https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship/qflag-quantum-flagship-coordination-and-support-action/
https://qt.eu/about-quantum-flagship/introduction-to-the-quantum-flagship/qflag-quantum-flagship-coordination-and-support-action/
https://cordis.europa.eu/project/id/820350
https://qt.eu/about-quantum-flagship/projects/qucats/
https://quantumdelta.nl/
https://www.ptb.de/cms/
https://www.din.de/en


van Deventer et al. EPJ Quantum Technology            (2022) 9:33 Page 41 of 41

87. Huawei Dusseldorf. https://www.huawei.com/de/impressum.
88. Delft Circuits. Hardware for quantum engineers. https://delft-circuits.com/.
89. INRIM. The Italian National Metrology Institute. https://www.inrim.it.
90. EMPIR Normative project Use Case: the 19NRM06 MeTISQ project. https://www.euramet.org/project-19nrm06.
91. In-field tests and calibrations over the I-QB Italian Quantum Backbone.

https://phys.org/news/2022-01-technique-long-distance-quantum-key-real-world.html.
92. CINI. The National Interuniversity Consortium for Informatics. https://www.consorzio-cini.it/index.php/en/.
93. HPC: Key Technologies and Tools.

https://www.consorzio-cini.it/index.php/en/national-laboratories/hpc-key-technologies-and-tools.
94. Quantumalta. University of Malta. https://quantum.edu.mt/.
95. Wengerowsky S, et al. Entanglement distribution over a 96-km-long submarine optical fiber. PINAS, 2 Apr 2019.

https://www.pnas.org/content/116/14/6684.
96. Wengerowsky S, et al. Passively stable distribution of polarisation entanglement over 192 km of deployed optical

fibre. npj Quantum Inf, 10 Jan 2020. https://www.nature.com/articles/s41534-019-0238-8.
97. Italtel. Italian telecommunications equipment and ICT. https://www.italtel.com/.
98. NPL. Creating impact from science and engineering. https://www.npl.co.uk/.
99. Universidad Politécnica de Madrid. https://www.upm.es/.
100. QuiX Quantum. The fastest way to a quantum future. https://www.quixquantum.com/.
101. Taballione C, et al. 20-mode Universal Quantum Photonic Processor”. To be submitted.

https://quantumbusinessnetwork.de/en/events/quix-quantum-webinar-20-mode-quantum-photonic-processor/.
3 March 2022.

102. Orange Quantum Systems. Solutions to tackle the quantum device characterization bottleneck.
https://orangeqs.com/.

103. CNR. the Italian National Research Council. https://www.cnr.it/en.
104. NCSRD. the National Centre of Scientific Research “Demokritos”. https://www.demokritos.gr/.
105. Syndesis Ltd. HealthCare in the Post-Quantum Era. https://www.syndesis.eu/.
106. European Quantum Technology Flagship. https://qt.eu/.
107. The European High Performance Computing Joint Undertaking (EuroHPC JU).

https://eurohpc-ju.europa.eu/index_en.
108. The European Quantum Communication Infrastructure (EuroQCI) Initiative.

https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci.
109. European Commission—Joint Research Center. https://ec.europa.eu/info/departments/joint-research-centre_en.

https://www.huawei.com/de/impressum
https://delft-circuits.com/
https://www.inrim.it
https://www.euramet.org/project-19nrm06
https://phys.org/news/2022-01-technique-long-distance-quantum-key-real-world.html
https://www.consorzio-cini.it/index.php/en/
https://www.consorzio-cini.it/index.php/en/national-laboratories/hpc-key-technologies-and-tools
https://quantum.edu.mt/
https://www.pnas.org/content/116/14/6684
https://www.nature.com/articles/s41534-019-0238-8
https://www.italtel.com/
https://www.npl.co.uk/
https://www.upm.es/
https://www.quixquantum.com/
https://quantumbusinessnetwork.de/en/events/quix-quantum-webinar-20-mode-quantum-photonic-processor/
https://orangeqs.com/
https://www.cnr.it/en
https://www.demokritos.gr/
https://www.syndesis.eu/
https://qt.eu/
https://eurohpc-ju.europa.eu/index_en
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://ec.europa.eu/info/departments/joint-research-centre_en

	Towards European standards for quantum technologies
	Abstract
	Keywords

	Introduction
	Quantum technologies
	Standardisation as a catalyst for innovation
	CEN-CENELEC focus group on quantum technologies
	This review article

	Related work
	Analysing standards needs for quantum technologies
	General
	Quantum computing & simulation
	Quantum metrology, sensing & imaging
	Quantum communication
	Use cases and applications
	Supply-chain model for quantum technology standards
	Structuring standardisation of quantum technologies

	Organisations perspectives
	General
	FGQT statistics
	Rationale of FGQT delegates

	Conclusion: work in progress
	Appendix A: Related work
	Appendix B: Organisations perspectives
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	Author details
	Publisher's Note
	References


