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Gravitational and Coriolis forces in crystal neutron interferometry. I. Theory

C. P. Sasso ,* G. Mana ,† and E. Massa ‡

INRIM–Istituto Nazionale di Ricerca Metrologica, strada delle cacce 91, 10135 Torino, Italy

(Received 1 February 2024; accepted 9 October 2024; published 20 December 2024)

The proof that neutron interference is possible using split-crystal interferometers opens the way to extended
arm separation and length and to new experiments exploring quantum mechanics and gravity. Therefore,
this paper reexamines the effect of gravitational and Coriolis forces on the Laue diffraction of neutrons by
perfect crystals and the operation of crystal interferometers. We give in analytical form the transfer matrices
for the propagation of the neutron quantum state, either pure or mixed and subjected to gravity and Coriolis
force, in free space and perfect crystals. They are used to study the effect of interferometer aberrations on
the quantum-mechanical phase due to the Earth’s gravity. We also give an alternative way to understand
the impact of gravitational and Coriolis forces in terms of the crystal displacements and tilts perceived by
the neutron.

DOI: 10.1103/PhysRevA.110.062818

I. INTRODUCTION

The effect of gravity on the phase of the neutron de Broglie
wave was measured by Colella [1] and subsequently in a
series of experiments of increasing complexity [2–4]. These
experiments used the interference between coherently split
and recombined neutron waves in the Earth’s gravity field.
Wave splitting and recombination are obtained via dynamic
diffraction by crystal slabs carved from a single Si monocrys-
tal. Such monolithic interferometers were first demonstrated
for x rays by Bonse and Hart [5] and subsequently for thermal
neutrons by Rauch and collaborators [6].

The proof that neutron interference is possible using split-
crystal interferometers [7] opens the way to extended arm
separation and length and to experiments exploring quantum
mechanics and gravity [8–12]. Realizing and using split-
crystal interferometers requires mastering a detailed model
of its operation. A subsequent paper will uses the formalism
developed here to investigate numerically the contributions to
the neutron phase of geometrical aberrations and dynamical
diffraction [13].

The theoretical background is the dynamical scattering of
neutrons by perfect crystals in the Earth’s gravitational field.
After its application to modeling the Colella-Overhauser-
Werner experiments [2–4,14–17], discrepancies remain be-
tween the measured and predicted values of phase shift due to
gravity. The measured values are lower than the theoretically
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predicted ones by about 1%, with relative uncertainties of
about 0.1% [4,18,19]. Since there is no scientific basis for
this difference, it must arise from a neglected effect in the
interferometer operation.

Therefore, we reexamined the Laue diffraction of neutrons
by perfect crystals and the operation of crystal interferome-
ters, including geometrical aberrations and the gravitational
and Coriolis forces by first principles.

Our approach is based on optical transfer matrices that
map incoming into outgoing wave packets [20,21]. They
accomplish the quantum-mechanical propagation of the neu-
tron state—either pure or mixed—in free space and crystals.
Hence, the interferometer is modeled by a sequence of propa-
gations in crystals and free space that can be easily translated
into a code for numerical or symbolic computations. Also,
this approach allows aberration to be easily integrated into the
model and their effects on the quantum-mechanical phase of
the neutron to be quantified.

The paper is organized as follows: After introducing, in
Sec. II, the neutron quantum states in the interferometer, in
Sec. III, we give the analytical expression of the transfer
matrix for their propagation in free space under the action of
gravitational and Coriolis forces. Section IV copes with the
Laue propagation in a perfect crystal, again under the action
of Earth’s gravity and rotation, and gives the closed-form
expression of the relevant transfer matrix.

Section V concatenates free-space and crystal propagations
to build the transfer matrix of the interferometer and discusses
the effects of geometrical aberrations on the fringe phase.
Sections V A and V B describe the interferometer operation
based first on the excesses of accumulated phase due to the
transferred momenta and next on the vantage point of the
falling neutron. Section VI examines the interference signal.

Dynamical diffraction is a complex theory that requires
abstruse calculations. Since they make it difficult to under-
stand the underlying ideas and logic, we excluded most of
them from the main paper, which only includes the starting
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points and results. We tried to discuss them in detail to help the
understanding. Readers interested in using and verifying our
results will find a report of the algebraic steps and analytical
computations in the Supplemental Material [22]. Appendix F
provides a list of the main symbols.

All the symbolic computations were carried out with the
aid of Mathematica [23]; the relevant notebook is given as
Supplemental Material [22]. To view and interact with it,
download the Wolfram Player free of charge [24].

II. NEUTRON QUANTUM STATES IN THE
INTERFEROMETER

Before discussing neutron propagation in free space and
crystals, we introduce the reference frame and the notations
we use to describe the neutron quantum state in the interfer-
ometer. We limit to plane-parallel crystals symmetrically cut,
where the normal ẑ to the crystal surfaces is orthogonal to
the reciprocal vector h = −2π x̂/d (d is the spacing of the
diffracting planes). Jointly with the crystal vertical, ŷ, ẑ and
the horizontal axis, x̂ = −ĥ, define a right-handed coordinate
system. The position vector r = (x, z) is split in the x = (x, y)
(lying in the crystal surface) and z components.

For each momentum state, two guided modes, which are
superpositions of the transmitted, |�o〉, and diffracted, |�h〉,
states, are excited within the crystal. Therefore, we describe
each neutron, both in free space and in interferometer crystals,
by the single-particle state |�〉 = |�o〉 + |�h〉, where

〈r|�〉 = ψo(x; z)〈r|o〉 + ψh(x; z)〈r|h〉, (1a)

〈r|o〉 = e−iKo·re−iKχ0z
/

(2γ )
[

1
0

]
, (1b)

〈r|h〉 = e−iKh·re−iKχ0z
/

(2γ )
[

0
1

]
, (1c)

and

|ψ (x; z)〉 =
[
ψo(x; z)
ψh(x; z)

]
. (1d)

It belongs to the tensor product L2(R2) ⊗ V2 of the L2(R2)
space of the square-integrable two-variable functions and the
two-dimensional vector space V2 [20] and propagates along z,
the optical axis, that plays the role of time.

The angular wave vectors [25]

Ko,h = K[± sin(�B)x̂ + cos(�B)ẑ] (2)

satisfy the Bragg conditions Kh = Ko + h and |Ko| = |Kh| =
K = mV/h̄, where �B is the Bragg angle, h̄ is the reduced
Planck constant, and m and V the neutron mass and velocity,
respectively. Also, we consider a coplanar geometry; that is,
Ko, Kh, h, and ẑ are in the same plane. In (2) and the follow-
ing, the plus (minus) sign refers to the o (h) state.

We kept the effects of absorption, μ = Im(χ0)K ,
and refractive index, n0 − 1 = Re(χ0)/2, apart, in the
exp[iKχ0z/(2γ )] factor, where γ = cos(�B), χ0 = 0 in a vac-
uum, and the sign Im(χ0) is that of the exponent of the plane
waves. In our analysis, this factor is unessential and will be
omitted.

The position and momentum representations, �n(r) and
�̃n(p), of the state |�n〉 are related by

�n(r) = 1

(2π )3/2

∫ +∞

−∞
ψ̃n(p)e−i(Kn+p)·rdp, (3a)

where h̄Kn = mVn is the (mechanical and unperturbed) mo-
mentum, h̄p = mv is the momentum deviation from h̄Kn,
Vn, and v are the relevant velocities, and n = o, h. To avoid
confusion with the reciprocal vector h, we will always use
the reduced Planck’s constant h̄. For the sake of simplicity,
with somewhat incongruous terminology, we will indicate the
angular wave vectors by their associated momenta, expressed
in units of inverse length.

We are looking for quasi-plane waves propagating in the
Ko and Kh directions. Their momentum representations have
well-spaced peaks centered on Ko and Kh with negligible
width. Therefore, |p| � K . For the sake of simplicity, we also
assume the expected value of p is null, that is, 〈p〉 = (0, 0, 0).

Once the exp(iKo,h · r) plane waves are removed, the axis
of propagation, denoted by z, plays the role of time (even
though it’s measured in space units) and the neutron lives in
the xy plane. This implies that the z component of p represents
an angular frequency measured in inverse space units.

By setting p = (q, pz ) and q = (qx, qy), the partial Fourier
transform of ψn(r) is (see Appendix A)

ψ̃n(q; z) = 1√
2π

∫ +∞

−∞
ψ̃n(p)e−ipzzdpz. (3b)

We use the term resonance error to refer to the deviation
p of a plane wave from perfect Bragg alignment. Moreover,
when p is zero, the crystal resonates similarly to an optical
cavity fed by a well-matched laser beam.

III. FREE FALL

Between the crystals that form the interferometer, neutrons
travel through free space. Therefore, we need the transfer
matrix that maps the neutron state at the crystal output surface
to the state at the next crystal input surface.

We propagate the stationary states o and h along the optical
axis z by the time-dependent Feynman propagator [26–28].
With a somewhat incongruous notation, we use the same
symbol for the quantum-mechanical operator and the expected
value of the associated quantity, understanding that it indicates
the operator or the expected value depending on the context.

Without distinguishing between inertial and gravitational
masses, the Hamiltonian for a neutron in a uniform gravita-
tional field and Earth’s rotating frame is [4,29,30]

Hn = h̄2k2
n

2m
− mg · r − h̄(�r) · kn, (4)

where kn = Kn + p is the wave vector of the q mode
ψn(x; z) = exp(−ip · r), n = o, h, r is the local neutron’s po-
sition,

g = −GM⊕
R2⊕

R̂⊕ − ω × (ω × R⊕)

is the acceleration due to gravity and the centrifugal force,
ω is the Earth’s angular velocity, and R⊕ is taken from the
center of the Earth to the origin of the local reference frame.

062818-2
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Since, in a right-handed reference frame, the operator ω× can
be represented by the antisymmetric matrix

� =
⎡⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎦
in (4), we wrote ω × r as �r. For the sake of simplicity, we
omit the subscript n = o, h in the position vector r, velocity
perturbation v, and resonance error p. The last two depend on
n because of the different Coriolis forces acting on the o and
h states.

The canonical momentum h̄kn = h̄(Kn + p) is the variable
conjugate to r. Therefore, the Fourier dual of r, which is p, is
related to the kinetic momentum mv by h̄p = m(v + �r) [4].

Starting from (4) and (3a), the time-independent
Schrödinger equation is(

h̄2k2
n

2m
− mg · r + 2h̄(�Kn) · r

)
ψ̃n(p) = h̄2K2

2m
ψ̃n(p), (5)

where h̄2K2 = 2mE and E is the energy. On condition that
p � Kz, we made the approximation

(�r) · (Kn + p) ≈ Kn · (�r) + z

Kz
(�Kn) · p

≈ −(�Kn) · r, (6)

where we replaced r with zKn/Kz, which is the unperturbed
trajectory of the n = o, h state, see Appendix C. This ap-
proximation also requires that the trajectory perturbations

due to gravity and Coriolis force are small (relative to z/γ ).
Eventually, the left- and right-multiplication of the matrix
� and the wave vector Kn are related by Kn� = �T Kn =
−�Kn.

As shown in Appendixes D 1 and D 2, the term (�r) · p
omitted in (6) encodes the m(�r) difference between the
canonical, h̄p, and kinematical, mv, momenta. Since the po-
tential term of the approximate Hamiltonian in (5) does not
depend on the velocity perturbation v, the canonical and
kinematical momenta must be the same, i.e., h̄p = mv. The
factor of two multiplying (�Kn) · r in (5)—which is not
present in (6)—ensures the fulfillment of this requirement,
see Appendix D 2. Besides, the potential of the approximated
Coriolis force −2h̄(�Kn) is 2h̄(�Kn) · r, not (�Kn) · r.

Since the approximate force −2h̄(�Kn) in (5) is a constant,
we can pool it with the gravitational force mg, define the total
force acting on the n = o, h neutron state as, see Appendix B,

fn = ( fx, fny. fnz )T = m

h̄2Kz
[mg − 2h̄(�Kn)], (7)

and rewrite (5) accordingly.
Given the state |ψ̃ (q′; 0)〉 at the input plane z = 0 and

assuming the separation of the qx and qy variables, the solution
of the Schrödinger equation (5), see Ref. [22], is

|ψ̃ (q; z)〉 =
[

exp(−iKzδoz) 0
0 exp(−iKzδhz)

]
×

∫ +∞

−∞
F̃ (q, q′; z)|ψ̃ (q′; 0)〉dq′, (8a)

where the F̃ (q, q′; z) = F̃x(qx, q′
x; z)F̃y(qy, q′

y; z) factors are

F̃x(qx, q′
x; z) = exp

(
iq2

x z

2Kz
+ iδqxδx

3
− iqxδx

)
δ(q′

x − qx + fxz)

×
[

exp [+i(qxz tan(�B) − Kxδx)] 0
0 exp[−i(qxz tan(�B) − Kxδx)]

]
,

(8b)

F̃y(qy, q′
y; z) =

⎡⎢⎢⎢⎢⎣
exp

(
iq2

y z

2Kz
+ iδoqyδoy

3
− iqyδoy

)
δ(q′

y − qy + foyz) 0

0 exp

(
iq2

y z

2Kz
+ iδhqyδhy

3
− iqyδhy

)
δ(q′

y − qy + fhyz)

⎤⎥⎥⎥⎥⎦.

(8c)

This transfer matrix propagates the neutron state through the
spaces between the interferometer crystals. In the Appendixes
C and D, we verify its derivation by comparing its internal
logic with the unperturbed and perturbed quantum trajectories
of the neutron. The following paragraphs explain the origin
and significance of the quantities that define F̃ (q, q′; z).

First, if fn = (0, 0, 0)T , F̃ (q, q′; z) reduces to the free-
space propagator. Next, the Dirac’s deltas indicate that the
final p mode leaves the initial z = 0 plane as p′ = p − δnp,
where h̄δnp = h̄(δnq, fnzz) is the momentum transferred by
the pooled forces (mg and −2m�Vn = −2h̄�Kn) acting for

the time interval mz/(h̄Kz ), see Appendix D. The δnp compo-
nents are

δqx = fxz = m2gxz

h̄2Kz
− 2mωyz

h̄
,

δnqy = fnyz = m2gyz

h̄2Kz
+ 2m[ωx ± ωz tan(�B)]z

h̄
,

δn pz = fnzz = m2gzz

h̄2Kz
∓ 2mωy tan(�B)z

h̄
.

(9a)
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From the shift property of the Fourier transform, we see
that

δx = fxz2

2Kz
= m2gxz2

2h̄2K2
z

− mωyz2

h̄Kz
,

δny = fnyz2

2Kz
= m2gyz2

2h̄2K2
z

+ m[ωx ± ωz tan(�B)]z2

h̄Kz
,

δnz = fnzz2

2Kz
= m2gzz2

2h̄2K2
z

∓ mωy tan(�B)z2

h̄Kz

(9b)

are the components of the trajectory perturbation δnr =
(δnx, δnz) due to the pooled forces, mg and −2h̄�Kn acting
for the mz/(h̄Kz ) time interval.

The unperturbed trajectories fulfilling the Bragg conditions
(identified by the q = 0 modes, which will be termed base
rays) are the straight lines where xo,h = ±z tan(�B) and y =
0. Therefore, it follows that excess phases∫ z

0
fxzdxo,h = ± fxz2 tan(�B)

/
2 = ±Kxδx,∫ z

0
fnyzdy = 0,∫ z

0
fnzzdz = fnzz

2
/

2 = Kzδnz

(9c)

can be understood by integrating the (transversal and longitu-
dinal) transferred momenta over the unperturbed trajectory.

Since

1

2Kz

∫ z

0
(qx − fxz)2dz = q2

x z

2Kz
+ f 2

x z3

6Kz
− qxδx

= q2
x z

2Kz
+ δqxδx

3
− qxδx, (9d)

the phases in the exponential factor of F̃x(qx, q′
x; z) and

F̃y(qy, q′
y; z), account for diffraction and are related to the

change of q along the unperturbed trajectories.

IV. LAUE DIFFRACTION

The last thing we need is the transfer matrix that maps the
neutron state at the input surface of the interferometer crystals
to the one at the output surface.

In the presence of gravitational and Coriolis forces, the
neutron wave function in a crystal complies with the time-
independent Schrödinger equation [31],[

− h̄2�

2m
+ h̄2K2χ (r)

2m
− mg · r − ih̄(�r) · ∇

]
� ′(r)

= h̄2K2

2m
� ′(r), (10a)

where

� ′(r) = �o(r) + �h(r)

= [ψo(r)e−iKo·r + ψh(r)e−iKk ·r]e−iKχ0z/(2γ ), (10b)

and

χ (r) =
∑
h �=0

χhe−ih·r (10c)

is the dimensionless Fermi pseudopotential of the crystal. The
χ0 term is excluded from the Fourier expansion because we
already factored it in � ′(r). To keep compliance with the
dynamical theory formalism, the dimensionless coefficients of
the Fourier expansion of χ (r) are redefined as [18]

χh = 4πb

K2Vcell

∑
j

e−ih·r j ,

where b is the neutron (coherent) scattering length of the Si
nucleus and j labels the Si atoms in the (cubic) unit cell. The
χ±h phases depend on the origin of the reference frame; a
translation u changes χ±h according to χ±h → χ±h exp(±ih ·
u). We assume that χ (−x, y; z) = χ (x, y; z), so that χh = χ−h.
Since exp(±iπ ) = −1, the sign of χ±h can be chosen either
positive or negative.

Equation (10a) is the equivalent of (5), where, in addi-
tion to the pooled forces, we took the interaction with the
crystal into account. Assuming a symmetrically cut (plane-
parallel) crystal slab, Fourier transforming (10a), using (3a),
applying the differentiation and convolution properties of the
transform, and neglecting second-order terms proportional to
(p/Kz )2, we obtain the Takagi-Taupin equations

[−Doz 0
0 −Dhz

][
ψ̃o(q; z)

ψ̃h(q; z)

]
=

[
qx tan(�B) + i fx∂qx + i foy∂qy − υ

−υ − qx tan(�B) + i fx∂qx + i fhy∂qy

][
ψ̃o(q; z)

ψ̃h(q; z)

]
, (11)

where Dnz = i∂z − fnzz and υ = χ+hK/(2γ ) = χ−hK/(2γ ).
Details about the Fourier-optics approach to the dynamical
theory of x-ray and neutron diffraction in crystals and the
derivation of (11) are given in Refs. [20,32].

We found the transfer matrix U (t ) for the propagation of
the quantum state |ψ̃ (q′; 0)〉 given at the input surface z = 0

trough a crystal slab having thickness t by solving the Takagi-
Taupin equations (11), see Ref. [22]. The solution is

|ψ̃ (q; t )〉 =
∫ +∞

−∞
Ũ (q, q′; t )|ψ̃ (q′; 0)〉dq′, (12a)
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where

Ũ (q, q′; t ) = δ(q′
x − qx + fxt ) exp

(
iq2t

2Kz
− iKzδt

)
⎡⎢⎢⎢⎢⎢⎢⎣

T (qx − fxt/2; t ) exp(−ihu)R(qx − fxt/2; t )

×δ(q′
y − qy + foyt ) ×δ(q′

y − qy + fyt )

exp(+ihu)R(qx − fxt/2; t ) T (−qx + fxt/2; t )

×δ(q′
y − qy + fyt ) ×δ(q′

y − qy + fhyt )

⎤⎥⎥⎥⎥⎥⎥⎦. (12b)

For the definitions of the symbols used refer also to Ap-
pendix F and Figs. 1 and 2. In the following, we detail the
origin and meaning of the quantities that determine Ũ (q, q′; t )
and its internal logic.

The functions

R(q; t ) = −
i sin

(
� fzt2

/
2 + ζ

√
η2 + 1

)
√

η2 + 1
, (13a)

T (q; t ) = cos
(
� fzt

2
/

2 + ζ
√

η2 + 1
)

− ηR(η; ζ ), (13b)

where ζ = πt/�e, η = �e tan(�B)q/π , and �e = λγ /|χh|
are the dimensionless thickness and resonance error and
the Pendellösung length, respectively, are the (amplitude)
reflection and transmission coefficients, in Laue geome-
try, of the crystal slab. They summarize the propagation
given by Horne [16] and Littrell [33] in terms of mode
matching and dispersion surface. The limits as χh → 0
and |η| → ∞ duplicate the first-order approximation of

FIG. 1. Gravitational and Coriolis forces in neutron Laue diffrac-
tion. The neutron falls in the positive x direction. Black dashed lines
show diffracting planes. Solid lines show perceived deformed planes
(black) and effectively tilted and displaced planes (red). h is the
reciprocal vector, Ko,h are wave vectors satisfying the Bragg law.
Black rays show plane waves propagating in the Ko,h directions. Red
lines show neutron trajectory (dashed) and incoming rays leaving the
crystal in the Ko,h directions (solid). The transferred momentum fxt x̂
makes Ko,h − fxt x̂ satisfy the Bragg condition for the tilted planes
(red). t is the crystal thickness

the free-space propagation (8a)–(8c), refer to Ref. [24] for
the proof.

The exp(∓ihu) factors of the off-diagonal terms show that
propagation occurs in the same way as in a deformed crystal
[32,34], where the diffracting planes are shifted along the
horizontal axis in the direction opposite to half of the total
displacement of the neutron in the crystal,

u = − fxt2

Kz
= −δx(t )

2
. (14a)

The argument of the transmission and reflection coefficients
show that the neutron sees the diffracting planes rotated about

FIG. 2. Skew-symmetric LLL interferometer with separate crys-
tals (crystal top-view). S is a splitter, M1 and M2 are mirrors, and A is
an analyzer. The blue and red base rays (the unperturbed trajectories
fulfilling the Bragg condition q = 0) indicate the 1st and 2nd arms,
respectively. The horizontal x axis is orthogonal to the diffracting
planes. The crystal vertical y points up. The optical axis z is normal
to the crystals’ surfaces. The input state is labeled o. zS and zDA are the
source and detector distances from the splitter and analyzer, respec-
tively. The gaps between the ith mirror and the splitter and analyzer
are zMi and zAi, respectively. The skewness 2�M = zM2 − zM1 is the
mirrors’ gap. The split rays are recombined in the interferometer
focal plane, which, in the absence of geometric aberrations, is the
analyzer input surface. zF1 and zF2 are the focal-plane distance from
the mirrors; zF is the distance of the splitter from the focal plane
(or, without geometrical aberration, from the analyzer). The ±ihu
labels are the phases gained by the reflected state relative to the
forward-transmitted one.
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the vertical by

θ = − fxt

2Kz
, (14b)

which is opposite to the mean change of its propagation direc-
tion in the crystal.

The z components of the Coriolis forces acting on the
h and o states are different, resulting in different ax-
ial momenta transferred to the neutron. The 2� fz = fhz −
foz difference originates the � fzt2/2 offset of the argu-
ments of the transmission and reflection coefficients and
makes the effective crystal-thickness different from the ge-
ometrical one. This difference was not spotted in previous
investigations [3,15–17].

The shared phase Kzδt , where δt = (δot + δht )/2 is the
(mean) difference between the perceived and actual thick-
ness, originates from the axial moment (δpz )t , where δpz =
(δopz + δh pz )/2. We heuristically added the q2t/(2Kz ) shared
phase, because it rules the horizontal and vertical shears of the
interfering beams (see also Appendix D 4).

As in free space, the Dirac deltas account for the vertical
fnyt and fyt and horizontal fxt momentum transfers, where
fy = ( fhy + foy)/2 is the mean of the vertical components of
the pooling of gravity and Coriolis force.

In (8b) and (8c), the qxδx and qyδny phases encode the
neutrons falls along the x and y axes. They are second-order
effects originated by the wave-function diffraction, see (9d).
On the contrary, the phases of the Ũ (q, q′; t ) elements do not
depend linearly on qx and qy. This means that, in crystals,
neutrons propagate parallel to the z axis. As shown by the
unperturbed and perturbed quantum trajectories of the neutron
given in the Appendixes C 2 and D 4, provided 〈q〉 = (0, 0)T ,
the Takagi-Taupin equations (11) implies that neutrons are
guided along the diffracting planes, regardless of gravity and
Coriolis force. However, this is not a characteristic of guided
propagation in crystals but rather a consequence of the Takagi-
Taupin equations omitting the second-order terms.

Omitting the shared factor exp(−iKzδt ), which is due to the
longitudinal acceleration, the waves leaving a plane-parallel
crystal symmetrically cut are (see Ref. [24] and Fig. 1)

ψ̃oo(q; t ) = T (qx − fxt/2; t )ψ̃o(qx − fxt, qy − foyt ; 0),

(15a)

ψ̃ho(q; t ) = R(qx − fxt/2; t )ψ̃o(qx − fxt, qy − fyt ; 0)

× exp(+ihu) (15b)

if the initial state is |ψ̃ (q; 0)〉 = ψ̃o(q; 0)|o〉, and

ψ̃hh(q; t ) = T (−qx + fxt/2; t )ψ̃h(qx − fxt, qy − fhyt ; 0),

(15c)

ψ̃oh(q; t ) = R(qx − fxt/2; t )ψ̃h(qx − fxt, qy − fyt ; 0)

× exp(−ihu) (15d)

if the initial state is |ψ̃ (q; 0)〉 = ψ̃h(q; 0)|h〉.
The neutron sees a displacement of the diffracting planes

opposite to half its fall while crossing the crystal. Conse-
quently, the phase of the reflected wave is changed by ±hu
relative to the forward-transmitted one. With the adopted sign
conventions, a wave propagating in the positive x direction ac-

cumulates a negative phase. Therefore, in absolute terms, the
phase is decreased if the displacement u has the same direction
as the incoming wave, see (15b), and increased otherwise, see
(15d).

The leaving q mode enters the crystal as the q − ( fxx̂ +
fnyŷ)t mode. This means that the pooled forces transfer the
h̄( fxx̂ + fnyŷ)t momentum. No phase proportional to qx and
qy appears in the equations (15). This confirms that the neu-
trons propagate in a straight line and that the Takagi-Taupin
equations fail to capture their fall. Eventually, it is worth
noting that the crystal reflection is never specular, also if
fn = 0 and in the limit as the crystal thickness tends to
zero [35].

V. CRYSTAL INTERFEROMETRY

Eventually, we build the transfer matrix for the neutron
propagation from the source to the detector by multiplying
the matrices relevant to propagation in the free spaces and
crystals.

Owing to the limited spatial coherence of the sources,
that is, the limited capacity to prepare every neutron in the
same state, we should consider a probabilistic superposition
of single-particle wave packets. Assuming a Gaussian Shell
model of the superposition, the integrated densities are the
same as those yielded by a coherent Gaussian source, having
a radius equal to the coherence length [36,37]. Therefore, we
simplify the following algebra by limiting the analysis to this
coherent source.

As shown in Fig. 2, a shew-symmetric triple-Laue inter-
ferometer consists of four plane parallel (symmetrically cut)
crystals that split and recombine the neutron wave function via
consecutive diffractions and create a Mach-Zehnder interfer-
ometer. The propagation through the interferometer is given
by

|ψout〉 = [X1 + X2]|ψin〉, (16a)

where we omit to indicate the source and detector z coordi-
nates, which are implied in the in and out subscripts, and

X1 = F (zDA)U (tA)F (zA1)PhU (tM1)F (zM1)PoU (tS )F (zS ),
(16b)

X2 = F (zDA)U (tA)F (zA2)PoU (tM2)F (zM2)PhU (tS )F (zS ),
(16c)

propagate |ψin〉 along the i = 1, 2 arms. The symbols for
the thickness and spacing of the crystals have the meaning
given in Fig. 2 and Pn = |n〉〈n| projects into the |n〉 state.
The free-space transfer matrices used in (16b)–(16c) are ob-
tained by approximating up to the first-order (8b) and (8c).
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Hence,

F̃ (q, q′; z) =

⎡⎢⎢⎢⎢⎢⎢⎣
exp

[
i

(
qx − fxz

2

)
z tan(�B) − iKzδoz

]
0

×δ
(
q′

y − qy + foyz
)

0 exp

[
−i

(
qx − fxz

2

)
z tan(�B) − iKzδhz

]
×δ

(
q′

y − qy + fhyz
)

⎤⎥⎥⎥⎥⎥⎥⎦
× δ(q′

x − qx + fxz) exp

(
iq2z

2Kz

)
. (17)

We kept the overall phase proportional to q2 = q2
x + q2

y be-
cause it rules the horizontal and vertical shears of the beams
leaving the interferometer.

Since the momentum representations of U (z) and F (z) are
not diagonal, assuming, without loss of generality, |ψin(q)〉 =
ψ̃in(q)|o〉, propagation

[
ψ̃o1(q) + ψ̃o2(q)

ψ̃h1(q) + ψ̃h2(q)

]
=

∫ +∞

−∞
[X1(q, q′) + X2(q, q′)]

[
ψ̃in(q′)

0

]
dq′ (18)

requires an integration. The elements of the 2 × 2 matrices X1(q, q′) and X2(q, q′) are separable. Therefore, the integrations
over q′

x and q′
y factorize and, omitting shared phases and second-order terms, the propagated waves are (refer to Ref. [24] for the

calculations)

ψ̃o1(q) = R(qx − qxA; tA)R(qx − qx1; tM1)T (qx − qxS; tS )ψ̃in(qx − qx0, qy − qyo), (19a)

ψ̃o2(q) = T (qx − qxA; tA)R(qx − qx2; tM2)R(qx − qxS; tS )ψ̃in(qx − qx0, qy − qyo)

× exp[i( fxA0 + fxA1 + h�u + qx�x + qy�y + β )], (19b)

ψ̃h1(q) = T (−qx + qxA; tA)R(qx − qx1; tM1)T (qx − qxS; tS )ψ̃in(qx − qx0, qy − qyh), (19c)

ψ̃h2(q) = R(qx − qxA; tA)R(qx − qx2; tM2)R(qx − qxS; tS )ψ̃in(qx − qx0, qy − qyh)

× exp[i( fxA0 + fxA1 + h�u + qx�x + qy�y + β )]. (19d)

In Eqs. (19),

qx0 = fxzD,

qxS = qx0 − fx(zS + tS/2),

qxi = qxS − fx(tS/2 + zMi + tMi/2),

qxA = qxi − fx(tMi/2 + zAi + tA/2),

(20a)

and

qyo = fyzD − � fy(zS − 2�M + zDA + tA),

qyh = fyzD − � fy(zS − 2�M − zDA)
(20b)

are transferred momenta, 2�M = zM2 − zM1 is the interfer-
ometer skewness (the mirrors’ gap), and zD is the detector
distance from the source.

The qx0 and qyn offsets in the argument of the initial wave
function encode the deflection at the source of the interfering
q modes. They are nullified by the momentum transferred
by the pooled forces in the propagation through the interfer-
ometer. The qy offset depends on the n = o, h state because
of the different Coriolis forces acting on the neutron in the
o or h state. Since the interfering q modes leave the source
in the same mode, identified by q − qx0x̂ − qynŷ, the partial
coherence of the source does not cause visibility loss.

The effect of the pooled forces on the crystals’ trans-
mission and reflection is the same as a deviation from the
exact Bragg’s angle, which deviation depends on the crystal
separations and is coded by the qx j offsets of the arguments
of the reflection and transmission coefficients ( j = S, 1, 2, A
indicates the splitter, mirrors, and analyzer, respectively).

The qxS offset, indicating the misalignment of the whole
interferometer, is irrelevant and can be set to zero. The sig-
nificant misalignments are those between the splitting and
recombining lattice planes, which are pointed out by qxA − qxS

and qxi − qxS .
Five terms contribute to the difference between the phases

accumulated in the interferometer arms. In the following, we
discuss their origin, meaning, and internal logic.

The first term, fxA0, is proportional to the area A0 enclosed
by the base rays (the unperturbed rays fulfilling the Bragg
conditions and corresponding to the q = 0 modes) [4]. This
area, which is filled in yellow in Fig. 2, is given by

A0 = 2(tMzM + zM1zM2 − �21�M ) tan(�B), (21)

where tM = (tM1 + tM2)/2 and zM = (zM1 + zM2)/2 are the
mean mirrors’ thickness and distance from the splitter, re-
spectively, and 2�21 = tM2 − tM1 and 2�M = zM2 − zM1 are
the thickness difference and gap between the two mirrors,
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respectively. The term

fxA0 = m2gxA0

h̄2Kz
− 2mωyA0

h̄
(22)

includes the phase differences induced by gravity and Coriolis
force, the last one being analogous to the Sagnac phase shift
in optics [3,33].

When fx < 0, the momentum of the neutron on the first
arm is lower than that on the second one, see Fig. 2. This
results in fewer phase accumulation in the first arm than in the
second and in the expectation of a positive phase difference.
The seeming contradiction with the negative sign of fxA0, is
solved by observing that, because of our conventional choices,
the sign of the accumulated phase is negative, see (1a).

To compare our result with the usual expressions of the
gravitationally induced phase difference, we note that, in
Refs. [2,19,33], gx/Kz is written as g sin α/(K cos θB), where
α is the (clockwise) rotation of the interferometer about the
(leveled) incoming beam.

The second term, fxA1, takes into account the interferome-
ter defocus (a z translation of the analyzer away from the point
where the interferometer arms are recombined)

�z = zA1 − zM2 − �21 = zA2 − zM1 + �21. (23a)

It is proportional to the area

A1 = −2(tA + zDA)�z tan(�B), (23b)

which is filled in green in Fig. 2 and enclosed by the paths
of the base rays from the focal plane to the detector. The A1

sign opposes the A0 sign because, with a positive defocus,
the loop whereby the recombined neutron returns to the focus
after reaching the detector is traveled oppositely to the A0 one.
Unless the detector distance is large, it is a second-order term
and can be neglected.

The term

�u = uS + uA − uM1 − uM2

= − fx
(
t2
S + t2

A − t2
M1 − t2

M2

)
tan(�B)

2h
, (23c)

which nullifies when tA = tS = tM1 = tM2, takes the differ-
ences between the perceived crystals’ deformations into
account.

The fourth and fifth terms qx�x and qy�y express—via the
time shifting property of the Fourier transform—the x and y
shears of the interfering waves,

�x = 2

[
�z tan(�B) − fxtM�M

Kz

]
, (23d)

�y = 2 fy[(tM − zM )�21 − �M�z] + � fy(A0 + tAzF )

Kz
,

(23e)

where zF is the focus distance from the splitter, see Fig. 2.
Positive shears mean that the wave coming from the second
interferometer arm (red in Fig. 2) precedes, in the positive x
and y directions, the wave coming from the first. We note that
the pooled forces defocus the interferometer and displace the
interfering beams also in the absence of geometric aberrations.

In a skew-symmetric interferometer, neutrons fall differ-
ently in the two interferometer arms. Therefore, in addition to
the defocus �z, the differential fall

�uA = −2 fxtM�M

Kz
(23f)

takes part in the x shear of the interfering waves.
The y shear originates jointly from the interferometer aber-

rations (defocus and different mirror thicknesses) and Coriolis
force (via the terms proportional to � fy). The last might be
significant in a split-crystal skew-symmetric interferometer
having long arms.

The last term,

β = 2 fz[(zM − tM )�21 + �z�M],

where fz = ( fhz + foz )/2 is the mean axial force, originates
from the different axial momentum transferred by the pooled
forces in an aberrated interferometer. Unless the case of a
split-crystal interferometer with a very large skewness �M ,
it is a second-order term and can be neglected.

To clearly understand the physics behind the phase dif-
ference fxA0, we analyze an aberration-free interferometer
from two different viewpoints. First, we integrate neutron
momentum along the unperturbed trajectories, and then we
examine the interferometer operation from the vantage point
of the falling neutrons.

A. Path integrals

Relying on geometric optics, the standard way to calculate
the phase accumulated in the interferometer arms is to inte-
grate the wave number (the spatial derivative of the phase)
over the unperturbed trajectories that fulfill the Bragg condi-
tion (base rays), which are identified by the q = 0 modes.

First, we observe that, classically, the neutron trajectories
recombine on the analyzer input, but the fastest neutron by-
passes the slowest one mimicking a defocus �z = 2 fxA0/K
[38]. However, in our formalism, neutrons live in the xy plane,
and the z coordinate is a fictitious time. Therefore, no sepa-
ration occurs in space (the xy plane) and time (the z optical
axis).

Assuming ideal geometry and following the base rays, the
incoming neutron is split, when z = 0, in two halves that
propagate horizontally in opposite directions. The two halves
stop when z = zM1 and zM2 for a tM duration and are back-
reflected when z = zM1 + tM and zM2 + tM . Eventually, they
recombine when z = zM1 + tM + zA1 = zM2 + tM + zA2.

The difference between the phases accumulated in the split
trajectories is due to the momenta h̄ fxz and h̄ fnyz transferred
by the pooled forces. Since y = 0 on the base rays, the needed
integrations are carried out along the x axis and the h̄ fnyz
momentum does not play any role.

With the adopted sign conventions, a neutron propagating
in the positive x direction accumulates a negative phase, see
(1a). Therefore, parametrizing the motion by z, the phase
gained in the first interferometer arm is

φ1 = −
∫ zM1

0
fxz tan(�B)dz

+
∫ zA1

0
fx(zM1 + tM + z) tan(�B)dz,
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and that gained in the second arm is

φ2 = +
∫ zM2

0
fxz tan(�B)dz

−
∫ zA2

0
fx(zM2 + tM + z) tan(�B)dz,

where we used dx = ± tan(�B)dz. After computing the inte-
grals, the phase difference is

φ2 − φ1 = 2 fx(tMzM + zM1zM2) tan(�B) = fxA0,

which is the same as (22).

B. Free-fall frame

It is instructive to describe the interferometer operation
from the vantage point of the free-falling neutrons. In the crys-
tal frame, gravity and Coriolis force bend the neutron paths.
In the free-fall frame, the neutrons’ motion is straight; they
cross the interferometer along the same paths they would take
if there were no forces. At the same time, the interferometer
crystals accelerate.

Neglecting the acceleration, the transfer matrix propagat-
ing a neutron in a crystal moving horizontally at constant
velocity is given in Appendix E 1. The result is the same as
the propagation in a crystal that is not in the exact Bragg
condition. The perceived offsets,

θS = − fxtS
2Kz

,

θMi = θS − fx
(
tS

/
2 + zMi + tMi

/
2
)

Kz
,

θAi = θMi − fx
(
tMi

/
2 + zAi + tA

/
2
)

Kz
,

are consistent with the qx j = Kθ j offsets of the arguments
of the transmission and reflection coefficients in Eqs. (19).
Here, S, M1, M2, and A indicate the splitter, mirrors, and
analyzer, respectively, and i = 1, 2 indicates the interferome-
ter arm. These angles are opposite to the deflections fxzX /Kz,
where zX is the distance of the X crystal centroid from the
splitter input. For instance, in the case of the M1 mirror,
zM1 = tS + zM1 + tM1/2. The crystal motion along the crystal
vertical does not affect the neutron propagation.

Two remarks should be made: First, if the interferometer
is free of geometrical aberrations, θA2 = θA1 and the analyzer
misalignment does not depend on the arm considered. Second,
if the interferometer geometry is symmetric, i.e., 2�M = 0,
then θM2 = θM1 and the mirrors are perceived as parallel.
Contrary, if the geometry is skew-symmetric, i.e., 2�M �= 0,
the mirrors are perceived to be misaligned by

θM2 − θM1 = −2 fx�M
/

Kz.

As regards the crystal displacements, the y component is ir-
relevant. The splitter, mirrors, and analyzer are seen displaced

FIG. 3. Perturbations of the base rays due to the action of the
pooled forces. The blue and red lines indicate the first and second in-
terferometer arms, respectively. When the neutron traverses a crystal,
the perturbation comes to a halt, but its velocity continues to change.
The dashed line is the perturbation in free space.

horizontally by (see Appendix E 2)

uS = 0,

uMi = uS − fx
(
2tSzMi + z2

Mi

)
tan(�B)

h
,

uAi = uMi − fx
[
2(tS + zMi + tM )zAi + z2

Ai

]
tan(�B)

h
,

where we neglected the interferometer aberrations and set the
splitter displacement to zero. As discussed in the Appendixes
C 2 and D 4, the crystal propagation stops the neutron fall,
and the diffracting planes are seen as stationary. Therefore,
the crystals’ input and output surfaces are equally displaced.

The analyzer displacement depends on what arm of the
interferometer the neutron goes through, see Fig. 3. The dif-
ference,

�uA = uA2 − uA1 = 4 fxtM�M tan(�B)

h
= 2 fxtM�M

Kz
,

where we used 2Kz tan(�B) = h, is the same as that given
in (23d). The sign is the opposite because, here, �uA is the
difference of the analyzer displacements whereas, in (23d),
�x is the shear between the interfering base rays.

With the adopted sign conventions, each reflection changes
the neutron phase by ±huX , where the plus (minus) sign ap-
plies to the incoming o (h) state, see (C2) and Fig. 2. No phase
delay occurs in the transmissions. For instance, by considering
the outgoing o state, the absolute phase changes along the two
interferometer arms are

φ2 = h(uM2 − uS ), φ1 = h(uA − uM1).

The phase difference is

φ21 = φ2 − φ1 = h

(
uM1 + uM2 − uS − uA1 + uA2

2

)
,

where we heuristically averaged the different analyzer dis-
placements. Carrying out the computations, see Ref. [24],
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we obtain

φ21 = 2 fx(tMzM + zM1zM2) tan(�B) = fxA0,

which is the same as (22).

VI. INTERFERENCE SIGNAL

At the interferometer output port, free-space propagation
separates the o and h states leaving the interferometer into two
spatially localized states, [ψo1(x) + ψo2(x)]|o〉 and [ψh1(x) +
ψh2(x)]|h〉, whose i = 1, 2 components interfere. Traveling
fringes can be observed by varying the optical lengths of
the interferometer arms, rotating the interferometer about the
incoming (horizontal) beam, or altering the spacing or the
Bragg angle alignment of the crystals of a split-crystal inter-
ferometer.

If the detectors count the total particles per time unit the
observed signals are

In =
∫ +∞

−∞
|ψn1(x) + ψn2(x)|2dx = Jn[1 + �n cos(φn)],

(24)

where n = o, h, ψ̃ni(x) are the position representations of the
propagated wave functions (19), and the radius of the initial
single-particle wave functions is equal to the (transverse) co-
herence length of the source.

By using the Parseval theorem and assuming infinite detec-
tors, we can carry out the integration in the momentum space.
Hence,

Jn =
∑
i=1,2

∫ +∞

−∞

∣∣ψ̃ni(q)
∣∣2

dq, (25a)

�n =
∫ +∞

−∞
ψ̃n2(q)ψ̃∗

n1(q)dq, (25b)

�n = 2|�n|
/

Jn, (25c)

φn = arg(�n), (25d)

where the star indicates complex conjugation.
By comparing (19a) with (19b), we see that, omitting

gravity and Coriolis force, maximum visibility is achieved
when the interferometer is free of geometric aberration; that
is, tS = tA, tM1 = tM2, and zA1 = zM2, zA2 = zM2.

The interference term can be written as

�n = exp[i( fxA0 + fxA1 + h�u + β )]

×
∫ +∞

−∞
ei(qx�x+qy�y)X∗

1n(q)X2n(q)|ψ̃in(q)|2dq,

(26)

where X1n(q) and X2n(q) are the products of the coefficients
describing the neutron transmission or reflection by the crys-
tals met along the i = 1, 2 arms, see Eqs. (19).

In Ref. [24] we show that

X∗
1oX2o

X∗
1hX2h

= eiπ , (27)

which proves that arg(�o) and arg(�h) differ by π .

Since X1n(q) and X2n(q) are independent of qy, if ψ̃in(q)
is separable, the integration over qy in (25a) and (25b) gives
Jny = const and

�ny =
∫ +∞

−∞
eiqy�y|ψ̃in(qy − qyn)|2dqy

= exp

(
i fyzD�y − �2y

2�2
0

)
, (28)

where we assumed a Gaussian initial state with a radius equal
to the coherence length �0 and omitted second-order terms.
From (25c) it follows that the �y shear of the interfering
beams causes a loss of the fringe visibility depending on the
source coherence.

Eventually, since X1n(q) and X2n(q) depend on the pooled
forces, the dynamical diffraction contributes to the fringe
phase via the argument of the integral in (26).

VII. CONCLUSIONS

We have been prompted to study the effect of gravity and
Coriolis forces in crystal interferometers by a twofold moti-
vation. First, the measured value of the gravitational phase
shift of the interference pattern was found different from
the theoretical prediction. Since there is no scientific basis
for this difference, it must arise from a neglected effect in
the interferometer operation. Second, in an on-the-way effort
to design, realize, and operate a split-crystal interferometer
operating simultaneously with x rays and neutrons, we need
to master a detailed model of its operation.

We modeled the interferometer by relying on the momen-
tum states and describing the neutron propagation analytically
in terms of the transfer matrix propagating the plane-wave
modes of the input single-particle wave packet. This is the
usual approach to dynamical problems in quantum mechanics
[39] and Bragg atom interferometry [40], and it is known
as Fourier optics in optics [41]. Compared with the previous
analyses [3,15–17,33,42], the Sagnac effect is now integral to
the equations governing dynamical diffraction in the interfer-
ometer crystals.

Here we have introduced the transfer matrices for the
propagation in free space and perfect crystals under the ac-
tion of gravity and Coriolis force. They simplify the study
of multicrystal systems, whose transfer matrix can be built
by assembling them. We were limited to coherent Gaussian
illuminations, but our results can be extended to other ini-
tial wave packets or partially coherent sources and include
monochromators.

If the interferometer geometry is free from aberrations, the
phase shift due to gravity and Coriolis force is proportional
to their projection on the normal to the diffracting planes and
the area of the loop by which the neutron wave function is
returned to the splitter after recombined by the analyzer.

We found that, in aberrated interferometers, gravity and
Coriolis forces make additional contributions to the neutron
phase not previously considered though, compared with the
present uncertainty, they might be negligible.

The interferometer defocus makes a phase contribution
proportional to the area of the loop by which the recombined
neutron returns to the focus after reaching the detector. It
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might be significant if the detector is placed far from the
interferometer.

If the mirrors’ thicknesses do not equal that of the splitter
and analyzer, the neutron perceives the mirrors’ displacements
as different from those of the splitter and analyzer. This dif-
ference makes a phase shift between the interfering waves.

Eventually, the gravity and Coriolis force shear the interfer-
ing waves proportionally to the interferometer skewness. The
difference in the longitudinal acceleration of the o and h states
shifts the phase of the crystals’ reflection and transmission
coefficients.

Neglecting the aberrations, we gave surrogate descriptions
of the interferometer operation. First, relying on geometric
optics, we re-obtained the phase accumulated in each inter-
ferometer arm by integrating the wave number over the arms’
length. This is the standard way the phase shift between the
interfering waves is calculated.

Second, from the vantage point of the falling neutron, the
interferometer mirrors and analyzer tilt and displace. There-
fore, we can switch off gravity and Coriolis force and explain
the phase differences they induce in terms of these tilts and
displacements. This model sheds further light on interfer-
ometer physics, simplifies its description, and might help to
investigate the effect of seismic noise (of natural origin and
man-made) in terms of differential displacements of the crys-
tals.

Propagation in a magnetic field having a constant gradient
is equivalent to propagation under gravity [31]. Therefore,
our formalism can be extended to this case by pooling the
resultant force and keeping track of the neutron spin states.
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APPENDIX A: REPRESENTATIONS OF THE
NEUTRON STATE

This Appendix clarifies the sign and normalization con-
ventions used for the Fourier transform. The position and
momentum representations of the single-particle state |ψn(z)〉
are the superpositions

〈x|ψn(z)〉 = ψn(x; z) = 1

2π

∫ +∞

−∞
ψ̃n(q; z)e−iq·xdq,

and

〈q|ψn(z)〉 = ψ̃n(q; z) = 1

2π

∫ +∞

−∞
ψn(x; z)e+iq·xdx.

The orthogonality and completeness of the 〈x|q〉 =
e+iq·x/(2π ) and 〈q|x〉 = e−iq·x/(2π ) bases are expressed
by the integral representations of the delta distribution

〈q|q′〉 = δ(q′ − q) = 1

4π2

∫ +∞

−∞
ei(q′−q)·xdx,

and

〈x|x′〉 = δ(x − x′) = 1

4π2

∫ +∞

−∞
eiq·(x−x′ )dq.

With the convention adopted for the Fourier transform, the
Fourier transform of �(x) = f (x)g(x) is the convolution

�̃(q) = 1

2π
( f̃ ∗ g̃)(q) = 1

2π

∫ +∞

−∞
f̃ (q′ )̃g(q − q′)dq′.

APPENDIX B: POOLED FORCES

This Appendix explicitly gives the pooling of gravity and
Coriolis force. With some abuse of language, we are terming
it a force. Its dimensions are those of a squared wave number,
but, as the optical axis z is identified with a fictitious time axis,
fn plays the role of a force.

Observing that, apart from the 2h̄ scale factor, the Coriolis
force is

�Kn = Kz[ωyx̂ − [ωx ∓ ωz tan(�B)]ŷ ∓ ωy tan(�B)ẑ],

where n = o, h labels the neutron state, the pooling of gravity
and Coriolis forces can be explicitly written as

fn = m2

h̄2Kz

{(
gx − 2h̄Kzωy

m

)
x̂

+
(

gy + 2h̄Kz[ωx ∓ ωz tan (�B)]

m

)
ŷ

+
(

gz ± 2h̄Kzωy tan(�B)

m

)
ẑ
}
.

It is worth noting that the x component of f is independent of
the neutron state.

The mean and span of the o to h values are

f = fo + fh

2
= m2

h̄2Kz

{(
gx − 2h̄Kzωy

m

)
x̂

+
(

gy + 2h̄Kzωx

m

)
ŷ + gzẑ

}
,

and

�f = fh − fo

2
= −2mωz tan(�B)

h̄
ŷ + 2mωy tan(�B)

h̄
ẑ.

By using ω = 72.7 × 10−6 rad/s, λ = 0.272 nm, �B =
π/4 rad, the magnitude of the Coriolis acceleration is
2h̄Kzω/m = 0.15 m/s2, to be compared with the acceleration
due to the gravity, g = 9.81 m/s2. Also, f ≈ 1.51 × 105 m−2

and � f � 2.3 × 103 m−2.
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APPENDIX C: UNPERTURBED TRAJECTORIES

This Appendix gives the unperturbed trajectories of the o
and h modes in free space and of the guided modes in perfect
crystals.

1. Free space

In the Heisenberg picture, identifying the optical axis z as
the time axis, the time-dependent position operator is xH (z) =
F0(z)†xSF0(z), where xS is the (time-independent) position op-
erator in the Schrödinger picture. Therefore, the unperturbed
neutron trajectories of the o and h modes in free space are
given by the expectation value of Ref. [43]

xH (q; z) = F̃ †
0 (q; z)[−i∇qF̃0(q; z)]

=
[

zq
/

Kz + tan(�B)zx̂ 0
0 zq

/
Kz − tan(�B)zx̂

]
,

(C1)

where [by setting f = (0, 0, 0)] the momentum representa-
tions of F0(z) and xS are (17) and −i∇q, respectively, and we
exploited the diagonality of both to omit the relevant Dirac
deltas.

Since the transfer matrix F0(z) is independent of qy, the y
component of xH (q; z) is null and neutrons propagate along
the x axis. The first term of (C1), zq/Kz, takes the deviation
from the Bragg condition into account. The second term,
±z tan(�B)x̂, gives the horizontal displacements of the o and
h states with velocities ± tan(�B).

The unperturbed trajectories fulfilling the Bragg conditions

〈xH (z)〉 = ±z tan(�B)x̂

are associated with the q = 0 modes or the 〈q〉 = (0, 0) wave
functions; that is, to wave functions having a symmetric mo-
mentum distribution.

2. Perfect crystal

Identifying z as time, the neutron trajectory in a perfect
crystal can be calculated by propagating xS in the same way
as in the free space. Hence, xH (z) = U0(z)†xSU0(z). Omitting
gravity and Coriolis force, the momentum representation of
the propagator,

Ũ0
(
q, q′; z

) =
[

T (η; z) e−ihuR(η; z)
e+ihuR(η; z) T (−η; z)

]
δ
(
q − q′),

(C2)
is given by (12b) where f = (0, 0, 0) and u = u is the (hori-
zontal) crystal displacement, if any.

The trajectories of the (not normalized) guided modes,

|±, q〉 =
[
η ±

√
1 + η2

−1

]
, (C3)

are

〈q,±|xH (z)|±, q〉 = 〈±, q|Ũ †
0 (q; z)[−i∇qŨ0(q; z)]|q,±〉

= ±η tan(�B)z√
1 + η2

x̂, (C4)

where Ũ0(q; z) = Ũ0(q, q; z). Since the transfer matrix is in-
dependent of qy, the y component of the position operator is
null and neutrons propagate in the reflection plane. The guided
modes traverse the crystal at the angles ±�(η) relative to the
diffracting, where [33]

tan(�) = η tan(�B)√
1 + η2

. (C5)

Eventually, the unperturbed trajectories in a perfect crystal
are given by

〈xH (z)〉 = ±
∫ +∞

−∞
ψ̃∗(q; 0)

η tan(�B)zx̂√
1 + η2

ψ̃ (q; 0)dq.

If 〈q〉 = (0, 0), then 〈η〉 = 0 and neutrons propagate parallel
to the diffracting planes. In particular, this statement holds for
the q = 0 modes, which correspond to the base rays.

APPENDIX D: PERTURBED TRAJECTORIES

Here we provide the trajectories, affected by gravity and
Coriolis forces, of the o and h modes in free space and of the
guided modes in perfect crystals.

1. Free space: Exact Hamiltonian

First, we calculate the perturbed trajectory in free space by
using the exact Hamiltonian (4), that is,

Hn = h̄2k2
n

2m
− mg · r − h̄(�r) · kn. (D1)

The Heisenberg equations of the motion for the canonical
momentum and position operators are

h̄∂τ kn = i[kn, Hn] = −∇rHn = mg − h̄(�Kn), (D2a)

h̄∂τ r = i[r, Hn] = ∇kn Hn = h̄2kn

m
− h̄(�Kn)τ

m
. (D2b)

Here, kn = Kn + p and, in the last equations, we approxi-
mated kn by Kn and r by the nth base ray Knz′/Kz = h̄Knτ/m.
Also, we omitted the subscript H indicating the Heisenberg
picture, used τ to indicate the time, and differentiated the third
component of the perturbed and unperturbed trajectories as z
and z′, respectively.

Integrating (D2a) with p(0) = (0, 0, 0), the evolution of
the momentum operator is

kn = Kn + m2gz′

h̄2Kz
− m(�Kn)z′

h̄Kz
, (D3a)

where z′ = h̄Kzτ/m is the unperturbed distance traveled in the
τ time.
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Remembering the relationship between the kinetic, mυn =
m(Vn + v), and canonical, h̄kn, momenta, and observing that

mυn = h̄kn − m(�r) ≈ h̄kn − m(�Kn)z′/Kz

= h̄Kn + m2gz′

h̄Kz
− 2m(�Kn)z′

Kz
, (D3b)

where r ≈ Knz′/Kz are the base rays, we can see that (D3a)
recovers the change of the kinetic momentum correctly.

Using (D3a) in (D2b), where ∂τ = m∂z/(h̄Kz ), and in-
tegrating over z with r(0) = (0, 0, 0), the evolution of the
position operator is

r = Knz′

Kz
+ m2gz′2

2h̄2K2
z

− m(�Kn)z′2

h̄K2
z

. (D3c)

The first term in (D3c) replicates the nth base ray. The
remaining ones are the perturbations due to gravity and the
Coriolis force.

2. Free space: Approximate Hamiltonian

To verify the approximations made, we now solve again
the equations of motion (D2a) and (D2b) by using the approx-
imate Hamiltonian in (5), which is

Hn = h̄2

2m

(
k2

n − 2Kzfn · r
)
. (D4)

The initial conditions are p(0) = (0, 0, 0) and r(0) =
(0, 0, 0). The canonical momentum and position operators
evolve according to (see Ref. [24] for the derivation)

kn = Kn + fnz′ = Kn + m2gz′

h̄2Kz
− 2m(�Kn)z′

h̄Kz
, (D5a)

r = Knz′

Kz
+ fnz′2

2Kz
= Knz′

Kz
+ m2gz′2

2h̄2K2
z

− m(�Kn)z′2

h̄K2
z

. (D5b)

Equation (D5b) is the same as (D3c). When comparing (D5a)
with (D3a), we must observe that the Hamiltonian (D4) is in-
dependent of the neutron velocity υn. Therefore, kinematical
momentum mυn now equals the canonical momentum h̄kn.
Hence,

mυn = h̄kn = h̄Kn + m2gz′

h̄Kz
− 2m(�Kn)z′

Kz
, (D6)

which is the same as (D3b). It is worth noting that this identity
is ensured by the factor of two in the Coriolis term fn · r.

3. Free space: Transfer matrix

To further test the correctness of the transfer matrix in (8a)–
(8c), we now derive the evolution of the position operator via
xH (z) = F (z)†xSF (z), in the same way as we did in Sec. C 1.
Since F̃ (q, q′; z) is not diagonal, we must make explicit that
the momentum representation of the momentum operator is
diagonal. Hence, xS (q, q′) = −iδ(q − q′)∇q.

To make the algebra the simplest, we consider the propa-
gation along the crystal vertical. Hence, the evolution of the
position operator is (see Ref. [24] for the detailed derivation)

yH (qy, q′
y; z) =

∫ +∞

−∞
F̃ †

yn(qy, q′′
y ; z)[−i∂q′′

y
F̃yn(q′′

y , q′
y; z)]dq′′

y

=
(

qyz

Kz
+ δny

)
δ(qy − q′

y),

where F̃ †
ny(qy, q′′

y ; z) = F̃ ∗
ny(q′′

y , qy; z) and we exploited its di-
agonality to omit the relevant Dirac deltas. The first term,
qyz/Kz = h̄qyτ/m, is the displacement in the z = h̄Kzτ/m
time due to the initial velocity h̄qy/m. The second term, δny =
fnyz2/(2Kz ), is the fall in the same time due to the acceleration
h̄2Kz fny/m2.

4. Crystal

To calculate the perturbed trajectories in a perfect crystal,
we need to write the Hamiltonian in (11) as

H = h̄2Kz

m
[qx tan (�B)σ3 − (f · r)σ0 − υσ1], (D7)

where σ j are the Pauli matrices [44], σ0 is the 2 × 2 unit
matrix, f = ( fx, fy), we neglected the difference between the
Coriolis force acting on the o and h states, multiplied both
sides of (11) by h̄2Kz/m, and identified (h̄2Kz/m)∂z with h̄∂τ .

Solving the equation of the motion (D2a) and (D2b) with
qH (0) = q0σ0 and xH (0) = (0, 0)σ3, the evolutions of the mo-
mentum and position operators is

qH (z) = (q0 + fz)σ0, (D8a)

xH (z) = z tan(�B)x̂σ3. (D8b)

Since the Hamiltonian (D7) is independent of qy (owing to
the first-order approximation the kinetic term h̄2q2σ0/(2m)
has been omitted), the y component of the position operator,
yH (z) = 0, is a constant of the motion. For the same reason, in
(D8b), the q0xzσ0/Kz term is missing. The exp[−iq2z/(2Kz )]
factor has been added to the transfer matrix Ũ (q, q′; z) in
(12b) to correct this faulty consequences.

The expected values of the momentum and position of the
guided modes (C3) are

〈q,±|qH (z)|±, q〉 = q0 + fz, (D9a)

〈q,±|xH (z)|±, q〉 = η(η ±
√

1 + η2) tan(�B)z

1 + η(η ±
√

1 + η2)

≈ ±η tan(�B)z√
1 + η2

, (D9b)

where the approximation made holds about η = 0 to the order
η3.

The discussion that follows (C4) is still relevant: The
guided propagation prevents the neutron from falling along
the x axis. It is important to note that the deviation from
the unperturbed path comes from the (second order) kinetic-
energy term of Hamiltonians (D1) and (D4). Thus, the absence
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of deviation results from the first-order approximation used to
obtain (D7). We should take note that the conflicting velocity
changes, h̄ fxt/m and h̄ fyt/m, persist because they are first-
order effects.

APPENDIX E: FREE-FALL FRAME

This Appendix supports the description of the interferom-
eter operation using a freely falling frame, where the neutron
motion is straight, but the interferometer crystals accelerate.
First, neglecting the acceleration, we calculate the transfer
matrix propagating the neutron through a crystal moving at
constant velocity. Next, we calculate the displacements of the
accelerating crystals when the neutron reaches them.

1. Galilei boost

Let −v0 be the instantaneous velocity of a generic in-
terferometer crystal (splitter, mirror, or analyzer) as seen in
the free-fall frame. The operator making the Galilean trans-
formation of the quantum state taking the position vector
r′ = r − v0τ in the free-fall frame into r in the crystal frame
is [29,45,46]

ψ̃ ′(q; z′) = eipz0z
∫ +∞

−∞
G(q, q′)ψ̃ (q′; z)dq′

= eipz0zψ̃ (q + q0; z), (E1)

where h̄p0 = mv0 = h̄(q0, pz0).
Therefore, in the momentum space, the desired operator is

represented by

G(q, q′) = δ(q′ − q − q0), (E2)

and the transfer matrix of the moving crystal is

Ũ ′(q, q′; t
) =

∫ +∞

−∞
G−1(q, q′′)Ũ0(q′′; t )G(q′′, q′)dq′′

= Ũ0(q − q0; t ), (E3)

where the transfer matrix of the perfect crystal Ũ0(q; z) =
Ũ0(q, q; z) is given by (C2).

The transfer matrix Ũ ′(q, q′; t ) propagates the neutron in a
perfect crystal that is rotated about the crystal vertical by the
angle [37]

θ = −q0x
/

Kz. (E4)

2. Crystal displacements

In the free-fall frame, indicating by zB the gap between
two generic interferometer crystals A and B, the horizontal
displacement of B’s input,

uB = uA − mvAzB

h̄Kz
− fxz2

B

2Kz

= uA − 2qAzB tan(�B)

h
− fxz2

B tan(�B)

h
, (E5)

is opposite to the horizontal fall in the τB = mzB/(h̄Kz ) time,
see Fig. 3.

As shown by the discussion following (D9b) and (C4) and
in Fig. 3, the propagation in a crystal occurs parallel to the
diffracting planes. Therefore, no crystal motion occurs in the
transit and the displacements of the input and output faces are
the same. For this reason, in (E5), uA is the displacement of
both A’s input and output.

According to (D9a), the horizontal velocity at A’s out-
put (also known as the instantaneous velocity of its output
surface as seen by the falling neutron) is changed to vA =
v0 + h̄ fxtA/m = h̄qA/m, where v0 is the input velocity and
tA is the thickness. Therefore, the second term of (E5) is
opposite to the neutron displacement in the τB time because
of this initial velocity. The last term is the fall because of
the acceleration fx h̄2Kz/m2, see (7). Eventually, we used the
relationship 2Kz tan(�B) = h.

Setting the displacement of the splitter (input and output)
to zero and applying (E5), the mirrors’ displacements are

uMi = − fx
(
2tSzMi + z2

Mi

)
tan(�B)

h
,

where we used uS = 0, v0 = 0, and qS = fxtS . The analyzer
displacement,

uAi = uMi − fx
[
2(tS + zMi + tMi )zAi + z2

Ai

]
tan(�B)

h
,

is again obtained by application of (E5), where uA = uMi and
qA = fx(tS + zMi + tM ). It is worth noting that, as shown in
Fig. 3, the displacement of the analyzer depends on which
arm, i = 1, 2, is traveled.

APPENDIX F: DEFINITIONS

Symbols have been defined at their first occurrence. How-
ever, since our subsequent paper [13] consistently uses the
same symbols and to avoid readers having to go back and forth
to search for each symbol, Table I provides a list of symbols.
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TABLE I. List of the main symbols.

x̂ Normal to the diffracting planes ŷ Normal to the reflection plane
(horizontal) (vertical)

ẑ Normal to the crystal surface (optical axis) r = (x, z) Position vector
x = (x, y) r component orthogonal to ẑ h = −2π x̂/d Reciprocal vector
d Diffracting plane spacing Ko, Kh Kinematical wave vectors, see (2)
p = (q, pz ) Wave vectors’ deviation from Koh, see (3a) q = (qx, qy ) Variable conjugate to x

kn = Kn + p Wave vectors of the q modes �B Bragg angle, see (2)
γ = cos(�B) Director cosine 2K sin(�B ) = h Bragg law
Kz = K cos(�B) z component of Ko,h Kx = K sin(�B ) x component of Ko,h (modulus)
m Neutron mass h̄ Reduced Planck’s constant
ω = (ωx, ωy, ωz ) Earth’s angular velocity, see (4) � matrix representation of ω×
g = (gx, gy, gz ) Acceleration due to gravity 2h̄(�Kn) Coriolis force (approximation)
h̄2Kzfn/m Pooled forces, see (7) f = (fh + fo)/2 Mean of the pooled forces
2�f = fh − fo Difference of the pooled forces fn = ( fx, fny ) fn projection in the xy plane
δnp = fnz Transferred momenta, see (9a) δnr = (δnp)z Base-ray perturbations, see (9b)
−K2χ0,h Fermi pseudopotential u Effective lattice displacement,

(Fourier components) see (14a)
�0 Coherence length υ = χ±hK/(2γ ) Coupling coefficient, see (11)
ζ = πz/�e Dimensionless propagation distance, η = �e tan(�B)p/π Dimensionless resonance error,

see (13a) and (13b) see (13a) and (13b)
�e = λγ /|χh| Pendellösung length tS, tM1, tM2, tA Crystal thicknesses
tM = (tM1 + tM2)/2 Mean mirror thickness 2�21 = tM2 − tM1 Differential mirror thickness
zM = (zM1 + zM2)/2 Mean mirror distance 2�M = zM2 − zM2 Skewness, see (20b)
�z Defocus, see (23a) �x, �y Interfering-wave shear, see (23d)–(23f)
A0,A1 Areas of the interferometer and detector loops, see (21) and (23b)
θ Rotation angle about ŷ, see (14b) |ψin〉, |ψout〉 Initial and final states, see (16a)
ψ̃n(q; z) Partial Fourier transform of ψn(x; z), see (3b)
R(η; z), T (η; z) Reflection and transmission coefficients, U (z), F (z), X1, X2 Transfer matrices,

see (13a) and (13b) see (12b), (17), (16b), and (16c)
n = o, h State components (label) i = 1, 2 Interferometer arm (label)
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