
27 April 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

MQTT Based Calibration Service / Francese, Claudio. - (2022).
Original

MQTT Based Calibration Service

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/75179 since: 2023-01-12T14:26:35Z

Claudio Francese

MQTT Based Calibration Service

T.R. 16/2022 March 2022

I.N.RI.M. TECHNICAL REPORT

2

Abstract
This report describes the study and the implementation of a prototype of a modular, distributed flexible
software for Calibration Laboratories.

The aim of the software is the separation of the tasks involved in laboratory activities, i.e. measurement,
data management, certification, ISO17025 compliance, etc.

The modular architecture of the software and the use of the MQTT protocol for process communication are
suitable for the geographical distribution of the tasks over many laboratories, possibly in different
locations.

Contents
Abstract ... 2

Simplified laboratory model .. 4

Software Architecture ... 4

Base node architecture and resources .. 5

Base node communication functions .. 5

Base node operation functions ... 6

Base node capabilities ... 6

Nodes integration in the system ... 7

MQTT message queue exchange protocol .. 7

Data format ... 9

Message types ... 9

System handshaking .. 11

Joining to the networked services ... 11

Implementation of the system .. 11

Base service software of the interconnected nodes ... 11

Implementation of derived nodes ... 13

webd – user interface node ... 13

ctrld – system controller .. 13

datad – data storage .. 13

tpld – template based document generator ... 14

logd – logbook access .. 14

cald - calibration node ... 14

labd - Virtual instrumentation node .. 14

Abstraction layers for the instrumentation virtualization ... 15

3

Voltage measurements – Virtual DMM ... 16

Bibliography ... 18

4

Simplified laboratory model
The simplified model of the ordinary tasks of a Calibration Laboratory can be divided into two main areas,
the Calibration Activity and the Laboratory Maintainance.

FIGURE 1 - SIMPLIFIED MODEL OF THE LABORATORY ORGANIZATION

In ordinary calibration activity, upon receiving a calibration request and the instrumentation to be
calibrated, a measurement and data processing tasks start according to the criteria defined by the
calibration procedures and laboratory documentation. The requested measurement traceability is
guaranteed by calibration certificates of the Laboratory instrumentation and standards. At the end of data
collecting and processing, calibration certificates are issued according to the Calibration Procedures and
Certificates Templates ISO-17025 compliant which are accepted by the institutional Quality System. Every
relevant event in the activity is registered in a logbook.

Software Architecture
As shown in Figure 1, the laboratory maintainance and calibration process are composed of many tasks
with different kinds of access to data and resources, both physical (i.e. instrumentation) and abstract (i.e.
procedures, templates, etc). For this reason the software is divided into abstraction layers, each using the
specific resources and providing generic resources to the other layers. The used communication protocol
for message exchange must be implemented in every node for the system to operate. Additional protocols
can be implemented for specific requirements, e.g. access to physical measurement instrumentation
trough USB, IEEE488, RS232, etc.

In every module of the system some common base functionalities are implemented thus allowing the
integration with existing modules. The depicted behavior is based on an Object Oriented Programming

Calibration

Measurements
and data processing

Instruments

Certificates
Registration

Logs
&

Documents

Calibration
requests

Calibration
Certificates

Standards

Instruments

Equipment Documentation

Traceability & equipment

Calibration
Procedures

Document Templates

Software

Tangible objects

Intangible elements

Quality compliance elements

Maintainance

5

model which allows to implement the common functions in a superclass and the specialized functions, i.g.
measurements, in derived classes.

The below picture shows how the main modules of the software are organized

FIGURE 2 - SOFTWARE ARCHITECTURE

The chosen programming language to develop the prototype is Python 3.9 which in object oriented and
offers a wide range of libraries for instrumentation, parallel processing, data processing and networking.
Although the general concepts described in this report do not depend on the programming language and
support libraries exist for many languages, the shown examples and code snippets are written in Python for
simplicity.

Base node architecture and resources
The base behavior of a node connected to the system is defined as follows.

Base node communication functions
The base user-callable functions defined by the superclass allow the nodes to communicate and are used to
control the execution of the internale tasks. The base functions are

Name Description

Send Used to send a message to one or more nodes of the system

RequestAndWait Send a request to one or more nodes and wait for a reply until timeout

DMM
Switch
matrix

Env.
parameters

Guest OS drivers

Instruments Abstraction

USB IEEE488

labd

Virtual instrumentation

datad

Database drivers

Data access

cald

Scheduler

Calibration
Procedures

Calibration operations

logd

Laboratory logbook

Event monitor

User annotations

docd

Document generation

Template engine

Data access

Physical layer

Management layer

Operation layer

Devices under cal. Standards

webd

Web server

Control

 User interface

6

Reply Used to reply to a received request

Dispatch Used to forward a request to other nodes. This function is used by nodes
which act as data collectors from other subnodes.

TABLE 1 - MESSAGING FUNCTIONS

Base node operation functions
Other user-callable low level functions related to the node operation are

Name Description

ping Used to check whether a node is operating

map Used to request a node the list of capabilities

stop Used to terminate the excution of a node

Base node capabilities
The capabilities list defines a list of messages which can be accepted by the node. This allows a new nodes
to be connected to a running system and “teach” the surrounding nodes how to request the execution of
their functions. Every capabiliy entry has a textual identifier, a textual description, an optional set of
parameters. Each listed capability is implemented in the specialized class of the module and the modules
using that capability as well – unless the function has been already implemented in the superclass for
common tasks.

The base capabilities defined in the superclass are a subset of the implemented functions as show in the
table below.

Identifier Returned textual description Description of the capability

stop Stop the service The node is able to terminate

map List capabilities The node is able to return the list of capabilities

As depicted in Figure 4, when specializing the superclass for a specific task, the implemented functionalities
and capabilities list are extended as well.

FIGURE 3 - ARCHITECTURE OF A NODE

Available
Capabilities

Communication
protocol

and
base functions

Specific
Functions

Superclass

Derived class

7

Nodes integration in the system
The nodes exchange messages through a network connection, this allows the system to be easily
distributed on remote machines.

Among the available network messaging protocols, MQTT has been chosen.

MQTT message queue exchange protocol
MQTT is a message exchange protocol between networked devices commonly used in IoT devices as it has
small implementation footprint and the capability of handling message queues according to a
subscribe/publish model. The protocol defines the topic concept which every client can subscribe to. Upon
subscription, the client receives messages concerning the specified topics in the message payload section.
Sending data to a topic does not require any subscription instead. In spite of being a high level protocol,
thus the overall behavior of MQTT resembles a pool of devices interconnected by data busses, each bus for
each topic, where all the connected devices receive messages from the bus. Unlike usual bus
implementations, while data receiving requires subscription, the devices are allowed to send data on the
other busses.

FIGURE 4 - MQTT PROTOCOL - DATA BUS ANALOGY

The core of the message queue handling mechanism is a server running the so-called MQTT broker which
takes care of receiving the incoming messages and dispatching them to the subscribed clients.

Up to 3 Quality of Service (QoS) level are defined in the protocol depending on the desired reliability of the
message exchange and among the features defined in MQTT which can be found in [1], the protocol also
implements Retained Messages which are kept in memory by the broker until new messages are received.
This allows to update the new subscribing clients with the last known state, for example the last
measurement value sent by a device.

A common implementation of a multiplatform MQTT broker is Eclipse Mosquitto, which has been chosen in
this project and deployed in a Linux environment. For security reasons, the Mosquitto instance has been
protected with username and password. The connection is certificate encrypted and the connection is
limited only to local connections (localhost, ip addresses 127.0.0.0/8) during the development.

The used MQTT implementation for Python is paho [2], which is part of the Eclipse IoT Project.

A B C A

MQTT broker
Data bus “Topic 1”

Data bus “Topic 2”

Subscribe
Topic 1

Subscribe
Topic 2

Subscribe
Topic 1

B C

8

The Paho module allows an easy access to the message queue as shown in the following example1.

As the target of the communication is data exchange among the nodes, MQTT itself is only part of the
messaging protocol and an abstraction layer must be defined for the communication to happen without
relying on a specific network protocol or a specific channel implementation. Changing the lower layers of
the messaging mechanism thus means redefining the superclass methods “send”, “reply”, “dispatch”, etc
introduced in Table 1.

FIGURE 5 - COMMUNICATION PROTOCOL ABSTRACTION

1 As during development a self-signed certificate was used, a call to tls_insecure_set(True) was required for the
connection to be established. In production environments, a certificate properly issued by a trusted certification
authority is needed for security reasons and the function call to tls_insecure_set in not required anymore.

import the required modules
import paho.mqtt.client as mqtt
import time

create the MQTT client instance
client = mqtt.Client()

configure the secure connection to the broker (optional, suggested)
client.tls_set(ca_certs = '/some/certificate', tls_version=2)
client.tls_insecure_set(True) # for self-signed certificates
client.username_pw_set('username', 'password')

connect to the broker
client.connect('host name', 'tcp port', 60)

callback function when a connection has been established
def on_connect(client, userdata, flags, rc):
 print("Connected with result code "+str(rc))
 client.subscribe("#")

callback function when a message is received
def on_message(client, userdata, msg):
 print('\r(' + msg.topic + '): ' + str(msg.payload))

associate the callback functions to connection and message events and start the message queue handling loop
client.on_connect = on_connect
client.on_message = on_message
client.loop_start()

do nothing until CTRL+C is pressed, handling is event driven by the callback functions
while True:
 try:
 time.sleep(0.2)
 except KeyboardInterrupt:
 break

stop the message queue handling loop and terminate
client.loop_stop()

Node Messages

Network

Application

MQTT

9

Data format
Data format of the MQTT payload is not strictly defined in the protocol neither there are constraints for the
definition of the protocol used for the inter-node communication, thus a flexible way to describe data is a
textual encoding of a Python object. JSON encoding has been chosen for better compatibility with further
implementations of the system and integration with other programming languages, i.g. ecmascript for web
based nodes.

In all exchanged data messages, binary objects are base64 encoded with the limitation of 256 MB of the
total packet size given by the MQTT implementation of Eclipse Mosquitto.

All the data in the exchanged messages on a given topic are then JSON encoded objects following these
conventions.

Object structure
Mandatory fields Optional fields

The mandatory fields are common to every message and are expected by the receiving nodes.

Field Comments

timestamp Timestamp of message expressed as seconds from the Unix Epoch

UTC Human-readable formatted date and time (UTC timezone)

from Identifier of the sending service/node – used to reply to requests

to Identifier of the receiver for point to point messages.
Broadcast messages are identified by “*”

The optional fields instead vary according to the nature of the message.

Message types
Two types of messages can be sent by the nodes depending on the expected behavior of the receiving
nodes.

Simple message
Simple messages are sent to one or more nodes of the system when no reply is expected. An example is
the system command used by a node to inform the other nodes of its activation. Other notifications include
data coming from a background measurement task or status messages.

Example. A message sent to a node to request it to stop is as follows

Message Python code
Topic Object client.publish(

 'system',
 '{
 "to":"some_node",
 "from":"some_controller",
 "cmd":"stop"
 }')

system to = some_node
from = some_controller
cmd = “stop”

Upon receiving a simple message, the node can send a message to other nodes for logging or debug
purposes although a reply is not expected by the originating node.

10

Example of the notification sent to all the nodes on the “announce” topic upon receiving a “stop” message.

Message description JSON encoded object

Broadcast information to the system {
"message": "bye",
"timestamp": 1645788432.493238,
"UTC": "2022-02-25 11:27:12.493238",
"from": "some_node",
"to": "*"
}

Request message
Request messages are sent on the “request” topic to one or more nodes when a reply is expected by the
originating node.

An example is the map of the nodes currently connected to the system. Upon receiving the map request
every node replies to the sender.

Field Comments
request Text of the request sent to the identified service
requestid ID of the request. The ID is the concatenation of the fields “from”

and “timestamp” separated by “-“

The reply to the request is then sent back to the originating node on the ”reply” topic

Field Comments
requestid ID of the request the reply refers to
reply Text of the reply to the request

The mandatory fields “to”, “from”, “timestamp”, “UTC” are automatically inserted by the communication
methods.

By combining the destination type of messages (single node or broadcast) and the message types, four
communication scenarios are possible.

Sender Receiver

Sender

Receiver 1

Receiver 2

Receiver N

Sender

Receiver 1

Receiver 2

Receiver N

 Point to point request and reply

 Broadcast request and reply

Sender Receiver

 Point to point simple message

 Broadcast simple message

11

System handshaking
Besides the communication protocol and the base behavior of the nodes, some conventions have been
defined for the system to operate.

Joining to the networked services
When a node is added to the system, it sends a greeting message on
the announce topic. The payload of the message contains the name
of the joining node. Announcing to the system allows the system to
start some actions, i.e. asking the node to provide further details or
sending initialization commands which depend on the current state
of the system or logging the event.

Implementation of the system
All nodes connected to the system share a common architecture and are implemented as derived classes
from the parent class BaseService.

Base service software of the interconnected nodes
The methods defined by the superclass BaseService handle the message exchange in both directions as
described in the previous sections thus reducing the specialization of the derived classes to the core
functionalities which are needed.

For the complete system operation the following behavior has been defined upon creation of an instance of
the BaseService class

• the base YAML configuration file is loaded – e.g. for MQTT connection parameters
• a connection to the MQTT broker is executed
• the node subscribes to the “system”, “request” and “reply” topics which are used to handle

incoming messages

The base initialization code in the BaseService class is

class BaseServiceClass:
 config = {}
 subscriptions = []
 handlers = {}
 client = None
 running = True

 def __init__(self, options = {}):
 '''
 Class constructor
 :param options: service configuration
 '''
 self.config = options

 # Service name, used for addressing in messages
 self.servicename = self.config.get('servicename', None)

 # Raise an exception is no service name was specified
 if None == self.servicename:
 raise Exception("Missing 'servicename' option in BaseServiceClass constructor call")

 # Merge the read options from the configuration file to the options passed to the constructor
 self.configpath = options.get('configurationpath', configurationpath)
 for key, value in yaml.safe_load(open(self.configpath + "baseconfiguration.yaml", "r")).items():
 self.config[key] = value
 . . .

Announce message

Running system

New node

12

After configuring the service, the connection to the broker is established, the connect and message callback
function are registered, and the message queue loop is started.

An instance of the superclass itself can be easily created for test purposes as well.

Thus, the node identifies itself as “testnode” and it provides the base capabilities defined in the superclass.

 # create an instance of the mqtt client from the paho module
 self.client = mqtt.Client()

 # configure the secure connection to the broker
 if 'ca-cert' in self.config.get('mqtt', {}):
 self.client.tls_set(
 ca_certs=self.config['mqtt']['ca-cert'], tls_version=2)

 if 'secure' not in self.config.get('mqtt', {}):
 self.client.tls_insecure_set(True) # needed for self-signed certificates

 if 'username' in self.config.get('mqtt', {}) and 'password' in self.config.get('mqtt', {}):
 self.client.username_pw_set(
 self.config['mqtt']['username'], self.config['mqtt']['password'])

connect to the MQTT broker
 try:
 self.client.connect(
 self.config['mqtt']['hostname'], self.config['mqtt']['port'], 60)
 except ConnectionRefusedError:
 pass

 # Callback functions

 # callback functions for incoming messages and connection/reconnection to the mqtt broker
 self.client.on_message = self.on_message
 self.client.on_connect = self.on_connect

 # subscribe to the 'system' topic
 self.subscribe(topic_SYSTEM)
 self.subscribe(topic_REPLY)

 # start the message queue handling loop
 self.client.loop_start()

import time

start the service
service = BaseServiceClass ({'servicename': 'testnode' })

idle until service is running. Stop the service on CTRL+C
while service.running:
 try:
 time.sleep(0.5)
 except KeyboardInterrupt:
 service.stop()

print('done.')

13

Implementation of derived nodes
Given the description of the base superclass and the system overview, the following sections show a
possible implementation of the required modules of the system.

The needed elements for the system to operate are

• webd - user interface node acting as a bridge between the user and the system
• ctrld - control node which acts as a monitor of the system
• cald - calibration node sending measurement requests and processing measurement data
• labd - one or more nodes performing the measurements over possibly many laboratories
• datad - storage node used to keep track of measurements, certification data and events
• tpld - template engine used to produce quality compliant documents and calibration certificates
• logd – logbook management node for event tracking

webd – user interface node
The node acts as a gateway between the network protocol used by the system and a higher level protocol
for the system management. The chosen protocol is https and the user interface is implemented in html,
javascript /jquery thus giving access from virtually any web browser with a responsive behaviour. The
chosen solution has some advantages over other access models (i.g. client server model through a
dedicated user interface application running on the users computer)

• Filtering of the functionalities is embedded in the node, this allow not to expose all the functions
available thus giving a higher security level

• No software is needed on the client computer
• Network access through a well-known TPC/IP port enhances compliance to local network access

policies and overall network security

ctrld – system controller
The node presents itself as a single entry point controlling the system. Although all the connected nodes
can send and receive messages, having a single node to exchange messages with offers the following
advantages

• Abstraction of the implementation of the system, thus offering higher level functionalities like
overall status report, starting / stopping calibration tasks (which instead would involve
communication with many nodes), etc. This eases interfacing with other software and
programming language compatibility exposing an API to the developer

• Enhanced security by isolation of functions offered by the single nodes, by exposing only a subset
of the system and single nodes capabilities

datad – data storage
The node gives access to data storage, implemented in a Postgresql database, in order to persist data. The
database stored information are

• Measurements results
• Measurement configurations
• Calibration Certificates data
• Logbook entries
• Historical information about measurands

14

The storage node subscribes to topics where data to be recorded are sent, for example the topic “meas” for
measurement results. This approach enhances scalability as data from new measurement nodes are
automatically recorded provided the new node sends results on the “meas” topic.

tpld – template based document generator
The node is used to generate documents (Calibration Certificates, periodic reports, logbook, etc) by
automatically filling-in the available document templates. The advantages of this approach with respect to
manually typing the information are

• Compliance to the official documentation format
• Reduced typing errors
• Reduced editing time and batch capabilities

logd – logbook access
The node gives access to the laboratory event logbook requested for Quality compliance. Besides the
automatically generated events (i.g. a calibration job has started) other events can be manually added by
when needed. This approach has the following advantages over a paper logbook.

• All the logbook entries can be easily searched by specific criteria
• The log may contain the configuration of the instrumentation used during a calibration, thus

reducing transcription errors
• References to log entries can be used track a calibration process and ease customer management

(i.g. event in receiving the measurand, parameters used the calibration, certification reference and
delivery details)

• Many ordinary tasks can be automatically logged reducing oversights risks

cald - calibration node
The calibration node coordinates all the tasks which are performed by the system when a calibration is
requested. Its capabilities are

ID Description

status Report the status of the system (including the status of single nodes)

checkin Register an incoming DC voltage standard in the laboratory and connect it to a given
measurement terminal including the requested calibration specification

checkout Free a registered DC voltage standard for delivery

jobs Set the measurement slots

Registering a DC Voltage Standard and calibration requirements, instructs the node about the needed
measurement steps to perform the task. When the calibration slot is reached, according to the
programmed jobs plan, the node sends the commands to the relevant nodes of the system.

labd - Virtual instrumentation node
Using the described approach allows to define a service which abstract the measurements which can be
performed inside the laboratory. Even when an instrument, i.g. a DMM, is substituted with a different
brand and model, the affected node can keep supplying measurement data compatible with the existing

15

system and only a part of the software of that node must be modified in order to handle the possibly
different communication with the instrument.

As the paradigm of the virtual instrument must not depend on the different physical instruments,
connections types to the node (i.g LAN, USB, IEEE488, serial, etc) and physical instrument behavior, the
needed abstraction layer must take into account the communication with the instruments as well.

Abstraction layers for the instrumentation virtualization
Abstraction of tasks has been chosen to better integrate third party instruments into the system and to
increase the overall reliability. Separation of the functions also allows to distribute the operations among
different hardware nodes, for example taking measures from different laboratories or distributed sensors.

In this scenario, every node contributing to a measurement task or using measurement data subscribes to a
dedicated topic, for example “meas” and it performs only the pertinent operations sending its measurement
result to the “meas” topic.

In the example below, two measurement systems are present in two separate laboratories, bot subscribed
to the “meas” topic. A system controller connected to the network triggers thermal or electrical
measurements by sending simple messages on the “meas” topic. In one of the two laboratories a data
logger is connected to the network as well and it subscribed to the “meas” topic. When one oth the two
measurement nodes receives a trigger message from the controller it starts a measurement and when data
are available, it sends the result on the “meas” topic. Finally, measurement sent on the network are then
stored by the data logger which is waiting for messages on the “meas” topic.

FIGURE 6 - EXAMPLE OF DISTRIBUTED MEASUREMENTS

Data logging

Electrical
measurements

Subscribed to “meas”
Ignore “read voltage”
Execute “read temperature”

“meas” topic

Message “read temperature” Message “read voltage”

Laboratory 1

Subscribed to “meas”
Execute “read voltage”
Ignore “read temperature”

Laboratory 2

Thermal
measurements

Subscribed to “meas”
Store measurements

16

FIGURE 7 - VIRTUAL INSTRUMENTATION - LABD

In the end the Virtual Instrumentation node abstracts the “instrument able to perform all the needed
measurements”. This means than the module can be run on different computers, possibly in different
locations, as already shown in the example in Figure 6.

For the INRIM DC Voltage Standard laboratory, the following quantities must be measured

• The DC voltage of a given voltage standard with different electrical configurations
• The environmental parameters in the laboratory during the measurements

The following picture shows the physical instruments are connected.

FIGURE 8 - DC VOLTAGE LABORATORY INSTRUMENTATION

Voltage measurements – Virtual DMM
As Figure 8 shows, the voltage measurements are performed by a DMM which is connected to two low
thermal e.m.f. matrixes which are used to select any of the voltage outputs of any of the connected DC
voltage standard. The implementation of the Virtual DMM allows to define a multiple inputs DMM

DMM Switch
matrix

Env.
parameters

Guest OS drivers

Instruments Abstraction

USB IEEE488
labd

Virtual instrumentation

732A 732B 732C 4910

Matrix

2 DMM PC Mon.
NTC

Connection terminals

Measurement channels @1 V

Measurement channels @10 V

To channel 32

IEEE488

Env.
datalogger

USB

Matrix

1

17

composed of the DMM and the two matrixes. As the measurement can be performed with different
integration times and resolution, those parameters are available in the Virtual DMM. Another feature of
the instrument is the measurement technique relevant for calibration purposes and the ability to set the
matrix in order to perform reverse polarity commonly used in DC measurements for the reduction of the
effect of parasitic thermal e.m.f.

The above requirements take to the definition of the Virtuall DMM which exposes the following
capabilities, available by sending messaged on the “meas” topic to the node.

ID Description

measure Perform a configured measurement

repetitions Set the number of repeated measurements

NPLC Set the integration time

Ndigits Set the number of digits

mode Set the measurement mode (absolute, differential)

pol Set the measurement polarity (+ / -)

src Set the voltage standard ID (two standards for differential measurements)

Available measurements, triggered by the “measure” message, are then sent to the “meas” topic as a
measurement result with the following format (mandatory fields are omitted for clarity).

Field Description
DC-measurement Measured value
OriginUID Unique ID of the measurement node (laboratory ID, computer name, node name)
NPLC Used integration time

mode Used mode (absolute, differential)

pol Measurement polarity

src ID of the measured standard (two for differential measurements)

V1

V2 M
at

rix

DMM

Differential measurement V1-V2

V1

M
at

rix

DMM

Absolute measurement V1

18

Bibliography

[1] MQTT.org, "MQTT: The Standard for IoT Messaging," 2022. [Online]. Available: https://mqtt.org/.

[2] "paho MQTT," 2022. [Online]. Available: https://www.eclipse.org/paho/.

	Abstract
	Simplified laboratory model
	Software Architecture
	Base node architecture and resources
	Base node communication functions
	Base node operation functions
	Base node capabilities

	Nodes integration in the system
	MQTT message queue exchange protocol
	Data format
	Message types
	Simple message
	Request message

	System handshaking
	Joining to the networked services

	Implementation of the system
	Base service software of the interconnected nodes

	Implementation of derived nodes
	webd – user interface node
	ctrld – system controller
	datad – data storage
	tpld – template based document generator
	logd – logbook access
	cald - calibration node
	labd - Virtual instrumentation node
	Abstraction layers for the instrumentation virtualization
	Voltage measurements – Virtual DMM

	Bibliography

