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Abstract
Physical reservoir computing (RC) represents a computational framework that exploits
information-processing capabilities of programmable matter, allowing the realization of
energy-efficient neuromorphic hardware with fast learning and low training cost. Despite
self-organized memristive networks have been demonstrated as physical reservoir able to extract
relevant features from spatiotemporal input signals, multiterminal nanonetworks open the
possibility for novel strategies of computing implementation. In this work, we report on
implementation strategies of in materia RC with self-assembled memristive networks. Besides
showing the spatiotemporal information processing capabilities of self-organized nanowire
networks, we show through simulations that the emergent collective dynamics allows
unconventional implementations of RC where the same electrodes can be used as both reservoir
inputs and outputs. By comparing different implementation strategies on a digit recognition task,
simulations show that the unconventional implementation allows a reduction of the hardware
complexity without limiting computing capabilities, thus providing new insights for taking full
advantage of in materia computing toward a rational design of neuromorphic systems.

Supplementary material for this article is available online

Keywords: physical reservoir computing, neuromorphic computing, memristive networks,
self-organized systems, emergent dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

The development of new hardware platforms for computing
relies on exploring and exploiting the relationship in between
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title of the work, journal citation and DOI.

new device physics and information-processing capabilities
[1]. Indeed, physical laws regulating a wide range of phys-
ical systems not conventionally used for computation have
been proposed for energy-efficient hardware implementation
of machine-learning calculations [2, 3]. In this context, reser-
voir computing (RC) have been recently proposed as a versat-
ile computing paradigm suitable for hardware implementation
where complex dynamics of physical systems are exploited
for information processing [4, 5]. Derived from recurrent
neural networks models such as echo state networks [6] and
liquid state machines [7], RC represents a computational
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framework for efficient temporal/sequential data processing
that endows fast learning and low training cost. These char-
acteristics makes RC suitable for a wide range of real-world
applications including signal processing, robotics and sensory
devices in the framework of edge computing.

The basic concept of RC is related to the exploitation of
intrinsic dynamics of a reservoir to project the input in a fea-
ture space, where learning is outsourced to a readout stage.
This means that only the readout needs to be trained, while no
training is required for the reservoir. For this purpose, a wide
range of physical dynamical systems have been proposed for
in materia implementation of the reservoir, differently from
conventional reservoirs where dynamics are simulated on a
computer [4, 5]. In other words, physical RC explores the
computational power of physical systems to process inform-
ation. In this context, implementation of physical RC have
been demonstrated in a wide range of mechanical devices [8],
photonic chips [9, 10], spintronic oscillators [11], ionic liquid-
based systems [12], field programmable gate arrays [13] and
devices based on 2D materials [14].

Among electronic-based systems, neuromorphic devices
and non-von Neumann architectures based on memristive
devices have shown their potentiality for in materia [15]
reservoir computing. By coupling ionics with electronics,
the internal state of memristive systems depends on the his-
tory of applied voltage and current, allowing processing of
the input signal in a history-dependent and highly non-linear
fashion [16]. For this reason, internal ionic dynamics has
been exploited for the realization of memristor-based reser-
voirs able to process information in the temporal domain.
Besides memristive reservoirs realized by organizing group of
memristive cells in crossbar arrays with a top-down approach
[17–21], RC have been demonstrated in self-organized [14]
memristive nanonetworks by exploiting emergent dynamics
of the system as a whole [3, 22–31]. In this case, where the
emergent behavior arises from the memristive interaction of
a multitude of interacting nano-objects [32–38], no fine tun-
ing of network elements is required. While pioneering works
reported physical implementation of RC by exploiting the
complexity provided by physical substrates based on atomic
switch networks [39] or carbon nanotubes [40, 41], the RC
paradigm has been then shown to be implementable in a wide
range of self-organized networks including networks of core–
shell nanoparticles [42], molecular neuromorphic networks
[29], and organic electrochemical networks [43, 44]. In addi-
tion, RC systems based on self-assembled nanowire (NW)
networks have been demonstrated to be effective for a wide
range of computing tasks including waveform generation [28,
39], logic operations [26], pattern recognition [3], speech
recognition [25, 30], time series prediction [3], tactile sens-
ing object classification [28]. For these purposes, different
strategies for implementation of RC have been reported.

In this work, we report and compare different strategies
for in materia RC with self-organizing memristive networks.
Simulations show that the emergent dynamics of the system
arising from the mutual interaction among a large amount
of memristive elements allows unconventional implementa-
tion strategies of RC, including the possibility of using the

same electrodes as both reservoir inputs and outputs. As
shown by investigating the internal dynamics of the system
through simulations during a pattern recognition task, it is
shown that a rational implementation of RC allows a reduc-
tion of the hardware complexity without affecting computing
capabilities.

2. Results

2.1. Memristive nanonetworks as physical reservoirs

Self-organized memristive NW networks can be realized by
randomly dispersing NWs in solution on an insulating sub-
strate by means of drop casting. A representative image
acquired through scanning electron microscopy of a memrist-
ive Ag NW network is reported in figure 1(a). These memrist-
ive NW networks have been shown to fulfill the requirements
of a physical reservoir including high dimensionality, non-
linear dynamics and fading memory [3, 24] (refer to [4] for a
detailed description of requirements of a physical reservoir).
These properties arise from the emergent memristive beha-
vior of the network related to the mutual interaction of a large
number of memristive NW junctions. Indeed, due to the net-
work connectivity, the interaction in betweenmemristive junc-
tions is responsible for the emergence of spatially correlated
structures of network activity that depend on the spatial loc-
ation and temporal sequence of electrical stimulations [32].
In particular, the memristive behavior at the NW intersec-
tions is regulated by resistive switching effects associated to
the electromigration of Ag+ ions to form Ag conductive fil-
ament across the polyvinylpyrrolidone (PVP) insulating layer
(thickness of ≈1–2 nm) that surrounds the NW inner cores,
as schematically depicted in figure 1(b) [32]. The switching
mechanism related to Ag dynamics is volatile [45–47], mean-
ing that the conductive filament at the intersection in between
NWs spontaneously dissolves after stimulation. The compet-
ition in between filament formation and spontaneous dissol-
ution at NW junctions leads to an emergent potentiation of
the network under voltage pulse stimulation with progressive
increase of device conductance and subsequent network relax-
ation to the ground state. Indeed, while temporally correlated
voltage pulses applied in between two areas of the network
as reported lead to a progressive increase of the effective net-
work conductance (and thus flowing current) (figure 1(c)), a
progressive relaxation to the ground state can be observed by
monitoring the effective conductance with a low read voltage
after relaxation (figure 1(d)). In other words, the memristive
network state depends not only on the programming pulses by
also on the history of pulses applied in the past. In this con-
text, the interplay in between potentiation and spontaneous
relaxation of different network areas through stimulation of
spatiotemporal voltage pulse patterns in multiterminal config-
urations have been exploited for non-linear transformation of
the input signals in the context of unconventional computing
[3]. Notably, experimental results have shown that network
dynamics can be regulated from the µs up to the hundreds of
seconds timescale depending on the stimulation conditions [3,
32].
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Figure 1. (a) Representative image of a memristive NW network through SEM (scale bar, 10 µm) and (b) schematic representation of the
resistive switching mechanism occurring at the intersection in between NWs (NW junction), where dissolution and subsequent migration of
Ag+ ions in the PVP shell layers occurs to form a conductive filament bridging the two metallic cores under the action of the electric field.
An example of (c) potentiation during voltage pulse stimulation and (d) subsequent spontaneous relaxation of the NW network effective
conductance in between two areas of the NW network. Potentiation and spontaneous relaxation in two-terminal configuration were
measured by considering Au electrodes separated by ≈7 mm.

Figure 2. (a) Grid-graph abstraction of the memristive nanonetwork
where the interaction in between nodes is provided by memristive
edges. (b) Schematization of a memristive edge where the
conductance G depends on the history of electrical stimulation
according to the potentiation-depression rate balance equation and
the current flow is regulated by the Kirchhoff’s current law.

2.2. Modeling reservoir spatiotemporal dynamics

Modeling of the emergent spatiotemporal dynamics of the
reservoir was performed by mapping the nanonetwork in a
grid-graph model [48], as schematized in figure 2(a). This
model, that approximates the nanonetwork as a continuous
and uniform medium (as expected for high density networks
[49–51]), is based on the parcellation of the network domain
that is then abstracted as a regular grid graph where interaction
in between network areas (nodes) is provided by memristive
connections (edges). A detail of a memristive edge interac-
tion is schematized in figure 2(b), where the edge conductance
depends on the history of electrical stimulation. Dynamics of
each edge can be modeled by coupling an equation for elec-
tron transport with an equation regulating the memory state of
memristive edge. Linear conduction is assumed for electron
transport while a voltage-controlled potentiation-depression
rate balance equation was exploited to model the memory state
of the memristive edge [52].

The current flowing in edge ij is described by the relation:

Iij = [Gmin (1− gij)+Gmax · gij]∆Vij (1)

where ∆Vij is the voltage difference between nodes i and j
acting as driving force, gij is the normalized conductance, and
Gmin,ij andGmax,ij represents the minimum and maximum con-
ductance values, respectively, of the memristive edge. The
memory state dynamics are described through a balance rate
equation:

dgij
dt

= κP,ij (Vij) · (1− gij)−κD,ij (Vij) · gij (2)

where κP,ij (Vij) and are the potentiation and depression rate
coefficients that endow an exponential relationship with the
applied voltage to model the diffusion processes of ionic
species:

κP,ij (Vij) = κP0exp(+ηPVij) (3)

κD,ij (Vij) = κD0exp(−ηDVij) (4)

where ηP,ηD are the transition rates and κP0,κD0 are constants.
Under these circumstances, equation (2) can be recursively
solved as (by considering ∆t> 0):

gij,t =
κP,ij

κP,ij+κD,ij

[
1− e−(κP,ij+κD,ij)∆t

]
+ gij,t−1e

−(κP,ij+κD,ij)∆t (5)

where gij,t and gij,t−1 represent the normalized conductances
at times t and t− 1 of memristive edge ij, respectively.

When a specific area of the network (node) is stimulated by
means of an applied voltage, the conductance of edges of the
network evolves over time giving rise to an emergent collect-
ive behavior of the network that depends both on the spatial
location and temporal sequence of the input signal. Despite
not including the effect of network inhomogeneities, the grid-
graph modeling has been shown to well describe emergent
dynamics of experimentally realized multiterminal memrist-
ive NW networks, including short-term plasticity, pair-pulse
facilitation and heterosynaptic plasticity [3, 48]. For all these
reasons, the grid graph model can be exploited to explore dif-
ferent implementations of RC in memristive nanonetworks,
where device geometry and positions of electrodes acting as
neuron terminals are mapped onto the grid graph topology.
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2.3. Implementations of RC in nanonetworks

Conventional two-terminal memristive devices have been
exploited for the realization of RC systems by exploiting their
internal short-term dynamics [17–20]. In this case, a memrist-
ive device can be considered as a neuron that possesses a
recurrent connection with a synaptic weight less than 1, where
the recurrent node continuously decay its state if a pulse
input is not provided [18]. The reservoir state is represented
by the device conductance. Since each memristive device is
able to process a single input pulse stream, an array of dis-
crete memristive cells is required for solving computing tasks
that require the transduction of the input into multiple pulse
streams. In this case, the reservoir state is represented by the
collective resistance states of the whole set of memristors. A
conceptual schematization of RC implementation in conven-
tional memristive devices is reported in figure 3(a) (config-
uration a). Differently from conventional RC systems based
on two-terminal memristive devices where addressing of each
memristive cell is required, nanonetwork-based RC systems
require accessing the emergent behavior of the whole system
while it evolves under electrical stimulation. For this purpose,
different implementation strategies can be explored as detailed
in the following.

Computing capabilities assessed by means of simulations
have been carried out by considering nanonetwork-based
reservoirs as graphswhere nodes are represented by singleNW
units, while edges represent their memristive interactions [53,
54]. In this framework, specific NW nodes have been allocated
as inputs and outputs of the reservoir. For example, Zhu et al
[34] analyzed through simulations the information processing
capabilities of NW networks by applying an input in form of
a voltage signal in between a couple of selected source and
drain NW nodes (reservoir input nodes), while reservoir out-
puts were recorded at other selected measurement NW nodes.
Similarly, simulations by Fu et al [24] and Hochstetter et al
[37] analyzed the implementation of nonlinear transforma-
tion tasks. While these simulations have strongly contributed
to the understanding of computing capabilities of NW net-
works, it is experimentally unfeasible to access and record
signals from each single NW node in very large networks.
In this context, simulation by Daniels et al [31] reports that
computing capabilities are preserved when considering real-
istic electrodes, showing performances close to upper bounds
achievable by considering information from each wire. With a
similar approach, pioneering works reported an experimental
implementation of RC paradigms in multiterminal devices
based on self-assembled systems where multiple electrodes
allow to access signal from different areas of the networks
[25, 39]. Similarly to simulated multiterminal devices, also
in these works the input in form of a voltage difference was
applied in between selected source/drain nodes, while exploit-
ing remaining electrodes for measuring output signals. Also,
multi-electrode devices based on networks contacted by an
array of input electrodes and an array of output electrodes were
exploited for neuromorphic applications in the work by Diaz-
Alvarez et al [55], where specific combinations of electrodes
can be selected through electromagnetic relays that control the

Figure 3. Conceptual implementation of reservoir computing in
memristive devices. (a) Schematic representation of a RC system
based on conventional two-terminal memristive devices, where the
reservoir state is represented by collective resistance state of a set of
memristive devices. (b) Generic schematic representation of
reservoir computing implementation in a multiterminal device with
distinct sets of electrodes for input and output and (c) schematic
representation of reservoir computing implementation where
electrodes can act both as input and output.

operative input/output channels. The common demonimator
of all these implementations is the exploitation of separate
and distinct sets of electrodes as network inputs and outputs.
It is worth noticing that a similar implementation strategy
was exploited also in case of a multichannel skyrmion-based
reservoir [56].

Despite previous works reported several variations on the
theme, broadly speaking these implementations can be con-
ceptually schematized as in figure 3(b), where generic input(s)
transduced in a sequence of electric signals are applied to dif-
ferent channels represented by input/output electrode couples
that can be selected through appropriate relays (configuration
b). Note that in the implementations reported in [25, 39] input
electrodes are represented by a single couple of source-drain
electrodes, since the input is encoded in a single sequence of
time-dependent electrical signals applied to one source elec-
trode while grounding the selected drain electrode. In the
configuration reported in figure 3(b), reservoir outputs to be
passed to the readout can be represented either by (a) voltages
measured at output electrodes (in this case, high impedance
output channels to measure voltage at terminals B are ideally
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required, i.e. R → ∞) or by (b) currents flowing in between
output electrodes and ground.

As an alternative, RC can be implemented by considering
an unconventional configuration where electrodes can act sim-
ultaneously as inputs and outputs [3], as conceptualized in
figure 3(c) (configuration c). Here, input signals are applied
to terminals A of resistances R that are in series to each elec-
trode pad, while outputs are represented by the voltage meas-
ured at terminals B of the same resistance. In this fashion, the
same pad electrodes can be indifferently and even simultan-
eously exploited as input and outputs of the reservoir without
any need of electromechanical relays.

2.4. Computing task implementation—digit recognition

Memristive RC systems require the transduction of the com-
puting task inputs into one stream or, more in general, mul-
tiple streams of voltage pulses composed by n timeframes.
As an example, in a pattern recognition task each input pat-
tern can be transduced to a set of pulse streams each corres-
ponding to a pattern row (spatial domain), while each pat-
tern column is encoded in the temporal sequence of electrical
pulses (temporal domain). The response of the two different
implementations of RC in nanonetworks was tested by con-
sidering a simple task that consists in recognizing digits from
input images reported in figure 4(a). Figure 4(b) reports an
example of transduction of the 5× 4 input pattern correspond-
ing to digit ‘9’ in a sequence of voltage pulses, where the input
is encoded in both temporal and spatial domains. In particu-
lar, each pulse stream corresponding to a pattern row can be
divided into timeframes, each corresponding to a pixel of a
pattern column. In this case, the input pattern was transduced
in five pulse streams, each composed of four timeframes. Each
timeframe can be further divided in a ‘stimulation’ section and
a ‘read’ section, as schematized in figure 4(c). During the stim-
ulation section of each timeframe, the corresponding chan-
nel/pad of the reservoir is stimulated with a Vp pulse if cor-
responding to a white pixel. The following read section allows
to evaluate the evolution of the internal reservoir state over
timeframes, where the final read of the reservoir state repres-
ents the nonlinear transformation of the input to be passed to
the readout for classification (final reservoir state).

Stimulation and read configurations as well as the evolution
of internal dynamics and output voltages of the NW networks
reservoir in configuration b (figure 3(b)) and c (figure 3(c))
during stimulation with digit ‘9’ are reported as examples in
figures 5 and 6, respectively (supplementary note 1). Here, the
two implementation strategies are compared, using the grid-
graph approach for modeling the reservoir internal dynam-
ics. In all configurations, resistances of 82 Ω were exploited
to realize the corresponding circuits, while model parameters
were extracted from experimental data (details in supplement-
ary information S1).

In configuration b, during the stimulation section of each
timeframe the electrodes corresponding to channels that
require a stimulation with a voltage pulse are connected,
while all other electrodes are left floating, as schematized in
figure 5(a). Instead, during the read section, a reading voltage

Figure 4. (a) Images of the 10 digits used in the digit recognition
task with 5 × 4 pixels. (b) Example of transduction of the digit ‘9’
into pulse streams where pattern rows and columns are encoded in
the spatial and temporal domain, respectively. (c) Detail of a pulse
stream where each temporal timeframe can be subdivided into a
stimulation and a read timeframe.

is applied to a selected input electrode and output is recorded
at terminals B of four selected output channels while keeping
all the other terminals floating, as schematized in figure 5(b)
(this reading scheme was adopted for a more direct compar-
ison with the unconventional implementation of configuration
c). Figure 5(c) reports the voltage distribution across the NW
networks over timeframes during stimulation sections. As can
be observed, the voltage drop occurs mainly in between areas
of the network where input and output electrodes are located.
Note that during timeframes where no pulses are expected the
corresponding electrodes are not influencing the overall dis-
tribution of voltage since they are left floating. Since the con-
ductive pathways tends to form perpendicularly to equipoten-
tial lines under the action of the electric field, the emergent
dynamics is characterized by the formation and spontaneous
relaxation of conductive pathways connecting corresponding
input and output electrodes. These dynamics leads to reservoir
output voltages (recorded at terminals B during the reading

5
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Figure 5. Evolution of internal NW network reservoir dynamics in RC configuration b, during stimulation with digit ‘9’. Configuration
during (a) stimulation and (b) read sections. The configuration during stimulation is schematized as in the first timeframe of stimulation
with digit ‘9’ where only channels 1 and 3 are connected while other are floating. (c) Voltage distribution over the NW network during the
stimulation section of each timeframe and (d) conductance maps evaluated during the read section of each timeframe obtained with the
grid-graph model. In panel (c) black lines represent equipotential lines while in panel (d) the red intensity of edges is proportional to the
edge conductance while the edge arrow indicates the current flow direction. (e) Evolution of reservoir output voltages over timeframes and
(f) corresponding histogram of final reservoir state. The final reservoir state corresponds to the reservoir state to be passed to the readout for
classification. Output voltages in panels (e) and (f) were evaluated during the read section of each timeframe, by exploiting the configuration
reported in panel (b). In particular, the different symbols used to represent output voltages in panels (e) correspond to symbols exploited to
highlight the different B terminals in panel (b), where output voltages are recorded.

section of each timeframe) reported in figure 5(e), and to the
corresponding histogram of the final output voltages (i.e. the
final reservoir state) reported in figure 5(f).

In configuration c, during the stimulation section a voltage
pulse is applied to corresponding electrodes that require stimu-
lation, while other electrodes were kept at 0 V, as schematized
in figure 6(a). Instead, during the reading section, a reading
voltage is applied to a selected pad, while output is recorded
at terminals B of other four pads, as schematized in figure 6(b).

Note that in this latter configuration (configuration c), all ter-
minals A (except from the electrode where a read voltage is
applied) are kept at 0 V. Figure 6(c) reports the voltage distri-
bution across the NW networks over timeframes during stim-
ulation sections. As can be observed, in this case the voltage
drop over the network relies on mutual differences of applied
voltages among electrodes, driving the formation of conduct-
ive pathways in between network areas where a voltage dif-
ference is present, as reported in figure 6(d). As an example,
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Figure 6. Evolution of internal NW network reservoir dynamics in RC configuration c, during stimulation with digit ‘9’. Configuration
during (a) stimulation and (b) read sections. In this case, the stimulation configuration in panel (a) (here schematized as in the first
timeframe of stimulation with digit ‘9’) has not to be changed over timeframes since no channels has to be selected and no floating
electrodes are present. (c) Voltage distribution over the NW network during the stimulation section of each timeframe and (d) conductance
maps evaluated during the read section of each timeframe obtained with the grid-graph model. In panel (c) black lines represent
equipotential lines while in panel (d) the red intensity of edges is proportional to the edge conductance while the edge arrow indicates the
current flow direction. (e) Evolution of reservoir output voltages over timeframes and (f) corresponding histogram of final reservoir state.
The final reservoir state corresponds to the reservoir state to be passed to the readout for classification. Output voltages in panels (e) and (f)
were evaluated during the read section of each timeframe, by exploiting the configuration reported in panel (b). In particular, the different
symbols used to represent output voltages in panels (e) correspond to symbols exploited to highlight the different B terminals in panel b,
where output voltages are recorded.

during timeframe t1 of digit ‘9’ pads 1, 2 and 3 are simulated
with a voltage pulse while other electrodes are grounded. This
results in a nearly equipotential area on the right side of the net-
work. In this case, the voltage drop is mainly localized across
couples of electrodes 1–5 and 3–5 and, less intensely, across
couples of electrodes 3–4 and 1–4. These dynamics leads to
reservoir output voltages (recorded at terminals B during the
reading section of each timeframe) reported in figure 6(e), and
to the corresponding histogram of the final output voltages
(i.e. the final reservoir state) reported in figure 6(f).

As can be observed, the two different configurations result
in peculiar evolution over timeframes of the output voltages.
This peculiar evolution reflects to different histograms repres-
enting the final reservoir states. In other words, this means
that the two configurations perform a different nonlinear trans-
formation of the input pattern. This is due to the different
evolution of the internal conductivity map in the two different
stimulations, as revealed bymodeling. Indeed, the same stimu-
lation pattern of digit ‘9’ was observed to result in strongly dif-
ferent patterns over the memristive network. These activation
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Figure 7. Spatiotemporal dynamics of the nanonetwork reservoir in configuration 1 for the 10-digit inputs. (a) Evolution of reservoir output
voltages over timeframes for the 10-digit inputs, where output voltages were evaluated during the read section of each timeframe. Different
symbols used to represent output voltages correspond to symbols exploited to highlight the different B terminals where output voltages are
recorded in figure 4(e). (b) Conductivity maps corresponding to the final reservoir state for the 10-digit inputs, where red intensity of edges
is proportional to the edge conductance, while the edge arrow indicates the current flow direction. (c) Histograms of the final reservoir state
output voltages for the 10-digits.

patterns are related to the interplay in between formation and
spontaneous relaxation of conductive branches and pathways
connecting electrodes. In particular, these branches forms
depending on the local voltage gradient induced by stimula-
tion, where the electric field spatial distribution for each time-
frame depends on spiking electrodes.

The evolution over timeframes of reservoir output voltages
while feeding the reservoir with the ten digits, the correspond-
ing final reservoir conductivity maps and the final histograms
for configuration b are reported in figure 7. Similarly, results
for configuration c are reported in figure 8. As can be observed,
in both configurations the final reservoir states (i.e. conduction
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Figure 8. Spatiotemporal dynamics of the nanonetwork reservoir in configuration 2 for the 10-digit inputs. (a) Evolution of reservoir output
voltages over timeframes for the 10-digit inputs, where output voltages were evaluated during the read section of each timeframe. Different
symbols used to represent output voltages correspond to symbols exploited to highlight the different B terminals where output voltages are
recorded in figure 4(g). (b) Conductivity maps corresponding to the final reservoir state for the 10-digit inputs, where red intensity of edges
is proportional to the edge conductance, while the edge arrow indicates the current flow direction. (c) Histograms of the final reservoir state
output voltages for the 10-digits.

maps and output voltage histograms) are significantly differ-
ent, showing the ability of both reservoir implementations to
separate the 10 digit inputs. Final reservoir states represen-
ted by the standardized reservoir output voltages at the last
stimulation timeframe are then used as input to the readout
for training and classification. The readout is composed by

a 4 × 10 network, where output neurons labeled from 0
to 9 represent the predicted digit of the input pattern. For
this purpose, a single layer feed-forward neural network was
trained by minimization of the loss function through the Adam
algorithm [57], similarly to a previous work [3]. After training
(details in supplementary S2), both RC implementations can
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recognize all of the 10 digit inputs. In particular, similar learn-
ing curves were observed, suggesting that the two implement-
ations endow comparable separability properties, at least for
this task (details in supplementary information S2).

3. Discussion

The implementation of RC in self-organizing memristive nan-
onetworks realized with a bottom-up approach requires a
change of paradigm respect to RC systems based on discrete
memristive devices organized in crossbar, as shown by simula-
tions. The main difference is that in self-organizing memrist-
ive nanonetworks the reservoir dynamics is regulated by the
emergent behavior of the system as a whole and rely not only
on the temporal processing capability but also on the spatial
location of stimulation. In other words, memristive nanonet-
works allows processing not only on the temporal domain but
also in the spatial domain due to the intrinsic functional con-
nectivity of the system. This allows the extraction of features
by taking into account not only the temporal correlation but
also the spatial relationship and correlation of input signals. As
shown by results, the evolution of reservoir dynamics depends
on the temporal sequence, spatial location and even on the
interplay in between temporal sequence and spatial location
of input signals. This opens the possibility of different imple-
mentations of RC,where not only the position of electrodes but
also the way to assess the internal dynamics represent a crucial
aspect.

The configuration where electrodes are partitioned in dif-
ferent sets of input and output electrodes (configuration b)
can be considered a legacy of the crossbar array architecture,
where stimulation is applied in between word and bit lines.
In this framework, it is possible to observe that pattern stim-
ulations result in the formation of conductive pathways con-
necting the input and the corresponding output electrodes. In
the extreme case where input/output couples of electrodes are
spatially located distant from each other (i.e. the crosstalk in
between channel is negligible), the emergent behavior tends
to the behavior of discrete memristive cells. Instead, the con-
figuration where the same electrodes act both as inputs and
outputs (configuration c) is based on a radically different
concept, where stimulation is not applied in between couples
of source/drain electrodes, but the emergent behavior relies
on the peculiar electric field landscape generated by differ-
ent voltages spatially applied to different electrodes. In other
words, emergent behavior dynamics of the reservoir in config-
uration c rely on voltage differences spatially generated across
the network.

Results showed that both implementations endow similar
capabilities of extracting relevant features from the input.
Indeed, both configurations provide separation capability to
the reservoirs, a key aspect that allows the reservoir-based sys-
tem to reduce the number of parameters to be trained com-
pared to conventional neural networks. A conventional neural
network for recognizing patterns will have a number of inputs
that corresponds to the number of pixels. This means that, in
our case, if the 5 × 4 = 20 input pixels are connected to the

ten outputs to form a 20 × 10 neural network, training of 200
weights is required. Note that the number of weights can fur-
ther increase if more hidden layers are considered. Instead, the
digestion of the input signals in both the temporal and spatial
domain through the nanonetwork allows a reduction of para-
meters to be trained. Indeed, both RC implementations digest
the 5 × 4 images to output a 4 × 1 vector, so that following
classification can be performed by a 4 × 10 neural network
where only 40 parameters needs to be trained.

Despite comparable computing capabilities, it should be
noted that by exploiting the same electrodes as both inputs
and outputs as in configuration c it is possible to reduce the
hardware complexity, thus limiting the wiring costs, and to
increase the scalability, thanks to the reduction of the number
of electrodes. Concerning the number of electrodes, for a gen-
eric input with N spatial inputs, configuration b requires 2 N
electrodes while only N electrodes are required in configura-
tion c. An advantage of using configuration c is also the sim-
plified peripheral circuitry compared to configuration b, since
no switches to selectively open/close channels are required. In
perspective, it should be pointed out that even hybrid imple-
mentations of the two RC configurations can be explored for
tailoring the hardware implementation on specific computing
tasks.

In this context, it is worth mentioning that the choice of the
best implementation strategy needs to take into account also
reliability issues and inaccuracies related to both variability
effects in the spatiotemporal evolution of reservoir dynamics
and local inhomogeneities in the network topology. Despite
these aspects have been neglected in our model, these issues
are expected to differently affect the accuracy and robustness
of different implementation strategies depending also on the
specific computing task.

Finally, it is important to point out that the hardware com-
plexity can be further simplified by increasing the temporal
processing capability of the nanonetworks through tailoring
the decay time of the system. Depending on the computing
task, the decay time can be optimized by taking into account
the trade off between (a) the capability of the network to
remember the far history, since it determines the number of
timeframes that can be processed without loosing informa-
tion from initial timeframes, and (b) the pattern to pattern
period target, since relaxation to the ground state is neces-
sary for the network to digest a new input pattern. From an
experimental point of view, tailoring of the decay time can be
explored in perspective by fine tuning of operational condi-
tions and/or an appropriate choice and engineering of involved
materials.

Similar approaches of implementation of RC here dis-
cussed in nanowire networks can be extended to other com-
plex nanostructured systems such as nanoparticle networks
[58, 59], discontinuous metallic films [60], nanotubes [61],
polymeric substrates [43] and electrochemical systems [62].
While experimental hardware realization and characterization
of multiterminal nanonetwork reservoirs with a large num-
ber of electrodes and a fine control of temporal dynamics
still represent a challenge, it is important to point out that the
here reported grid-graph model allows to explore different RC

10



J. Phys. D: Appl. Phys. 56 (2023) 084005 G Milano et al

implementations and architectures in silicowith low computa-
tional sources for a rational design of neuromorphic hardware.

4. Conclusions

In summary, we reported on the implementation of in materia
RC in self-assembled nanonetworks that endow emergent
memristive dynamics. Simulations of the emergent behavior
of a memristive nanowire network show that the functional
connectivity of the system opens the possibility for unconven-
tional implementation strategies of RC. In particular, results
show that a rational implementation strategy that exploit elec-
trodes as both reservoir inputs and outputs allows the reduc-
tion of the hardware complexity without affecting the com-
putational capability of the system, as proved in a pattern
recognition task. These results provide new insights on phys-
ical implementation of RC towards a rational design of neur-
omorphic systems.
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