
27 April 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

A Local Gauge Description of the Interaction Between Magnetization and Electric Field in a Ferromagnet /
Ansalone, Patrizio; Perna, Salvatore; D'Aquino, Massimiliano; Scalera, Valentino; Serpico, Claudio; Basso,
Vittorio. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - 58:2(2022), pp. 1-4.
[10.1109/TMAG.2021.3086357]

Original

A Local Gauge Description of the Interaction Between Magnetization and Electric Field in a
Ferromagnet

Publisher:

Published
DOI:10.1109/TMAG.2021.3086357

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/74070 since: 2022-03-23T14:58:26Z

IEEE

This is the author's accepted version of the contribution published as:



A Local Gauge Description of the Interaction Between

Magnetization and Electric Field in a Ferromagnet

Patrizio Ansalone1, Salvatore Perna2, Massimiliano d’Aquino2, Valentino Scalera3,Claudio Serpico2,  
Vittorio Basso1

1Istituto Nazionale di Ricerca Metrologica (INRIM)
2Department of Electrical Engineering and ICT, University of Naples Federico II
 3Faculty of Computer Science, Free University of Bozen-Bolzano

We apply a non-abelian gauge field approach to generalize the micromagnetic energy description of a ferromagnet. This approach,
without further assumption, takes into account three different energy terms: the well-known exchange term, chiral ones, and an
intrinsic anisotropy term. In the non-abelian gauge field approach, the covariant gauge derivative plays a key role. The result is the
emergence of a Dzyaloshinskii–Moriya-like energy term under two conditions: the first one is the pure gauge field background and
the second one is the presence of a static electric field. Moreover, this approach allows one to reach a more deep understanding of
the micromagnetics theory if rewritten in a gauge-invariant formulation. In this article, clearly emerges the interpretation of the
voltage-controlled magnetic anisotropy (VCMA) mechanism.

Index Terms— Effective non-abelian gauge field, micromagnetics, voltage controlled magnetic anisotropy (VCMA).

I. INTRODUCTION

IT IS well established that non-trivial topological magnetic
configurations are caused by the skew-symmetric interac-

tions such as the Dzyaloshinskii–Moriya interaction (DMI).
The DMI-like energy terms are caused not only by the intrinsic
spin–orbit interaction but also by the magnetization field on a
curved space, then inducing a so-called “curvature induced”
effective DMI [1]. Effects analogous to the real curvature
are also obtained in the presence of an effective gauge
field [2], [3]. A simple example of an abelian gauge field
in magnetism is provided by taking the Hamiltonian of a
point particle with mass m and magnetic moment μ moving
at velocity v in an electric field E

H = 1

2m

�
π + 1

c2
E × μ

�2

. (1)

At low velocity, the canonical momentum
π = p − c−2 E × μ is given by the sum of the
kinetic momentum p = mv and the electromagnetic
momentum −c−2 E ×μ. The presence of the electromagnetic
momentum is important in quantum mechanics, in which,
the canonical momentum π becomes an operator and the
electric field-dependent term assumes a meaning of an
effective abelian gauge potential. In terms of the potential,
the Hamiltonian is written as

H = 1

2m
(π + μA)2 (2)

where μ is the quantum of the transported magnetic moment
and A is the abelian gauge potential. In the case of the
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magnons, the quanta of the spin waves, the transported
moment is μ = −2μB and A = −c−2 E × ez , where ez

is the direction of the polarization of the magnon. The pres-
ence of such an abelian gauge field introduces an additional
phase in the corresponding Schrödinger wave function. This
effect is known in the literature as the Aharonov–Casher’s
effect [4]. The same effect can also be demonstrated by starting
from a spin-wave carrying a magnetic moment [5]. When
the spin-wave propagates in an electric field it acquires an
additional phase. This effect is rather small, but it can be
experimentally observed [6].

Having highlighted the electric field effect on spin waves,
it is of interest to extend to a general micromagnetics descrip-
tion of a ferromagnet. In this article, we set this problem
by linking the electric field to an effective non-abelian gauge
potential Aα . For each fixed α = 1, 2, 3 the non-abelian gauge
field Aα is a second rank tensor in the Euclidean space. It can
be canonically decomposed into three parts: an isotropic term,
a skew-symmetric, and a symmetric traceless part. By restrict-
ing the attention to the skew-symmetric part, one can further
express Aα in terms of a vector 1/2(Aκ

βα − Aβ
κα) → Aα.

The key point is to substitute, in the micromagnetic energy,
the partial derivative ∂α by the following expression: ∂α →
Dα = ∂α + Aα × [7]. The new spatial derivative operator is
called gauge covariant derivative. The gauge field is a function
of the electric field E and the spatial derivative operator
becomes Dαmρ = ∂αmρ + γlc−2(Eρmα−δραE ·m). The gauge
covariant derivative affects the exchange interaction term that,
in cartesian coordinates, is proportional to this scalar product
A∂αm·∂αm = A(∇m)2. In the presence of the electric field the
exchange term becomes ADαmDαm. If this term is expanded
to recover the original derivative, one finds two additional
energy terms. These terms consist of a DMI-like term, which is
proportional to the electric field [8] and an anisotropy-like term
corresponding to an easy plane perpendicular to the direction
of the electric field and proportional to E2. Such a term has
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the same expression as the typical terms introduced to describe
the voltage-controlled magnetic anisotropy (VCMA) [9], [10].
It is clear that in a real system there will be VCMA effects
dependent on the specific material that may play a relevant
role. The present theory has the merit to evidence an effect that
is a direct consequence of the coupling of the magnetization
with the electric fields. Therefore, it should be relevant in YIG
ferrite that does not exhibit spontaneous electric polarization.
Finally, we briefly suggest and discuss a possible application
of the presented theory to electrically assisted magnetization
switching, which is relevant for the realization of low power
memories [10].

II. THEORY

The magnetization of a ferromagnet is described by a unit
vector field m = M−1

s M where M is the magnetization
and Ms its saturation value. The magnetization in a group
theoretical formalism is a field configuration which minimizes
the micromagnetic energy density (i.e., Hamiltonian energy
density). Moreover, it is known that the micromagnetic energy
density is invariant with respect to a global rotation (i.e.,
acting with the SO(3) rotation group on the whole ferro-
magnetic body) [11] and the magnetization vector m(x, t) is
invariant under a rotation around itself. These assumptions
are equivalent to investigate the motion of a representa-
tive point on the surface of unit sphere S2 parametrized,
for example, by m(x, t) = (cosφ sin θ, sin φ sin θ, cos θ)t .
Within this interpretation, the magnetization vector lies
on the coset space SO(3)/SO(2) equivalent to S2 con-
sisting of those elements in SO(3) that leave unchanged
a given m(x, t), so it is just a rotation around m(x, t)
itself, and consequently, it is isomorphic to SO(2). How-
ever, the micromagnetic energy density considered here con-
tains two terms: the exchange energy and the crystalline
anisotropy

u(m, ∂αm) = A∂αm · ∂αm + fn(m). (3)

In (3), the first term is proportional to the exchange stiff-
ness A, and the anisotropy term is fn(m), which depends on
some local direction n. Considering that m(x, t) transforms
according to a representation of a certain element of the SO(3)
non-abelian Lie group, we get m�(x �, t) = Rm(R−1x �, t). The
matrix R is written using the exponential form R(l, ψ) =
exp(−ψ · J) and it is a rotation around the unit vector l
of an amount equal to ψ , hence, ψ = ψ l . In this expres-
sion, J = (J1, J2, J3) is a vector whose elements are the
infinitesimal generators of the Lie-algebra SO(3) of the group
SO(3) satisfying the following commutation rule [Jα, Jβ] =
ε σ
αβ Jσ the coefficients ε σ

αβ is the Levi–Civita symbol (i.e.,
the structure constants of the SO(3)-algebra). The infinitesimal
generator of the SO(3)-group consists in the 3 × 3 real
skew-symmetric matrices, and the element of the SO(3)-group
are the orthogonal matrices such that Rt =R−1. The local
gauge symmetry (i.e., local gauge redundancy) has a counter-
part formally introduced by the definition of the non-abelian
gauge covariant derivative acting on the magnetization vector
lying in the Euclidean space [3], [7], [12]. The gauge covariant

derivative of the magnetization field m(x, t) has the following
expression:

Dαm = ∂αm + Aα × m. (4)

Now, it is possible to show that the micromagnetic energy
is gauge invariant after the substitution of the partial derivative
of the magnetization ∂αm with the gauge covariant derivative
of the magnetization Dαm. This can be shown in (3) by
applying a local rotation m� = R(x)m and also modifying the
non-abelian gauge field A�

α = RAαRt + (∂αR)Rt , by using
the correspondence that at fixed index α any skew-symmetric
non-abelain gauge Aα can be expressed in terms of a
vector Aα. This means that a particular orientation of a
local reference basis has no physical relevance and in our
description, the new local vector basis is expressed as a linear
combination with respect to the standard Euclidean vector
basis eα as f β(x) = Rβα[ψ(x)]eα. Hence, the local vector
basis cannot be uniquely defined by the geometry of the
space but it has to be specified according to the presence
of an electric field as shown in Section III. Moreover, (4)
is also useful in order to define the parallel transport of
the magnetization vector in our gauged micromagnetics field
theory. Now, the gauge invariant micromagnetic energy is
defined as

ũ(m, Dαm,Aα) = ADαm · Dαm + fn(m). (5)

Subsequently, we consider the effect of a pure gauge field
alone Aα = (∂αR)Rt . The gauge covariant derivative now
assumes the following form:

Dαm = ∂αm − ∂αψ × m. (6)

Finally, as a result, this method gives three different con-
tributions to the generalized exchange energy: a symmet-
ric exchange term, an antisymmetric exchange term [i.e.,
Dzyaloshinskii–Moriya (DM)-like term], and an effective
anisotropy contribution

ũ(m, Dαm, ∂αψ)

= A[∂αm · ∂αm + −2(∂αψ × m) · ∂αm

+(∂αψ × m) · (∂αψ × m)] + fn(m). (7)

III. ELECTRIC FIELD

In order to introduce a case of practical interest, we connect
the partial derivative of the ψ vector with the applied electric
field, limiting our attention only to this transformation rule

∂αψ
κ = −γLc−2 Eσ εκσα (8)

and we obtain

[∂αψ × m]ρ = −γLc−2 Eσ εκσαε
ρ

κβ mβ. (9)

Now, we are able to express the gauge covariant derivative
using (4) in terms of the Levi–Civita tensor and using (8),
we remember that the product of two contracted Levi–Civita
tensor can be expressed as a quadratic combination of the
Kronecker delta εκσαε

ρ
κβ = δσβδ

ρ
α − δρσ δβα. In the end,

we obtain

Dαmρ = ∂αmρ + γLc−2(Eρmα − δραE · m). (10)



In this way, we have defined the action of this new dif-
ferential operator over each component of the magnetization
vector. Now, once again, if we operate the transformation
∂α → Dα , we find that the micromagnetic energy is expressed
as a function of Dαm and we can substitute it in (7). Clearly,
now it is of interest to have a look at the new form of the
micromagnetic energy term. Only the terms containing the
partial derivatives in the micromagnetic energy are affected by
this mapping. Hence, taking the general form of the exchange
energy in (7) and after some algebra the exchange term
assumes the following expression:

ũ(m, ∂αm, E) = A(∇m)2

−2A
γL

c2
E · [m(∇ · m)− (m · ∇)m]

+ A
�γL

c2

�2�
E2 + (E · m)2

�
. (11)

We summarize starting from micromagnetic gauge-invariant
formulation and after the definition of the correct gauge
covariant derivative affected by an effective gauge field Aα

a DM-like interaction emerges and it is evidently driven by
the presence of a static electric field E.

We recognize the usual exchange term, uEX = A(∇m)2,
plus two additional terms that describe the coupling with
the electric field. The second term on the right-hand
side of (11) is the Lifshitz invariant corresponding to the
DMI in continuous form and to the magneto-electric cou-
pling [9], [13], [14]. The third term is an anisotropy energy
contribution.

IV. ELECTRIC CONTROL OF THE MAGNETIC ANISOTROPY

AND ELECTRICALLY ASSISTED MAGNETIZATION

SWITCHING

The theory presented shows that the magnetization can be
controlled by applying an electric field and it is of fundamental
interest. In fact, in (11), two terms are present: the first
one is 2AγLc−2 E[m(∇ · m)− (m · ∇)m], where the term in
the square bracket can be interpreted as electric polarization
coupled directly to the electric field E and the second one is
A(γL/c2)2[E2 + (E · m)2] relevant because its meaning is that
of an electrically controlled anisotropy. To this end, we focus
our attention on the conservative magnetization dynamics (the
damping can be neglected during fast ballistic switching)
described by the Landau–Lifshitz (LL) equation [15], which
in dimensionless units can be written as follows:

ṁ = −m × heff. (12)

The effective field heff is calculated as a negative gradient
of the free energy ũ(m, ha, Ê) with the electric field Ê
proportional to the applied electric field E, with the correct
proportionality factor to be experimentally determined

ũ(m, ha, Ê) = 1

2
mt Nm − m · ha + [Ê2 + (Ê · m)2] (13)

and it has the following expression:
heff = −Nm + ha − 2(Ê · m)Ê (14)

Fig. 1. ha is the dimensionless applied magnetic-filed along the z-
axis or in the y-direction, E is the electric field an m the dimensionless
magnetization m.

with N is the matrix of the demagnetizing factors. The
LL-equation now assumes the following aspect:

ṁ = m × Nm − m × ha + 2(Ê · m)m × Ê. (15)

Electrically assisted precessional magnetization switching
using external magnetic field pulses can be described by (15)
assuming the applied field either oriented along the interme-
diate ha = hy ey or hard ha = hz ez axis and the electric filed
aligned with the easy axis Ê = Êex as in Fig. 1

ṁ = m × N � · m − m × ha (16)

with N � defined as

N � =
⎛
⎝ Nx + 2Ê2 0 0

0 Ny 0
0 0 Nz

⎞
⎠. (17)

In both situations, the LL-equation (15) can be solved
analytically [16], [17], finding the possible critical values and
switching times for electrically assisted switching.

V. CONCLUSION

The exchange part of the micromagnetic energy has been
rewritten in a gauge-invariant form because the reference
frame orientation is unspecified with respect to a local rota-
tion which defines an invariance property of the exchange
interaction terms in the micromagnetic energy density of the
magnetization m(x, t). With the introduction of an effective
gauge field Aα in the generalized micromagnetic energy
density (11) after a formal redefinition of the partial derivative
with the gauge covariant derivative, there emerges a DM-like
interaction driven by a static electric field and an intrinsic
anisotropy term. Moreover, the transformation group, which
expresses this invariance, imposes definite restrictions on the
dispersion relation linked to the micromagnetic energy that
will be studied in a future publication. Therefore, our findings
point to a more advanced theoretical interpretation with respect
to previous discoveries [5] in order to drive experiments in
manipulating spin waves and developing electrically tunable
magnonic devices.
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