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ABSTRACT
This paper employs a non-abelian gauge theory to derive the relation between a chiral crystal structure and the bulk magnetic DMI energy
term. We apply the method to the B20 chiral compounds, in which the chirality develops along the diagonals of the cubic crystal, and we
derive, in this framework, the corresponding isotropic Lifshitz invariant.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000322

I. INTRODUCTION
MnSi, FeGe, MnGe and Fe(Co)Si, belonging to the B20 crystal

structure type, exhibit non-trivial magnetisation configurations.
Most notably, magnetic structures are long-wavelength helical
states1,2 or skyrmion states with a well-defined chirality.3–6 The
interest in such magnetic states lies in the possibility to manipu-
late skyrmions as logic bits through the spin-transfer torque effect,
driven by a low electric current density.7,8 Such chiral magnetic
states are caused by energy terms called Lifshitz invariants, bilin-
ear in the magnetisation and its first spatial partial derivative.3–7 In
thin films and multilayers, the symmetry is broken at the interface
between two metals, and at the interface between metals and fer-
romagnets due to the spin–orbit interaction. The so-called surface
Dzyaloshinskii-Moriya interaction (DMI), give rise to the Lifshitz
invariant term of the antisymmetric type, that stabilises Néel type
skyrmions.9–14 A similar role is played by the presence of an exter-
nal electric field.15 In bulk crystals, such as the non-centrosymmetric
B20 compounds, the crystal possesses chirality in specific direc-
tions, and the relevant Lifshitz invariant term of diagonal type
stabilises both Bloch-type skyrmions and helical states. The cor-
responding interaction is the so-called bulk DMI. This interaction
should be related to the point group symmetry of the crystal struc-
tures; however, this connection is not always evident.16,17 This paper
employs a non-abelian gauge theory to address the problem. The
idea is to exploit the SO(3) local gauge invariance of the micro-
magnetic energy under the action of a local rotation.15,18–20 By
considering the case of the pure gauge field, the critical outcome
of the theory is to substitute the traditional spatial derivative with

a gauge covariant derivative. In the micromagnetic energy func-
tional, the substitution affects the exchange interaction term, which
is usually proportional to the square of the space derivatives of
the magnetisation vector. Therefore, if the substituted exchange
term is expanded to recover the original term, one finds two addi-
tional energy terms: a DMI-like term and an anisotropy type term.
We apply the theory to non-centrosymmetric crystals and exploit
the Neumann’s principle21 stating that the invariance of a crys-
tal under the action of its own point group symmetry implies the
invariance of its physical properties. In the specific case of B20
compounds with tetrahedral symmetry, we show that the corre-
sponding energy term is the bulk DMI one. The structure of the
paper is the following: in section II, we describe the chiral proper-
ties of the B20 compounds, in section III, we introduce the Lifshitz
invariants and finally, in section IV, we present the gauge covariant
derivative to be associated with the chiral tetrahedral point group
symmetry.

II. CRYSTAL SYMMETRY
A. Chiral tetrahedral point group symmetry

Chiral crystals can occur in space groups (SGs) containing only
proper symmetry elements (rotations, translations and rototrans-
lations), i.e. the ones that do not contain any mirroring operation
or inversion point. These space groups, called Sohncke groups, can
be further divided into chiral SGs (i.e. the 11 pairs of SG which
are in enantiomorphic relation) and non-chiral SGs.22 Achiral space
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groups belonging to the Sohncke group contain a 21 rotation axis
and produce chiral crystals only because the asymmetric unit is chi-
ral: crystals of this type can thus be right-handed or left-handed
without changing SG, which is the reason why the SG is classified
as achiral. On the other hand, chiral SGs contain at least one screw
axis different from the 21 axis, and they allow the chiral crystalli-
sation even of achiral building blocks since the SG permits only
a clockwise or an anticlockwise rotation. In this case, left-handed
and right-handed crystals are classified under different SGs of one
of the enantiomorphic pairs, e.g. P31 and P32. In the next section,
we point out our attention to the cubic B20 structure type, in which
well known chiral structures crystallise, such as the monosilicides
and monogermanides of the transition metals (TM), among which
MnSi, FeGe, MnGe and Fe(Co)Si exhibit magnetic ordering. The
B20 structure is described by the space group P213 (#198 of the
international tables for crystallography), which exhibits the tetra-
hedral symmetry of the point group 23, (i.e. the chiral tetrahedral
point group), characterised by three orthogonal 2-fold rotation axes
and four 3-fold axes, centred among the three orthogonal direc-
tions. All the twelve symmetry operators of the crystal class can be
obtained by multiplying only two generating matrices representing
the described rotations.23 In Appendix, the two generators of an
irreducible representation of the tetrahedral point group 23 (i.e. the
subgroup of symmetries operations that leave one point fixed) are
reported.

B. B20 chiral crystals
The B20 structure compounds were synthesised for a few tran-

sition metals (TMs) with group 14 elements (especially Si or Ge).
The unit cell contains 4 TM atoms and 4 Si(Ge) atoms placed in
a tetrahedral position along the cube body diagonal. By looking at
the crystal from different perspectives (Fig. 1), one can notice the
peculiar features related to the crystal chirality: i) the (112) projec-
tion reveals that atoms of both species are placed on (111) planes
in alternating dense and sparse layers; ii) from the (111) projection,
one can see that both TM and Si (or Ge) atoms form helical struc-
tures of opposite handedness, with an axis parallel to one of the cube
diagonals, and iii) each helix involves only one atom for each of the
dense layers, while atoms of the sparse layers do not participate to
any of the helices. By looking at the TM species, only one can clas-
sify the chirality of the crystal. The specular crystal with opposite
chirality can also occur in the same space group since P213 is an
achiral Sohncke SG.

B20 are therefore characterised by intrinsic handedness due to
the crystal structure, with each atomic species forming helices of the
characteristic period (

√
3la, being la the lattice parameter) in <111>

directions. From the magnetic point of view, the magnetic moments
helix that develops in B20 compounds with magnetic ordering may
display the same handedness of the crystal chirality or not, depend-
ing on the composition of the specific compound,24 and it typically
shows a period of 1-2 orders of magnitude larger (10-230 nm),25

revealing that the connection between atomic arrangement and
magnetic configuration is not straightforward. However, the tetrahe-
dral crystal symmetry has a definite role in determining the magnetic
structure since the magnetic helicity has been observed to propagate
along the cube body diagonals.26

FIG. 1. A B20 crystal formed by 3x3x3 unit cells viewed along [111] or [112] direc-
tions. The three topmost dense (111) planes containing TM atoms (green) are
displayed in color. For example, the atoms involved in one of the right-handed
helices of the TM species pointing in the [111] direction have been highlighted
with the yellow crosses. Such helices are present along each of the 4 cube body
diagonals. The size of TM atoms has been slightly increased to better display the
helix chirality. Pictures of the crystal structures have been produced with Vesta 3
software.27

III. LIFSHITZ INVARIANTS
The DMI-like energy term is described by the Lifshitz invari-

ants Lijk = mk∂imj −mj∂imk and, because of the antisymmetry Lijk
= −Likj, is written as

uDMI = −ϵlkjTil(mk∂imj −mj∂imk), (1)

where Til is a matrix with 3 × 3 components that we can subdi-
vide into an antisymmetrical, a symmetrical, and a diagonal parts
Til = TA,il + TS,il + TD,il. The antisymmetrical part TA,il = −TA,li can
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be written as TA,il = ϵilkTA,k where TA,k are components of a vector.
These antisymmetric terms

uDMI = −2TA ⋅ [m(∇ ⋅m) − (m ⋅ ∇)m] (2)

correspond to the so-called surface DMI terms and stabilise mag-
netic structures with a Néel type chirality. This can be seen, for
example by choosing Tk = Tz , ∂i = ∂x and my = 0. In this case, the
minimum energy configuration, considering the competition with
the exchange energy A(∂imj)

2, corresponds to a spiral state with
wave-number qx = Tz/A, therefore a positive rotation around the
y-axis, if Tz > 0 (Fig.2 top). The symmetric terms correspond to an
anisotropic modification of the previous terms and will not be con-
sidered here. The diagonal part of the tensor gives rise to the bulk
DMI energy terms.

The energy term is written as

uDMI = −2Tii(m × ∂im)i (3)

Such a compact form is expanded as follows:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

− 2Txx(mz∂xmy −my∂xmz)

− 2Tyy(mx∂ymz −mz∂ymx)

− 2Tzz(my∂zmx −mx∂zmy)

(4)

In a material with an easy axis anisotropy along the z direction,
the terms Txx and Tyy produce a Bloch type chirality. For example,

FIG. 2. Static configurations stabilised by the Lifshitz invariants of the DMI rep-
resented along one representative axis. Top: the so-called surface DMI term
generates the Néel type chirality, i.e. the antisymmetric Lifshitz invariants. Mid-
dle and bottom: Bloch type chirality (middle) and helix (bottom) stabilised by the
bulk DMI, i.e. the diagonal Lifshitz invariants.

choosing Txx, ∂i = ∂x and mx = 0 the corresponding stable state is a
spiral state with qx = Txx/A (Fig.2 middle). Then Txx > 0 produces a
negative rotation around the x-axis. In a material with a hard axis
anisotropy along the z direction, the term Tzz produces a helical
state. For those with ∂i = ∂z and mz = 0 the stable state is a helical
state with qz = −Tzz/A corresponding to a negative rotation around
the z-axis for Tzz > 0 (Fig.2 bottom).

By considering the case with all the coefficients equal each oth-
ers, i.e. Txx = Tyy = Tzz = T, the sum of the three diagonal terms give
rise to the isotropic bulk DMI energy density that is written as

uDMI = −2Tm ⋅ (∇×m) (5)

The bulk DMI terms generated by the diagonal part of the tensor
of the Lifshitz invariants are those expected due to the chiral prop-
erties of the crystal. Nevertheless, as the description in terms of the
invariants is thoroughly phenomenological, the coefficients should
be derived based on the specific symmetries possessed by the crystal.

IV. GAUGE, POINT GROUP SYMMETRY
AND NEUMANN’S PRINCIPLE

The purpose of this section is to introduce a non-abelian
gauge field Ai with values in the non-abelian SO(3)-group (i.e. the
group of the rotation in the Euclidean space). Such a non-abelian
gauge field imposes a modification in the definition of the partial
derivatives that occur in the exchange energy term of the classical
micromagnetic energy. With this method and the Neumann’s prin-
ciple, we directly found the relationship among the gauge covari-
ant derivative, the point group symmetry of the material, and the
Lifshitz invariants. Firstly, the gauge covariant derivative is intro-
duced through the general concept of non-abelian gauge fields as in
Refs. 15 and 28–31

Dim = ∂im −Ai ×m. (6)

Secondly, the non-abelian gauge field Ai transforms according
to the following rule Ai → RτAiR +Rτ∂iR, with R an element of
the SO(3)-group32 represented as

Rlk(ψ, n) = exp(ψn̂ ⋅ Σ)
= nlnk + (δlk − nlnk) cos ψ − ϵlkini sin ψ, (7)

where ψ is the rotation angle, and n the rotation axis. Moreover,
we assume the following relation J l = iΣl where J l matrices are the
generators of the Lie algebra of the SO(3)-group, [Jl, Jk] = iϵlkiJi.
However, we limit our attention to the vacuum state of the sys-
tem, classically a pure gauge field configuration (i.e. Ai → Rτ∂iR).
Hence the pure gauge covariant derivative assumes the following
form

Dim = ∂im − ∂iψ ×m, (8)

where ψ is an axis of rotation whose module quantifies the rota-
tion angle around itself. Finally, the micromagnetic energy, in a
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gauge-invariant fashion, taking into account the generalised
exchange interaction, it is written as follows

u(m,∂im,∂iψ) = ADim ⋅Dim
= A[∂im ⋅ ∂im − 2(m × ∂im) ⋅ ∂iψ
+ (∂iψ ×m) ⋅ (∂iψ ×m)] (9)

We now focus our attention on a DMI-like term in the second
row of the Eq.(9)

−2(m × ∂im) ⋅ ∂iψ = − ϵlkj∂iψl(mk∂imj −mj∂imk)

= − ϵlkj∂iψlLijk
(10)

where Lijk is the Lifshitz invariant. The coefficient ∂iψl corresponds
to the Til of the section III. By choosing as axes of rotation the
four diagonal of the B20 crystal where the chirality develops, one
can obtain the corresponding energy of the bulk DMI type. The
phenomenological constitutive properties of the B20 crystal regard-
ing the DMI-like energy term are described by the matrix Til. The
crystal B20 is invariant under the action of an irreducible rep-
resentation of the generators of the point group symmetry 23,
R(α)(n,ψ) = R(α)lk (n,ψ)el

⊗ ek. The Neumann’s principle applied
to the DMI-tensor is

Til = ∣R(α)(n,ψ)∣R(α)ir (n,ψ)TrsR(α)sl (n,ψ) (11)

By solving the linear system Eq.(11) (see Appendix) we obtain
the bulk DMI-like energy term, and the permitted coefficients of the
matrix Til are only diagonal terms with equal values.

V. DISCUSSION AND CONCLUSIONS
Starting from general considerations about the irreducible rep-

resentation of point group symmetry of the B20 structure, we have
provided a detailed construction of a non-abelian gauge theory
applied to this class of crystals. The presented results give an insight
into the relationship between the Lifshitz invariants and the gauge
covariant derivative, providing a connection between the partial
derivatives of the local rotation ∂iψl and the DMI tensor Til by
using the Neumanns’ principle. The construction shown can eas-
ily extend beyond the tetrahedral point group symmetry 23 to other
ones. Moreover, this model may be extended by adding permitted
magnetocrystalline anisotropy, although further analysis within this
framework will be required to include, for example, the fourth-order
magnetocrystalline anisotropy term.
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APPENDIX

We derive the DMI-tensor explicitly for a cubic crystal with the
point group symmetry 23 (i.e. the chiral tetrahedral point group).
An irreducible representation of the tetrahedral point group con-
sists of two linearly independent elements able to generate the whole
symmetry class of the crystal constituted by 12 elements. Moreover,
since the tetrahedral group 23 is the rotation symmetry group of the
regular tetrahedron, we use the same notation for the rotation matri-
ces specifying the direction ez , n = − 1√

3
(1, 1, 1)τ , and the angles of

rotation:

R(1)lk (ez ,π) =

⎛
⎜
⎜
⎜
⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

,

R(2)lk (n,
2
3
π) =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

(A1)

Now we apply the Neumanns’ principle,21 and we explicitly compute
the components of the DMI-tensor T,

T =R(1)(ez ,π)TRτ(1)
(ez ,π)

=

⎛
⎜
⎜
⎜
⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

T11 T12 −T13

T21 T22 −T23

−T31 −T32 T33

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞
⎟
⎟
⎟
⎟
⎠

. (A2)

T =R(2)(n,
2
3
π)TR(2)τ(n,

2
3
π)

=

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

T11 T12 0

T21 T22 0

0 0 T33

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

T22 0 T21

0 T33 0

T21 0 T11

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

T11 T12 0

T21 T22 0

0 0 T33

⎞
⎟
⎟
⎟
⎟
⎠

(A3)
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In order to fulfil both constraints in Eqs.(A2) and (A3) the
DMI-tensor is defined as follows

Til =

⎛
⎜
⎜
⎜
⎜
⎝

T 0 0

0 T 0

0 0 T

⎞
⎟
⎟
⎟
⎟
⎠

. (A4)
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