Paul traps are widely used to confine electrically charged particles like atomic and molecular ions by using an intense radiofrequency (RF) field, typically obtained by a voltage drop on capacitative electrodes placed in vacuum. We present a RF drive realized on a compact printed circuit board and providing a high-voltage RF signal to a quadrupole Paul trap. The circuit is formed by using four interdependent resonant circuits - each of which is connected to an electrode of a Paul trap - fed by low-noise amplifiers, leading to an output voltage of peak-to-peak amplitude up to 200 V at 3.23 MHz. The presence of a single resonant circuit for each electrode ensures a strong control on the voltage drop on each electrode, e.g., by applying a DC field through a bias tee. Additionally, the moderate quality factor Q = 67 of the resonant circuits ensures a fast operation of the drive, which can be turned on and off in less than 10 mu s. Finally, the RF lines are equipped with pickups that sample the RF in phase and amplitude, thus providing a signal that can be used to actively control the voltage drop at the trap's electrodes. (C) 2019 Author(s).

A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps / Detti, Amelia; De Pas, Marco; Duca, Lucia; Perego, Elia; Sias, Carlo. - In: REVIEW OF SCIENTIFIC INSTRUMENTS. - ISSN 0034-6748. - 90:2(2019), p. 023201. [10.1063/1.5063305]

A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps

Detti, Amelia;De Pas, Marco;Duca, Lucia;Perego, Elia;Sias, Carlo
2019

Abstract

Paul traps are widely used to confine electrically charged particles like atomic and molecular ions by using an intense radiofrequency (RF) field, typically obtained by a voltage drop on capacitative electrodes placed in vacuum. We present a RF drive realized on a compact printed circuit board and providing a high-voltage RF signal to a quadrupole Paul trap. The circuit is formed by using four interdependent resonant circuits - each of which is connected to an electrode of a Paul trap - fed by low-noise amplifiers, leading to an output voltage of peak-to-peak amplitude up to 200 V at 3.23 MHz. The presence of a single resonant circuit for each electrode ensures a strong control on the voltage drop on each electrode, e.g., by applying a DC field through a bias tee. Additionally, the moderate quality factor Q = 67 of the resonant circuits ensures a fast operation of the drive, which can be turned on and off in less than 10 mu s. Finally, the RF lines are equipped with pickups that sample the RF in phase and amplitude, thus providing a signal that can be used to actively control the voltage drop at the trap's electrodes. (C) 2019 Author(s).
File in questo prodotto:
File Dimensione Formato  
1.5063305.pdf

accesso aperto

Descrizione: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article may be found at DOI indicated above.
Tipologia: Versione editoriale
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/68079
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact