Turbulence plays an important part in determining the chemical and physical processes, on both the microand macro-scales, whereby clouds are formed and behave. However, exactly how these are linked together and how turbulence impacts each of these processes is not yet fully understood. This is partly due to a lack of in-situ small scale fluctuation measurements due to a limitation in the available technology. It is in this context that the radiosondes, for which the material characterisation is presented in this paper, are being developed to generate a Lagrangian set of data which can be used to improve the ever-expanding knowledge of atmospheric processes and, in particular, the understanding of the interaction between turbulence and micro-physical phenomenologies inside clouds (www.complete-h2020network.eu). Specifically, the materials developed for the balloons are discussed in further detail within this paper. Mater Bi and polylactic acid are the two common biodegradable thermoplastics that were used initially to make the balloons. To tailor their properties, the balloons were then coated with carnauba wax blended with either pine resin or SiO2 nanoparticles. The properties such as hydrophobicity, toughness, elasticity and helium gas permeability are investigated and improved in order to keep the density of the radiosondes as constant as possible for a couple of hours. This will allow them to float inside and outside clouds on an isopycnic surface, to measure various properties such as velocity, temperature, pressure and humidity by means of solid state sensors and to transmit them to receivers on Earth. Tests have been made under a rigorous metrological approach comparing the 6 new materials with two reference balloon materials, latex and mylar. It was found that Mater Bi with the two carnauba wax coatings is the most suited though its roughness and water vapour permeability should be improved.

Evaluation of Mater Bi and Polylactic Acid as materials for biodegradable innovative mini-radiosondes to track small scale fluctuations within clouds / Basso, Tessa C.; Perotto, Giovanni; Musacchio, Chiara; Merlone, Andrea; Athanassiou, Athanassia; Tordella, Daniela. - In: MATERIALS CHEMISTRY AND PHYSICS. - ISSN 0254-0584. - 253:(2020), p. 123411. [10.1016/j.matchemphys.2020.123411]

Evaluation of Mater Bi and Polylactic Acid as materials for biodegradable innovative mini-radiosondes to track small scale fluctuations within clouds

Chiara Musacchio;Andrea Merlone;
2020

Abstract

Turbulence plays an important part in determining the chemical and physical processes, on both the microand macro-scales, whereby clouds are formed and behave. However, exactly how these are linked together and how turbulence impacts each of these processes is not yet fully understood. This is partly due to a lack of in-situ small scale fluctuation measurements due to a limitation in the available technology. It is in this context that the radiosondes, for which the material characterisation is presented in this paper, are being developed to generate a Lagrangian set of data which can be used to improve the ever-expanding knowledge of atmospheric processes and, in particular, the understanding of the interaction between turbulence and micro-physical phenomenologies inside clouds (www.complete-h2020network.eu). Specifically, the materials developed for the balloons are discussed in further detail within this paper. Mater Bi and polylactic acid are the two common biodegradable thermoplastics that were used initially to make the balloons. To tailor their properties, the balloons were then coated with carnauba wax blended with either pine resin or SiO2 nanoparticles. The properties such as hydrophobicity, toughness, elasticity and helium gas permeability are investigated and improved in order to keep the density of the radiosondes as constant as possible for a couple of hours. This will allow them to float inside and outside clouds on an isopycnic surface, to measure various properties such as velocity, temperature, pressure and humidity by means of solid state sensors and to transmit them to receivers on Earth. Tests have been made under a rigorous metrological approach comparing the 6 new materials with two reference balloon materials, latex and mylar. It was found that Mater Bi with the two carnauba wax coatings is the most suited though its roughness and water vapour permeability should be improved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/65312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact