Seed-growth synthesis is a common strategy to prepare silver nanoplates, whose peculiar plasmonic features can be exploited for surface enhanced Raman scattering (SERS) applications. Here we describe the fabrication and characterization of SERS chips using a peculiar in situ seed growth method, yielding a dense layer of nano-objects directly on a glass slide. In this way, geometric features (i.e. shape and dimensions) of the nano-objects can be tuned by controlling the growth time, obtaining a high concentration of hot spots on the surface. In particular, the SERS response of four kinds of chips were investigated to define the best SERS configuration in terms of size of the silver nano-objects, excitation wavelength and homogeneity of the SERS response. Silver nano-plates with a seeded growth time of 60 min demonstrated remarkable results both in terms of plasmonic enhancement, with an enhancement factor (EF) of 2 x 10(5) using a 532 nm laser excitation, and good homogeneity of the SERS response with intra- and inter-maps RSD of 10% and 5%, respectively. In order to demonstrate application of these chips for real sample analysis, an analytical procedure for the detection of a model pesticide, i.e. thiram fungicide, was developed and applied to its detection on green apples peels. SERS measurements on 60 min seeded growth silver nano-plates chip coupled with a multivariate PLS approach demonstrated high accuracy and repeatability for thiram detection in food matrix within the European law limits.

In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering / D'Agostino, Agnese; Giovannozzi, Andrea Mario; Mandrile, Luisa; Sacco, Alessio; Rossi, Andrea Mario; Taglietti, Angelo. - In: TALANTA. - ISSN 0039-9140. - 216:(2020), p. 120936. [10.1016/j.talanta.2020.120936]

In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering

Giovannozzi, Andrea Mario;Mandrile, Luisa;Sacco, Alessio;Rossi, Andrea Mario;
2020

Abstract

Seed-growth synthesis is a common strategy to prepare silver nanoplates, whose peculiar plasmonic features can be exploited for surface enhanced Raman scattering (SERS) applications. Here we describe the fabrication and characterization of SERS chips using a peculiar in situ seed growth method, yielding a dense layer of nano-objects directly on a glass slide. In this way, geometric features (i.e. shape and dimensions) of the nano-objects can be tuned by controlling the growth time, obtaining a high concentration of hot spots on the surface. In particular, the SERS response of four kinds of chips were investigated to define the best SERS configuration in terms of size of the silver nano-objects, excitation wavelength and homogeneity of the SERS response. Silver nano-plates with a seeded growth time of 60 min demonstrated remarkable results both in terms of plasmonic enhancement, with an enhancement factor (EF) of 2 x 10(5) using a 532 nm laser excitation, and good homogeneity of the SERS response with intra- and inter-maps RSD of 10% and 5%, respectively. In order to demonstrate application of these chips for real sample analysis, an analytical procedure for the detection of a model pesticide, i.e. thiram fungicide, was developed and applied to its detection on green apples peels. SERS measurements on 60 min seeded growth silver nano-plates chip coupled with a multivariate PLS approach demonstrated high accuracy and repeatability for thiram detection in food matrix within the European law limits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/65172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 38
social impact