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Abstract: Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging
because it makes comparable, in a strict metrological sense, the results of different scans, for example
during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is
a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties
inside a human body. Although EPT has been used in some early clinical studies, a rigorous
experimental assessment of the associated uncertainty has not yet been performed. This paper aims at
evaluating the repeatability and reproducibility uncertainties in phase-based Helmholtz-EPT applied
on homogeneous phantom data acquired with a clinical 3 T scanner. The law of propagation of
uncertainty is used to evaluate the uncertainty in the estimated conductivity values starting from
the uncertainty in the acquired scans, which is quantified through a robust James—Stein shrinkage
estimator to deal with the dimensionality of the problem. Repeatable errors are detected in the
estimated conductivity maps and are quantified for various values of the tunable parameters of the
EPT implementation. The spatial dispersion of the estimated electric conductivity maps is found to
be a good approximation of the reproducibility uncertainty, evaluated by changing the position of
the phantom after each scan. The results underpin the use of the average conductivity (calculated
by weighting the local conductivity values by their uncertainty and taking into account the spatial
correlation) as an estimate of the conductivity of the homogeneous phantom.

Keywords: electric properties tomography; magnetic resonance imaging; phantoms; quantitative

imaging; uncertainty

1. Introduction

Different from traditional magnetic resonance imaging (MRI), which provides weighted
images of the relaxation times T1 and T2, quantitative MRI aims at producing images in
which each pixel represents the actual measurement of a physical parameter [1]. What
makes the change in paradigm from traditional to quantitative MRI particularly appealing
is the fact that it is possible to compare objectively the measurements performed during
longitudinal studies. In such studies, the evolution of a disease and the efficacy of therapy
are monitored by scanning the patient after a certain amount of time [2]. Moreover, the ob-
jectivity of a quantitative MRI scan could allow the adoption of reliable automatic systems
for image analysis and the identification of new quantitative imaging biomarkers.

Amongst the physical quantities that can be measured with an MRI scanner, there
are the electric properties of the biological tissues [3]. It has been observed that the value
of the electric properties, in particular of the electric conductivity, in certain pathologies
(breast cancer [4], glioma [5], fibrotic liver [6], cerebral ischemia [7]) is different than in the
corresponding healthy tissues. Moreover, for therapies based on the use of electromag-
netic fields, the knowledge of the actual distribution of the electric properties within the
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patient body allows implementing a form of patient-specific precision medicine, through
personalized treatment planning [8].

Magnetic resonance-based electric properties tomography (EPT) is a quantitative MRI
technique that provides a map of the distribution of electric conductivity and permit-
tivity within the imaged subject [3,9,10]. The dispersive electric properties of biological
tissues [11] are estimated at the Larmor frequency of the MRI scanner by processing the
spatial distribution of the radiofrequency (RF) magnetic flux density B; transmitted by
the transmit RF coil of the scanner. Specifically, the transmitted complex magnetic flux
density component B;" that rotates in the same direction as the spin precession [12] can
be measured by the MRI scanner. Its magnitude, called transmit sensitivity, is estimated
through B1 mapping techniques [13-16], which, in general, are time-consuming and not
routinely included in clinical studies. The possibility of performing B1 mapping through
magnetic resonance fingerprinting [17], which is known for its short scanning time, could
increase the availability of transmit sensitivity acquisitions in clinical setups in the near
future. The phase is properly approximated, in 1.5 T or 3 T scanners, by half the transceive
phase ¢*, acquired as the phase of suitable, fast conventional MRI sequences [9]. Under
special symmetry conditions, the same conventional MRI sequence, applied with a low
flip-angle [18], can also provide an estimate of the transmit sensitivity.

To obtain the map of the electric properties, B;" can be processed in different ways
according to a plethora of EPT implementations proposed in the literature [10]. Their
development is similar to that of the well-known microwave imaging techniques [19-21].
The similarity appears clear, especially with the EPT methods based on optimization
theory [22-32]. Nonetheless, knowledge of the value of B{ at a large number of points
within the inspected body suggests that EPT can achieve a larger effective resolution than
traditional microwave imaging [19,25].

The EPT implementation more commonly adopted in early clinical studies [4-6,33]
is phase-based Helmholtz-EPT (HH-EPT) [34-36], which estimates only the electric con-
ductivity by processing the transceive phase ¢=. This EPT approach is convenient because
it is based on a simple, linear and real-valued algebraic equation and relies on a routine
MRI sequence for ¢+ acquisition, which is fast enough to allow monitoring of dynamical
processes [37] or imaging regions where motion occurs, such as the cardiac region [38]. On
the other hand, HH-EPT suffers from large systematic errors at the internal boundaries
between different biological tissues, where the electric properties change abruptly [39,40].
The quality of the recovered maps can be improved by post-processing, for example, with
a median filter, according to the subject anatomy delineated by the acquired MRI scans [5].

In order to make the result of a quantitative MRI technique a proper measurement
result in the strict sense, the uncertainty with which the property values have been esti-
mated must be assessed [41]. Up to now, only a few works have dealt with uncertainty
quantification in EPT and only in theoretical cases [42,43]. In this paper, the uncertainty of
the results of phase-based HH-EPT applied to a homogeneous phantom acquired by a3 T
MRI scanner with a routine three-dimensional sequence is assessed under repeatability and
reproducibility conditions. The former condition is obtained by arranging the phantom in
the scanner and acquiring it repeatedly with the same pulse sequence; the latter is obtained
by rearranging the phantom in a different position after each acquisition. Under both con-
ditions, the uncertainty in the three-dimensional estimation of the phantom conductivity is
evaluated taking into account the possible correlations between the values estimated in
different voxels. To deal properly with the dimensionality of the problem, only a spherical
region of radius 3 cm centered at the phantom barycenter is studied. In this way, it is certain
that the boundary errors, typical of HH-EPT applied to heterogeneous domains [39,40], are
not present in the investigated homogeneous region. Thus, the uncertainty contribution
corresponding to the boundary errors is prevented from influencing the results, allowing to
evaluate exclusively the uncertainty in the application of HH-EPT to a bulk homogeneous
region. Moreover, the uncertainty, described by the covariance matrix of the multivariate
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random variable modeling the conductivity measurement, is computed according to a
robust James-Stein shrinkage estimator [44,45].

The evaluated uncertainty is finally propagated through the estimation of the average
conductivity of the phantom and used to improve the result, in terms of both accuracy and
precision, with a generalized weighted averaging [46] of the conductivity map. Thus, in
addition to assessing the uncertainty of EPT results for a homogeneous phantom under
repeatability and reproducibility conditions, this work legitimizes the use of local spatial
averages in homogeneous regions, for a quantitative improvement of the recovered maps.
As a by-product, a relation between the uncertainty and the spatial dispersion of the
estimated conductivity values, useful for practical uncertainty estimation in homogeneous
regions, has been identified.

2. Materials and Methods
2.1. Phantom

A homogeneous cylindrical phantom (volume 2 L, radius ~6 cm, length ~18 cm)
filled with a solution of 64 mM of NaCl in distilled water is used for the analysis under
repeatability conditions. Recording shows that the temperature of the room with the MRI
scanner oscillates between 16 °C and 18 °C. Hence, according to Stogryn’s equations [47],
which are well approximated by a linear law in this range of temperature, the electric
conductivity of the phantom at 128 MHz ranges from 550 mS m~! to 570 mS m~! and is
assumed to be equal to 560 mSm~! + 10 mS m~!. A direct characterization of the phantom
conductivity has not been performed. In the following, the expected conductivity value is
denoted by Gexp = 560 mS m~1L.

A replica of this phantom, with a similar but not identical conductivity value, has
been adopted for the analysis under reproducibility conditions. Although it is impossible
to compare the conductivity values estimated under repeatability and reproducibility
conditions in terms of averages, the comparison is still possible regarding the spatial
features of the recovered maps and their uncertainties.

2.2. MRI Acquisitions

The MRI scanner used for the experiments is a 3 T Ingenia TX (Philips Healthcare, Best,
The Netherlands) equipped with a 32-channel RF receive head coil. The scans are acquired
with a three-dimensional steady-state free precession (SSFP) sequence with nominal flip-
angle of 30° and isotropic resolution of 2 mm. The received signals are processed with the
vendor’s algorithm CLEAR [48], so that, from the practical point of view, the system receive
sensitivity becomes equal to that of the body-coil used in transmission with switched
polarization. The phase of the acquired complex images is a good estimate of the transceive
phase ¢+ [9]. Because of the cylindrical symmetry of the adopted phantom and the low flip-
angle of the sequence, the magnitude of the acquired complex images is a good estimate of

the square of the transmit sensitivity |B; |2 when the phantom is positioned at the scanner’s
isocenter [18].

Twenty-five images are acquired on the phantom centered at the scanner isocenter,
without moving the phantom between scans. The acquisitions are performed in groups
of five with a break of a few minutes between the groups. Each scan takes one minute.
The specific absorption rate of each group has been estimated to induce an increase in the
phantom temperature of about 0.05 °C under adiabatic conditions, with a corresponding
variation in the electric conductivity of about 0.5 mS m~!, well below the 10 mS m~!
standard uncertainty with which the expected conductivity is known. We refer to these
images as the acquisitions under repeatability conditions, or simply as “repetitions”.

Eight additional images are acquired by moving the phantom to eight positions around
the scanner isocenter, with successive phantom centers about 6 cm apart, as depicted in
Figure 1. We refer to these images as the acquisitions under reproducibility conditions, or
simply as “reproductions”.
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Transceive phase (rad)

x (em)

Figure 1. Transceive phase in the scanner mid-plane acquired by moving the phantom around the
isocenter under reproducibility conditions. The maps are restricted to a sphere with radius of 3 cm
centered at the phantom barycenter.

A subtle aspect of the following analysis concerns the way in which the conductivity
values can be averaged. When conductivity values belonging to the same map are averaged
(i.e., the averaging involves voxels with different locations within the target region), the
result is indicated as “average”. Instead, when the averaging is performed between
different maps (voxel by voxel, across the repetitions/reproductions), the result is indicated
as “mean”.

2.3. Phase-Based Helmholtz-EPT
2.3.1. Formulation

In order to estimate the distribution of the electric conductivity ¢ starting from a
map of the transceive phase ¢, Maxwell’s equations in the frequency domain are in-
verted. HH-EPT operates with the assumption that the electric properties are spatially
homogeneous [3,9,10]. In this case, Maxwell’s equations can be combined to obtain the
vectorial Helmholtz’s equation for the magnetic flux density, which, in scalar form, holds
also for its rotating component B . The latter equation is then inverted algebraically to
obtain the fundamental relation of HH-EPT,

o V2B
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where i is the imaginary unit, € the electric permittivity, ¢ the magnetic permeability of
vacuum, and w = 27tf the angular frequency of the electromagnetic radiation, with Larmor
frequency f = 128 MHz for a 3 T scanner.

By distinguishing magnitude and phase of B} = |B; ]ei‘PJr in (1), the conductivity is
written as:
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When the transmit sensitivity |B;' | is sufficiently homogeneous, the right-hand side of
the latter equation is approximated by neglecting the second addend. Since for the adopted
scanner ¢+ =2 ¢+ /2 [9], the following relation, called phase-based HH-EPT, is obtained,
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2.3.2. Implementation

Phase-based HH-EPT consists of the application of a second-order linear differential
operator, (2wpg) V2, to the acquired transceive phase map. Since the acquired maps are
discrete and noisy, the differential operator is approximated by a discrete counterpart em-
ploying the robust Savitzky-Golay (SG) filter [49]. The SG filter consists in approximating
locally the distribution of ¢= with a paraboloid, whose Laplacian is then evaluated analyti-
cally. Let p € RM and s € RM denote the vectors that define the discrete three-dimensional
maps of ¢F and ¢, respectively; the application of the SG filter can be represented as a
matrix—vector product

s = Ap, )

where A € RNsNe approximates the differential operator.

It is worth underlining that N, is the number of voxels in which the phase measure-
ment is used to retrieve the electric conductivity. Ns is the number of voxels where the
electric conductivity is retrieved. Precisely, the vectors p and s list the values that the corre-
sponding physical quantities assume in each voxel according to a certain ordering of the
voxels. In general, N5 < Np, because EPT is not performed if the SG filter kernel partially
falls outside the investigated domain. Hence, the region where the electric conductivity is
estimated changes with the shape and the size of the SG kernel.

Since the SG filter is a local approximation of the differential operator, matrix A is
sparse and each row contains non-null values only in the components corresponding to
voxels that belong to the filter kernel centered in the voxel associated with the row. In
practice, it is unnecessary to build explicitly matrix A, since the SG filter can be applied in a
computationally efficient way according to a moving window algorithm. However, the
matrix formalism is useful for propagating the covariance matrix as described below.

In the following, the electric conductivity is estimated by applying the SG filter with
different kernels to check their influence on the quality of the result. Three kernel shapes are
considered: a cross, a voxelized sphere, and a cube. For each shape, five sizes of the cube
bounding the kernel are analyzed, with edges equal to 2n + 1 voxel widths forn =1,...,5.
Figure 2 sketches the kernel shapes for n = 2. The number of voxels involved in the
Laplacian estimation varies with the shape and size of the kernel.

Cube

Figure 2. Kernels of the Savitzky-Golay filter with different shapes for n = 2, where n indicates the
number of voxels placed along the Cartesian directions on each of the six sides of the central voxel.
The dashed red lines depict the cubes bounding the kernels.

The phase-based HH-EPT implementation provided in EPTIlib 0.1.1 [36] is adopted here.

2.4. Covariance Matrix

The covariance matrix is the mathematical way to express the fact that different
variables are interdependent, providing a quantification of their correlation. The EPT
problem under study is a multivariate measurement (i.e., a measurement with multiple
output quantities, represented by the conductivity values of the different voxels) described
by Equation (4). In this case, the output conductivity values in vector s exhibit covariance
because of two different reasons, ascribable to matrix A and vector p, respectively. First,
matrix A is not diagonal. This means that the conductivity in a given voxel is obtained by
elaborating the values of the phase measured within the corresponding kernel, some of
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which are used also in other kernels (to estimate the conductivity of other voxels). Hence,
the same input influences different outputs with the result that correlation exists between
outputs that share the same inputs. However, the correlation in the output s may be also
partly inherited from the correlation already present in the input p. The latter originates
from the fact that the phase values depend, in turn, on even more fundamental quantities,
such as the details of the measurement pipeline adopted by the MRI scanner to acquire
them. Common dependence on those quantities induces correlation in the phase values.
Thus, a non-diagonal covariance matrix can also be associated with variable p.

The evaluation of the covariance matrix is the fundamental step in uncertainty as-
sessment [50]. The covariance matrix of the estimated distribution of electric conductivity,
denoted by Z(s) € RNsNs, encompasses all the information regarding the measurement
uncertainty and depends on the adopted SG kernel shape and size. The i-th diagonal term
% (s);; of the covariance matrix contains the variance of the value estimated for electric
conductivity in the i-th voxel; the off-diagonal term Z(s)i,]. contains the covariance between
the values estimated in the i-th and in the j-th voxels.

The covariance matrix is a symmetric and positive definite matrix and, in general, it
is dense. This makes its evaluation particularly demanding, both from the computational
point of view (because a large dense matrix occupies a great amount of memory) and from
the experimental point of view (because many data are needed for an accurate evaluation
of all the matrix entries).

In the present investigation, few data are available (25 acquisitions under repeatability
conditions and 8 acquisitions under reproducibility conditions), whereas the covariance
matrix is a very large square matrix of order equal to the number of voxels. In order to
reduce the dimensionality of the problem, only the conductivity values retrieved from the
phase acquired in a sphere with radius of 3 cm, centered at the phantom barycenter, are
analyzed. In the following, this sphere is denoted by B,. This leads to N, = 11,500 and N;
varying from ~ 9 600 for the cross-shaped SG kernel with #n = 1 to ~ 900 for the cubic SG
kernel with n = 5. Please note that this is not the size of the kernel, which is 7 voxels for
the cross-shaped SG kernel with n = 1 and 1 331 voxels for the cubic SG kernel with n = 5.

By limiting the investigation to the sphere By, the uncertainty contributions in the
conductivity maps estimated by HH-EPT due to boundary errors are avoided. This re-
sults in evaluating exclusively the uncertainty in the application of HH-EPT to a bulk
homogeneous region.

Two approaches are followed in the evaluation of the covariance matrix, depending
on the measurement conditions.

2.4.1. Repeatability Conditions

Under repeatability conditions, since the phantom is not moved from one scan to
another, the acquired phase maps always describe the very same phase distribution. The
observed differences between maps are related to the measurement uncertainty, which can
be quantified through the covariance matrix of the mean phase distribution, denoted by
L(p) € RNe e,

To avoid spurious correlations due to constant differences between the acquired phase
maps, which could appear but do not affect the Laplacian in (3), all the phase maps are
translated to guarantee a null spatial average within the sphere Bp. The mean of the
resulting set of maps is calculated, voxel-by-voxel, to provide the mean phase distribution
p, from which the estimated conductivity distribution s is computed.

The experimental covariance matrix [50] S(p) is computed starting from the 25 repeti-
tions p, withk =1,...,25, as

S(p) = L1y L (Pe—P)(P—P) - 5)
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Since twenty-five acquisitions are a small number with respect to the number of
voxels, the experimental covariance matrix S(p) might provide a poor estimate of the
actual covariance matrix X(p). Indeed, it could lead to strong misleading correlations.
A Dbetter estimator is provided by the James-Stein shrinkage [44,45], which shrinks the
experimental matrix towards its diagonal by combining in an optimal way the experimental
matrix defined by the acquired data with a conjectured diagonal matrix. This results in

Z(p) = AS(p) + (1 — A)diag(S(p)), (6)

where diag(-) denotes the diagonal matrix having the same diagonal of its argument and
A € [0,1] is determined analytically as the coefficient that minimizes the Frobenius norm of
the difference between the actual and the estimated covariance matrices [44,45].

Finally, the estimated Z(p) is propagated through the linear model (4) according to
the law of propagation of uncertainty [50,51], leading to

X(s) = AX(p)Al. @)

For computational efficiency, the propagation has been evaluated taking advantage of
the features of the SG filter without building matrix A explicitly. The code used is available
in [52].

2.4.2. Reproducibility Conditions

Under reproducibility conditions, since the phantom is moved from one scan to
another, the acquired phase maps describe different phase distributions. This change
makes it physically unreasonable to calculate the mean of the phase maps and to evaluate
their measurement uncertainty through the covariance matrix of the mean. Hence, for each
phase distribution p, acquired under reproducibility conditions (with k = 1,...,8), the
corresponding conductivity distribution sy is computed with (4).

The homogeneous phantom keeps the same electric conductivity when rearranged
within the scanner. Thus, all the obtained conductivity maps describe the same distribution,
and their mean can be calculated, voxel-by-voxel, to obtain the mean conductivity distribu-
tion s, whose covariance matrix quantifies the measurement uncertainty. Note that, when
moving the phantom, the correspondence between the material and geometric voxels is
not strictly maintained (because of the possible movement of the saline solution inside the
phantom). However, since the phantom is homogeneous, the acquired phase distribution
is unaffected by the material rearrangement that takes place inside the phantom itself.
The phase distribution is exclusively affected by the macroscopic positioning of the entire
phantom within the scanner and by the ubiquitous random effects due to system and
measurement imperfections.

By considering only the phase values retrieved in the sphere By, it is guaranteed that
analogous geometrical regions are compared between the different reproduced acquisitions.
Additionally, in this case, the number of acquisitions is very small with respect to the
number of voxels, leading to an unsuitable experimental covariance matrix. Thus, X(s) is
computed again through the James—Stein shrinkage estimator described above.

2.5. Spatial Averaging

Since the phantom is homogeneous, its electric conductivity distribution can be de-
scribed by a single value, estimated by the spatial average of the measured conductivity map,

1
5= ﬁzsi/ (8)

S i=1
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where s; denotes the i-th component of s. The standard uncertainty of s is quantified by
propagating the covariance matrix through its analytical expression [50], namely

§)=—=, ©)

where 1, (5) is the relative uncertainty of 5.
A better estimator of the spatial average takes into account the uncertainty associated
with the measured conductivity distribution by weighting the vector s with the precision
matrix (i.e., the inverse of the covariance matrix) [46]. Thus, the lower the uncertainty of
the conductivity value in a given voxel, the more it contributes to the weighted average.

This leads to the equation
__1'x(s)!

s
L= ——8) S 10
1Tx(s) 11 {10)

where 1 € RNs denotes a column vector of ones. It is worth noting that the latter equation
reduces to (8) if the identity matrix is used in place of the precision matrix. The law of
propagation of uncertainty [50] applied to the weighted average allows the uncertainty of
5y according to [46] to be quantified:

u(§W) = ;, Mr(gw) = u(,g\lv), (11)

17x(s) 1 Sw

ur(Sw) being the relative uncertainty of 5.

3. Results
3.1. Repeatability Conditions

Despite the phantom homogeneity, the mean electric conductivity maps estimated
by applying phase-based HH-EPT to the acquired repetitions are not homogeneous. The
estimations are characterized by a spatial noise that makes the conductivity range around
the expected value 0exp. The relative deviations from ceyp are shown in Figure 3 in the
scanner mid-plane for different shapes and sizes of the SG kernel. It is worth noting that,
since the number N, of voxels whose transceive phase value is used is constant (equal
to the number of voxels belonging to the sphere Bp,), the number N5 of voxels where the
electric conductivity is estimated becomes smaller when the SG kernel becomes larger.

From Figure 3, it is seen that the spatial noise in the phase-based reconstruction
is lower when the volume of the filter kernel is larger. In particular, the conductivity
estimated with the largest cubic kernel appears almost homogeneous when compared
with the estimations obtained with smaller kernels. Moreover, the deviation from cexp
reported in Figure 3 is mainly positive for the largest cubic kernel, suggesting an overall
overestimation of the electric conductivity by phase-based HH-EPT. This deviation is in
accordance with the observations about the systematic error introduced by the phase-based
approximation reported in a previous publication [34], i.e., the second addend of (2) is
negative in most cases.

For all the considered kernels, the propagated covariance matrix X(s) shows a typical
voxel-wise uncertainty sensibly lower than the spatial dispersion of the estimated con-
ductivity map (i.e., the standard deviation of the spatial distribution). For example, using
the spherical kernel with n = 3, the repeatability uncertainty in each voxel is evaluated
around 13 mS m~!, whereas the spatial dispersion is equal to 68 mS m~!. Indeed, some
artifacts affect the phase maps leading to repeatable systematic errors in the EPT result that
appear similar to random noise, but that are not canceled out by taking the mean map of
multiple acquisitions.
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Figure 3. Relative deviation from the expected value (dexp = 560 mS m~!) of the mean electric
conductivity estimated in the scanner mid-plane by phase-based Helmholtz-EPT under repeatability
conditions. The results are reported for different shapes and sizes of the kernel of the Savitzky-Golay
filter. The black circle denotes the section of the sphere Bp.

A statistical insight into the spatial dispersion of the estimated electric conductivity
maps is provided by the boxplots collected in Figure 4. The estimated conductivity values
are always distributed symmetrically, independently of the kernel adopted for the SG
filter. Moreover, the median value, corresponding to the spatial average for a symmetric
distribution, is almost the same for all the considered shapes and sizes of the filter kernel.
A slightly lower value is obtained only with the largest cubic kernels. As already observed
above, the dispersion of the estimated values, quantifiable through the interquartile range
reported by the boxplots, is lower when the volume of the filter kernel is larger.

Relative deviation from the expected value (%)
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Figure 4. Boxplots of the relative deviation from the expected value (Cexp = 560 mS m~1) of the mean
electric conductivity maps estimated by Helmholtz-EPT under repeatability conditions when different
shapes and sizes of the kernel of the Savitzky—Golay filter are used. The top row shows the results of the
phase-based method (3), whereas the bottom row shows those of the complete method (1).
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Figure 4 reports the boxplots of the electric conductivity values estimated with both the
phase-based HH-EPT (3) and the complete HH-EPT (1). This is possible because the simple
geometry of the phantom and its central positioning with respect to the RF coils allows
the transmit sensitivity | B} | from the acquired images to be estimated. The comparison
between the boxplots produced with the two EPT methods shows that the median value
estimated with the complete HH-EPT deviates very little from cexp. However, the complete
HH-EPT result retains the statistical dispersion of the values estimated with phase-based
HH-EPT. The correction term in (2), where the transmit sensitivity appears, is small in
magnitude with respect to the Laplacian of the phase. Moreover, it involves only first-order
derivatives, which can be estimated with less noise propagation than the Laplacian. Thus,
despite the presence of an additional noise contribution in the estimation of the conductivity
values due to the measured transmit sensitivity, a larger dispersion in the case of complete
HH-EPT with respect to the phase-based HH-EPT was not expected.

Since the spatial dispersion of the estimated conductivity maps can be reduced by
enlarging the SG kernel, it could be expected that each single voxel provides an additional
amount of information to the SG filter for compensating the input artifacts. Figure 5 shows
that the amount of information contributed by each voxel depends on the shape of the
kernel, i.e., on the relative positioning of the voxels. Specifically, when the number of
voxels in the kernel is increased by increasing parameter 7 is increased, the cross-shaped
kernel reduces the dispersion significantly faster than the spherical and the cubic kernels in
relative terms, although it is penalized by its smaller global number of involved voxels.

Relative deviation from the expected value
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Figure 5. Trend of the inverse of the dispersion, quantified through the interquartile range, of the
mean electric conductivity values estimated with the phase-based Helmholtz-EPT under repeatability
conditions with respect to the number of voxels in the kernel of the Savitzky-Golay filter.

The spatial averages of the electric conductivity maps provided by phase-based HH-
EPT applied with different shapes and sizes of the SG filter are collected in Table 1. Both
the average 5 and the weighted average 5, are reported, each one with its relative standard
uncertainty. The uncertainties associated with the spatial averages are very small for
all considered kernels in the SG filter. In particular, u(5) is almost always smaller than
1 mSm~!and u(sy) is even smaller than 0.1 mS m~!. This indicates very good repeatability
of conductivity estimation for a given SG kernel.

The value of 5 ranges from about 578 mS m~1, estimated with the largest cubic SG
kernel, to about 605 mS m !, estimated with the smallest cross-shaped SG kernel. The
inconsistency of these averaged values is corrected by the weighted average 5., which, in
addition to having a lower uncertainty, is also more consistent, showing a value of about
586 mS m~! with all the SG kernels but the largest cubic ones, for which the value drops to
about 580 mS m~1.
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Table 1. Spatial averages of the conductivity estimated with phase-based Helmholtz-EPT under
repeatability conditions.

n=1 n=2 n=3 n=4 n=>5

5/mSm™! 605.102 600.247 595.509 592.737 590.278

A 1 () /% 0.162 0.114 0.122 0.131 0.135
8 Sw/mSm! 586.238 586.609 586.788 586.666 586.765

ur(Sw)/ % 0.009 0.009 0.010 0.011 0.012
5/mSm™! 605.102 599.126 592.654 590.074 586.656

g 1 (5) /% 0.162 0.112 0.120 0.136 0.147
"& Sw/mSm! 586.238 586.811 585.451 586.550 584.741

Z 1ty (3ug) /% 0.009 0.009 0.010 0.011 0.011
5/mSm~! 600.452 592.570 586.605 582.032 578.445

2 ur(3)/ % 0.107 0.120 0.140 0.163 0.190
5 Sy /mSm~! 586.239 585.582 585.287 582.176 580.104

Ur(Sw)/ % 0.009 0.010 0.011 0.013 0.017

3.2. Reproducibility Conditions

The way in which the kernel of the SG filter affects the estimation of the electric
conductivity map under reproducibility conditions is analogous to what was discussed
above in the analysis under repeatability conditions. In the following, the results obtained
with a spherical SG kernel with n = 3 are reported as an example. However, the presented
comments and discussions held for all the considered SG kernels.

The conductivity maps reported in Figure 6 are obtained by applying the phase-based
HH-EPT to the acquired reproductions (see Figure 1). Each estimated conductivity map
is affected by the systematic error due to the phase-based approximation [34], whose
magnitude depends on the distribution of the transmit sensitivity |B; | within the imaging
region. Since moving the phantom in the scanner bore changes the |B;"| distribution to
which the phantom is exposed, each estimated map is affected by this error in a different
and non-trivial way. This effect is represented in Figure 6, where some distributions appear
brighter (see position 1) and other darker (see position 5).

Electric conductivity (5/m)
SG kernel: sphere, n =3

0.8

0.6
=

0.4

0.2

0

Figure 6. Electric conductivity maps estimated with the phase-based Helmholtz-EPT from the
acquisitions under reproducibility conditions. The reported results are obtained with a spherical
Savitzky-Golay kernel with n = 3.

In addition to the error introduced by the phase-based approximation, the estimated
conductivity maps are also affected by the measurement noise and the other artifacts’
contributions whose presence was already observed in the analysis under repeatability
conditions. Repositioning the phantom within the scanner changes the spatial distribution
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of these artifacts, which affect the estimated conductivity values with both positive and
negative errors in an unbiased way, as highlighted by the symmetry observed in the
boxplots of Figure 4. Although repeatable (i.e., stable if repetitions are performed in a
given position), these error contributions appear as mostly random under reproducibility
conditions. Thus, they contribute to the reproducibility uncertainty, which results in it
inevitably being larger than the repeatability uncertainty. This fact reflects the larger
variability in the results of different reproductions with respect to the variability observed
for different repetitions.

The non-reproducibility of a significant portion of the observed repeatable artifacts is
well quantified by comparing the reproducibility uncertainty deduced from the average
of the diagonal values of the propagated covariance matrix X(s) with the spatial disper-
sion of the estimated mean conductivity map (i.e., the standard deviation of the spatial
distribution). For the spherical kernel with n = 3, the reproducibility uncertainty in each
voxel is evaluated to be around 48 mS m~!, whereas the spatial dispersion is equal to
60 mS m~!. A graphical representation of the discrepancy between the repeatability and
reproducibility uncertainties and the spatial dispersion is reported in Figure 7. The figure
collects the histograms of the mean electric conductivity values computed in repeatability
and reproducibility conditions, evaluated for every single voxel in the target region. Both
histograms follow a Gaussian distribution, illustrating that the mean maps computed under
both conditions are affected by spatially random noise. Under repeatability conditions, the
spatial dispersion is much larger than the average voxel-wise repeatability uncertainty;
thus, the spatial noise is repeatable and only apparently random when the position of the
phantom does not change. On the other hand, under reproducibility conditions, the repro-
ducibility uncertainty is almost equal to the spatial dispersion; hence, from a practical point
of view, the spatial noise is random for reproduced acquisitions. It must be underlined that
the uncertainty (i.e., the “width” of the red curves in Figure 7) quantifies the “stability” of
the results across different repetitions/reproductions. However, a smaller uncertainty (i.e.,
higher precision) does not necessarily correspond to better accuracy (i.e., the correct “center”
of the curves in Figure 7). With reference to Figure 7, the behavior of each voxel in the target
region is more stable across repetitions rather than across reproductions. This is reflected by
the lower uncertainty exhibited by repeatability experiments with respect to reproducibility
experiments. Nevertheless, this behavior may be affected by systematic biases that are
partly disrupted by the change in the phantom position in reproducibility experiments.

(a) Repeatability conditions  (b)Reproducibility conditions
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Figure 7. Comparison between the statistical distribution of the estimated mean electric conductivity
values, their spatial dispersion, and their average voxel-wise uncertainty. The spatial dispersion is
represented through a Gaussian curve with the same mean and standard deviation as the estimates.
The uncertainty is represented through a Gaussian curve with the same mean as the estimates and
the standard deviation equal to the average of the uncertainties associated with each estimate. The
comparison is reported both for repetitions (a) and reproductions (b).
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4. Conclusions

The presented investigation assesses the quality of phase-based HH-EPT applied
to retrieve the electric conductivity of a homogeneous phantom under repeatability and
reproducibility conditions. The former condition is obtained by acquiring multiple images
without moving the sample from one acquisition to another; the latter condition is obtained
by changing the position of the phantom within the scanner after each acquisition.

It has been observed that in addition to the systematic error due to the phase-based
approximation [34], other repeatable artifacts affect the MRI acquisitions, leading to es-
timated conductivity maps with a large spatial dispersion that is not described by the
small voxel-wise repeatability uncertainty evaluated on the acquired data. However, these
repeatable artifacts are not reproducible, and the evaluated voxel-wise reproducibility
uncertainty describes almost completely the spatial dispersion observed in the estimated
maps. Being unrelated to the phase-based approximation, these observations hold for the
complete HH-EPT as well.

One conclusion is that averaging multiple repeated acquisitions cannot improve
indefinitely the quality of the estimated conductivity map. Indeed, this effect was already
observed for a homogeneous phantom [53] and is now assessed in terms of repeatability
uncertainty. Moreover, averaging acquisitions performed whilst rearranging the phantom
after each scan reduces the spatial dispersion faster than in the case of repeated acquisitions.

An important aspect deduced from the present analysis is that the reproducibility
uncertainty can be directly estimated from the spatial dispersion of a single acquisition.
This result holds for the definition of reproduction adopted in this work and should be
integrated with the contribution of other sources of uncertainty not considered here, such
as the variability introduced by the MRI scanner used or the adopted acquisition sequence,
to provide the complete measurement uncertainty. Despite further work being needed to
reach a complete uncertainty budget for HH-EPT, it is promising to note that a non-trivial
uncertainty contribution like that due to the positioning of the sample within the scanner
can be estimated from the output of a single acquisition.

The robustness of the weighted spatial averages in Table 1, as well as the stability of
the median values in the boxplots of Figure 4, suggests that the adoption of post-processing
strategies based on local filters applied to homogeneous regions, like the ones used in [5],
could improve the overall quality of the estimated conductivity maps without losing their
quantitative features.

The study has been performed on an MR system built by one of the standard com-
mercial manufacturers. It is expected that the main results of the study, particularly the
conclusions drawn from Figure 7, are independent of the specific manufacturer, as they
reflect general physical features. Other aspects (e.g., related to SNR and noise pattern)
might differ between manufacturers, but investigating these differences was beyond the
scope of this study.

It is worth noting that the results presented here have been obtained for a homoge-
neous phantom and are, hence, rigorously valid only under the same conditions. Pre-
cisely, the analysis has been conducted including only voxels in a sphere at the phantom
barycenter, far from the phantom boundary, where the boundary artifacts of HH-EPT
take place [39,40]. It is likely that the conclusions reached could also be extended to the
innermost part of homogeneous compartments of heterogeneous domains, a fundamental
step to allow uncertainty assessment in clinical applications.

An analysis similar to the one presented in this paper can be performed also for
the permittivity estimated by the complete HH-EPT [3,9,10], although in that case, the
fundamental equation is not linear. However, currently, the recovered permittivity maps
have a very low SNR and require the introduction of additional sequences to the scanning
protocol in order to also acquire the transmit sensitivity, making them less interesting than
the conductivity maps provided by phase-based HH-EPT.
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