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Abstract. Current definitions of both squeezing operator and squeezed vacuum state

are critically examined on the grounds of consistency with the underlying su(1,1)

algebraic structure. Accordingly, the generalized coherent states for su(1,1) in its

Schwinger two-photon realization are proposed as squeezed states. The physical

implication of this assumption is that two additional degrees of freedom become

available for the control of quantum optical systems. The resulting physical predictions

are evaluated in terms of quadrature squeezing and photon statistics, while the

application to a Mach-Zehnder interferometer is discussed to show the emergence of

nonclassical regions, characterized by negative values of Mandel’s parameter, which

cannot be anticipated by the current formulation, and then outline future possible use

in quantum technologies.
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1. Introduction

Let’s proceed first to a brief review of some definitions concerning generalized coherent

states and their relation to groups and algebras. Generalized coherent states |ζ〉 for a

given algebra A are obtained through a generic unitary operator U = eĝ ∈ G, where G

is the group associated with A, and ĝ is the most general anti-hermitian element of A,

ĝ† = −ĝ. One defines |ζ〉 = U |ω〉, where |ω〉 denotes the relevant ‘vacuum’ state, i.e.,

the state annihilated by the lowering operators of algebra A (in mathematical jargon

the highest weight vector) and ζ is the set of c-numbers, which parametrize ĝ and |ω〉.
This theoretical framework was first devised in [1]-[2]; comprehensive reviews as well as

applications in many fields of fundamental physics can be found in [3]-[4].

In the current formulation of quantum optics squeezing, squeezed vacuum states of

light are only a subset of |ζ〉 for G ≡ SU(1,1), because ĝ is not the most general element

of A ≡ su(1,1), generated by the set of operators {K0(Cartan), K−(lowering), K+ =

K†−(raising)} in its Schwinger two-boson realization, and the vacuum state |ω〉 is

identified with the physical vacuum |0〉, which is not the highest weight vector of A.

The importance of such conventional coherent states cannot be underestimated

due to their several applications, mainly based on their sub-Poissonian statistics.

Nowadays they are crucially related to the high sensitivity measurements required in

quantum-enhanced metrology, particularly for the detection of gravitational waves [5]-

[7] and quantum gravity tests [8]-[9], as well as photoelectric detection [10], absorption

measurements [11] and the analysis of the Casimir effect [12]. They play a crucial

role also in quantum cryptography and quantum information as reported in [13], where

the efficiency of single-photon sources is investigated, and in the technology of photon

cutting, which aims at improving the energy conversion efficiency in optical materials

[14]. Because of their remarkable properties, they are plenty of attention in textbooks

[15]-[17] and in review papers [18]-[22]. An important role of squeezed states, on which

we focus our attention in this paper, is their feature of quantumness estimated in

quantum optics by various indicators such as the sign of the Mandel parameter Q [23].

In this work we argue in favor of the adoption as quantum optical squeezed states of

the generalized coherent states of su(1,1) and explore the ensuing effects. This implies

including K0 in ĝ, and assuming as vacuum state a linear combination of the ordinary

vacuum state |0〉 and the one photon state |1〉, which is the most general state annihilated

by K−. The main feature of this approach consists thus in the higher dimension of the

space of parameters. Its physical reach is mostly contained in the squeezing properties of

the quadratures and in the photon statistics. This is shown in the specific example of a

Mach-Zehnder interferometer in which the generalized squeezed state is sent through one

of the input ports. In this application novel quantumness regions of the system appear,

induced by the emergence of sub-Poissonian statistics, identified just by negative values

of Q.

The paper is organized as follows. The definitions and the relevant variances of the

quadratures are reviewed for the conventional approach in Sect. 2 and for the generalized
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approach in Sect. 3. Sec. 4 is devoted to the analysis of squeezing, particularly to

the identification of which quadrature is actually squeezed. In Sect. 5 the photon

probability distributions are discussed. In Sect. 6 the working example of the Mach-

Zehnder interferometer is considered with special attention to the occurrence of new

sub-Poissonian regions. A few concluding remarks are given in Sect. 7.

2. Conventional formulation

In the conventional approach to quantum optical squeezing, the unitary squeezing

operator S(τ) is the exponential of an anti-hermitian linear combination of two operators

K+ and K− = K†+,

S(τ) = eτK+−τ̄K− ,

where τ ∈ C, while K+, K− are defined in terms of a and a†, the harmonic oscillator

annihilation and creation operators,

K− =
1

2
a2 , K+ =

1

2
a†2 . (1)

a5 =

ieθ/2 · (a1 sin (θ/2) + a0 cos (θ/2)) (2)

The introduction of operator K0,

K0 =
1

2

(
n̂+

1

2

)
, (3)

where n̂ = a†a is the harmonic oscillator number operator, closes an algebra. Indeed, the

set {K0, K+, K−}, characterized by commutation relations [K0, K±] = ±K±, [K+, K−]

= −2K0, generates the algebra su(1,1) in its Schwinger two-boson realization. K+ and

K− are the raising and lowering operators, respectively, of the algebra; therefore S(τ)

is an element of the group SU(1,1) in this realization. The squeezed vacuum state is

then obtained through application of S(τ) to the physical vacuum state |0〉 annihilated

by K−,

|τ〉0 = S(τ)|0〉 .

We focus on variances ∆2(•) .= 〈•2〉−〈•〉2, where 〈•〉 = 0〈τ |•|τ〉0 = 〈0|S†(τ)•S(τ)|0〉
(note that all expectations are thus taken in state |0〉) for the quadratures,

q =
1√
2

(a† + a) , p =
i√
2

(a† − a) , (4)

with

q2 =

(
n̂+

1

2

)
+

1

2
a†2 +

1

2
a2 = 2K0 +K+ +K− ,

p2 =

(
n̂+

1

2

)
− 1

2
a†2 − 1

2
a2 = 2K0 −K+ −K− .
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In actual calculations a disentangled version of S(τ) is required. In normal order

form one writes

S(τ) = et+K+et0K0et−K− ,

where coefficients t+, t0, t−, which depend on τ , can be obtained through the method

of Truax [24]. With the upper bar denoting complex conjugation one has‡

t+ =
τ

|τ |
tanh |τ | , t− = −t̄+ , (5)

t0 = − 2 ln(cosh |τ |) . (6)

Transformation

S†(τ)a†S(τ) = cosh |τ | a† +
τ̄

|τ |
sinh |τ | a ,

is sufficient to evaluate the transformations of all relevant operators. The variances

∆2(q)0, ∆2(p)0 of quadratures (4) with respect to |τ〉0, setting τ = |τ |eiΦτ , turn out to

be

∆2(q)0 =
1

2
+ sinh2 |τ |+ sinh |τ | cosh |τ | cos Φτ , (7)

∆2(p)0 =
1

2
+ sinh2 |τ | − sinh |τ | cosh |τ | cos Φτ . (8)

(i) The unitary squeezing operator is assumed to be the most general element of

SU(1,1),

U(α, τ) = eiαK0+τK+−τ̄K− , (9)

where α ∈ R.

(ii) The generalized ‘vacuum’ state |ω〉 is the normalized linear combination of states

|0〉 and |1〉,

|ω〉 = cosϑ|0〉+ sinϑ|1〉 , (10)

parametrized by a single real angle ϑ, which manifestly satisfies the requirement

K−|ω〉 = 0.

(iii) By construction the generalized squeezed vacuum,

|α, τ, ϑ〉 = U(α, τ)|ω〉 , (11)

coincides with the generalized coherent states of su(1,1) in the Schwinger realization,

where {α, τ, ϑ} is the set referred to as ζ in the Introduction.

The normal order disentangled version of the unitary operator (9) is

U(α, τ) = ep+K+ep0K0ep−K− , (12)

‡ For notational convenience, the dependence of the disentanglement coefficients (5)-(6) as well as of

(13)-(14) on the parameters appearing in the squeezing operators is omitted everywhere.
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where coefficients p+, p0, p−, derived in [24], are known functions of α and τ . Unlike in

Sect. 2, two cases appear: |τ |2 > α2/4 and |τ |2 < α2/4. We set β
.
= (| |τ |2 − α2/4 |)

1
2 .

For |τ |2 > α2/4 one has

p+ =
τ sinh β

D
, p− = − τ̄

τ
p+ , (13)

p0 = − 2 ln
D

β
, (14)

where D = β cosh β −iα
2

sinh β. Note that p− and p+ differ from each other by

a phase factor, so that in calcultions one can use |p−| = |p+|. When α = 0 the

disentanglement coefficients (5)-(6) are naturally retrieved from (13)-(14) as U(0, τ)

= S(τ). For |τ |2 < α2/4 the coefficients are derived from Eqs. (13)-(14) by simply

replacing the hyperbolic functions with the corresponding trigonometric ones. In the

transition case |τ |2 = α2/4, from Eqs. (13)-(14) one obtains

p+ =
2τ

2− iα
, p− = − τ̄

τ
p+ , p0 = −2 ln

(
1− iα

2

)
.

Note also that

e−
1
2

(p0+p̄0)
(
1− |p+|2

)
= 1 . (15)

Due to the Schwinger two boson realization, the generalized squeezed vacuum (11)

splits into the sum of two orthogonal definite-parity states,

|α, τ, ϑ〉 = cosϑ |α, τ, 0〉+ sinϑ |α, τ, π
2
〉 , (16)

where |α, τ, 0〉 and |α, τ, π
2
〉 are obtained resorting to Eq. (12),

|α, τ, 0〉 = U(α, τ)|0〉 .=
∞∑
n=0

c2n |2n〉 ,

|α, τ, π
2
〉 = U(α, τ)|1〉 .=

∞∑
n=0

c2n+1 |2n+ 1〉 ,

with

c2n = e
1
4
p0
(p+

2

)n √(2n)!

n!
,

c2n+1 = e
3
4
p0
(p+

2

)n √(2n+ 1)!

n!
.

For α = 0, |α, τ, 0〉 returns |τ〉0. States |α, τ, 0〉, |α, τ, π
2
〉 are individually normalized by

definition, as can be readily checked resorting to
∞∑
n=0

(y
2

)2n
(

2n

n

)
= (1 − y2)−

1
2 , with

y = |p+|, and to property (15). Calculation of the variances ∆2(q) and ∆2(p) in state

(16) once more requires only a single transformation,

U †(α, τ)a†U(α, τ) = e−
1
2
p0
(
a† − p− a

)
,

and its straightforward extensions to all relevant operators, so that the expectations are

reconducted only to |ω〉, 〈α, τ, ϑ| • |α, τ, ϑ〉 = 〈ω|U †(α, τ) • U(α, τ)|ω〉. The calculation
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scheme is similar to, but of course more complicated than, the conventional case. One

finds

∆2(q) =
1

2
+

[
e−

1
2

(p0+p̄0)|p−|2 −
1

2

(
e−p0p− + c.c.

)]
+
[
e−

1
2

(p0+p̄0)
(
1 + |p−|2

)
−
(
e−p0p− + c.c.

)]
sin2ϑ

− 1

2

[
e−

1
2
p0(1− p−) + c.c.

]2

sin2ϑ cos2ϑ , (17)

and

∆2(p) =
1

2
+

[
e−

1
2

(p0+p̄0)|p−|2 +
1

2

(
e−p0p− + c.c.

)]
+
[
e−

1
2

(p0+p̄0)
(
1 + |p−|2

)
+
(
e−p0p− + c.c.

)]
sin2ϑ

+
1

2

[
e−

1
2
p0(1− p−)− c.c.

]2

sin2ϑ cos2ϑ . (18)

Previous results (7), (8) are retrieved from the general equations (17), (18) setting α =

0 and ϑ = 0. For α = 0 and ϑ = π
2

one obtains the variances ∆2(q)1 and ∆2(p)1 in the

state |τ〉1 = S(τ)|1〉, whose use in an interferometric setup can be found, e.g., in [25],

∆2(q)1 =
1

2
+ (1 + 3 sinh2 |τ |) + 3 sinh |τ | cosh |τ | cos Φτ ,

∆2(p)1 =
1

2
+ (1 + 3 sinh2 |τ |)− 3 sinh |τ | cosh |τ | cos Φτ .

3. Quadrature squeezing

Squeezing conditions for q and p are conveniently investigated writing the variances

(17), (18) as polynomials in s
.
= sin2ϑ, 0 ≤ s ≤ 1. Setting

F = F(s) = As2 +Bs+ C , (19)

G = G(s) = Ls2 +Ms+N . (20)

one obtains

∆2(q) =
1

2
+ F − G , ∆2(p) =

1

2
+ F + G . (21)

With p− = |p−|eiΦp , the explicit form of the (real) coefficients in Eqs. (19) and (20) in

terms of the disentanglement coefficients (13), (14), is

A = e−
1
2

(p0+p̄0)
(
1 + |p−|2 − 2|p−| cos Φp

)
B = e−

1
2

(p0+p̄0)2|p−| cos Φp ,

C = e−
1
2

(p0+p̄0)|p−|2 ,
and

L = − 1

2

[
e−p0 (1− p−)2 + c.c.

]
,

M =
1

2

[
e−p0

(
1 + p2

−
)

+ c.c.
]
,

N =
1

2

(
e−p0 p− + c.c.

)
.
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Noting that e−
1
2

(p0+p̄0) is real and positive, |p−|2 < 1, and obviously s2 ≤ s, F(s) proves

to be positive for any s. In view of (21) the squeezing transition between quadratures q

and p corresponds to equation G(s) = 0, whose roots, in terms of x
.
= M/L, are

s± =
1

2

[
−x±

√
x2 − 2x− 2

]
. (22)

The range of values of x in which constraint 0 ≤ s ≤ 1 is satisfied is [−1, 1 −
√

3].

Roots s± in Fig. 1 show that for a given value of x the squeezed quadrature is q or p

according to whether G(s) > 0, verified for 0 < s < s− and s+ < s < 1, or G(s) < 0,

i.e., s− < s < s+, respectively. Note that x = −1 is the only condition for which the

generalized vacuum |ω〉 coincides with the ordinary vacuum |0〉 at s− = 0 or with the

single photon state |1〉 at s+ = 1.

Figure 1. Squeezing transition curves corresponding to roots (22) of equation G(s) =

0. x is defined in [−1, 1−
√

3].

4. Photon number statistics

A characteristic feature of the generalized squeezed vacuum |α, τ, ϑ〉 is the photon

number distribution pn, that is the probability of finding n photons in it. The even

and odd photon number probability distributions, p2n and p2n+1, are

p2n = |c2n|2 =
(
1− |p+|2

) 1
2

(
|p+|2

22

)n(
2n

n

)
, (23)

p2n+1 = |c2n+1|2 =
(
1− |p+|2

)
(2n+ 1) p2n , (24)

where property (15) was used. Note that both distributions are separately normalized:∑∞
n=0 p2n = 1,

∑∞
n=0 p2n+1 = 1. As expected Eq. (23) gives the known result [16] for

the conventional squeezed vacuum state |τ〉0 for α = 0,

p2n

∣∣∣
(α=0)

=
1

cosh |τ |

(
tanh2 |τ |

22

)n(
2n

n

)
.

Probability distributions (23) and (24) are shown in Figs. 2, 3 and 4, 5 (the continuous

lines are drawn only for convenience). The cases |τ | = 1, 2 are reported, while the control
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parameter α assumes the values 0, 3
2
|τ |, 5

2
|τ |, 3|τ |, so that both conditions |τ |2 > α2/4

and |τ |2 < α2/4 occur. The probability distributions prove to be significantly influenced

by α. In particular, one notes that p2n and p2n+1 are more sharply peaked on states |0〉
and |1〉 than in the reference case α = 0, so that the spreading on the n axis is generally

reduced for both distributions. However, it is worth mentioning that, unlike p2n, p2n+1

can exhibit a maximum in n, which is not centered on state |1〉: in the explored range

of values of α and |τ | this feature emerges in Fig. 5 for α = 0 and 3|τ |/2, the maxima

being very smooth. In the same range, numerical calculations show that as |τ | decreases

both probability distributions p2n and p2n+1 become practically independent on α for

|τ | ≤ 0.4.

Figure 2. The even probability distribution (23) for |τ | = 1.

Figure 3. The even probability distribution (23) for |τ | = 2.

Probability distributions p2n, p2n+1 can be both expressed in terms of the

expectation values of the number operator in the even and odd parity states: 〈n̂〉e
=
∑∞

n=0(2n) p2n and 〈n̂〉o =
∑∞

n=0(2n+ 1) p2n+1. Using (23), (24) one calculates

〈n̂〉e =
|p+|2

1− |p+|2
, 〈n̂〉o =

1 + 2|p+|2

1− |p+|2
,
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Figure 4. The odd probability distribution (24) for |τ | = 1.

Figure 5. The odd probability distribution (24) for |τ | = 2.

from which

p2n = (〈n̂〉e + 1)−
1
2

[
〈n̂〉e

4 (〈n̂〉e + 1)

]n
, (25)

p2n+1 = 3
3
2 (1 + 2n)(〈n̂〉o + 1)−

3
2

[
〈n̂〉o − 1

4 (〈n̂〉o + 1)

]n
, (26)

manifestly different from Poisson’s distribution. Note that, however, p2n and p2n+1

depend only on 〈n̂〉e and 〈n̂〉o, respectively, as it occurs, e.g., in Poissonian or thermal

statistics. For generic ϑ the probability of finding N photons in the squeezed vacuum

|α, τ, ϑ〉 is

pN = |〈N |α, τ, ϑ〉|2 = cos2ϑ p2n δN,2n + sin2ϑ p2n+1 δN,2n+1 , (27)

as the interference terms vanish for any N due to the form of Eq. (16). There ensues

that the expectation value of number operator n̂ in the generalized squeezed vacuum is

〈n̂〉 = cos2ϑ 〈n̂〉e + sin2ϑ 〈n̂〉o .
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Figure 6. Schematic picture of the Mach-Zehnder interferometer: BS1, BS2 are 50-50

beam splitters, M1, M2 are perfect mirrors, ϕ denotes the phase shift, here associated

to the upper arm of the interferometer.

5. An application: the Mach-Zehnder interferometer

On account of the relevance of squeezed states for interferometry [5]-[9], as a

paradigmatic example of an application of our generalized squeezed vacuum we consider

the Mach-Zehnder interferometer described in Fig. 6, where the conventions and

nomenclature of [16] are adopted. The physical structure of the interferometer implies

that one has to define two pairs of Heisenberg annihilation operators (a, b) and (a′, b′),

at the input and output ports, respectively, which act on the corresponding Fock spaces

here denoted by Fa, Fb and Fa′ , Fb′ . These operators are related to each other through

a unitary transformation expressed by the 2×2 matrix T,[
a′

b′

]
= T

[
a

b

]
=

[
T11 T12

T21 T22

][
a

b

]
,

whose elements are T11 = −T22 = −1
2

(1− e−iϕ), T21 = T12 = − i
2

(1 + e−iϕ). In tensor

product notation the Hilbert space of the system is H = Fa⊗Fb at the input ports and

H′ = Fa′⊗Fb′ ∼ H at the output ports. With no risk of ambiguity in Fig. 6 we identify

the ports labels with the same symbols of the corresponding annihilation operators.

We analyze the physical process in which the generalized squeezed vacuum state

|α, τ, ϑ〉 enters input port b, while the Glauber coherent state |z〉, z ∈ C, enters port a.

Let us recall that, defining the unitary operator D(z) = exp(za†− z̄a), |z〉 = D(z)|0〉. It

is worth noting that also |z〉 is an example of displaced vacuum belonging to the family

of generalized coherent states defined in Section 1, its algebra A being the Heisenberg-

Weyl algebra generated by the set of operators {I, a, a†}, while |ω〉 coincides with the

physical vacuum |0〉 annihilated by a. Moreover, disentangling D(z) in normal order

form, D(z) = e−
1
2
|z|2eza

†
e−z̄a, one can write

|z〉 = e−
1
2
|z|2eza

†|0〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n〉 .
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We explore the possibility of extended and controllable quantumness domains at the

output of such process through the Mandel parameter Q [23],

Q =
∆2(n̂)− 〈n̂〉
〈n̂〉

=
〈n̂2〉
〈n̂〉
− 〈n̂〉 − 1 , (28)

as it is known that the sign of Q classifies the statistics of the photon number

distribution: negative (positive) values of Q correspond to states with respect to which

this statistics is sub (super)-Poissonian (Q = 0 identifies Poisson’s statistics). Using the

additional control parameters α, ϑ, that the generalized squeezed vacua make available,

one shows the existence of new nonclassical regions with respect to the standard scheme

in which α = 0, ϑ = 0 and the state |α, τ, ϑ〉 at the input port b reduces to |τ〉0. With our

input state |z〉⊗|α, τ, ϑ〉, we study the output at port a′; therefore a′ = T11 a⊗I+T12 I⊗b
and the number operator n̂ in Eq. (28) is identified with n̂a′

.
= a′†a′,

n̂a′ = |T11|2n̂a ⊗ I + |T12|2I⊗ n̂b +
[
T̄11T12a

† ⊗ b+ T11T̄12a⊗ b†
]
, (29)

where n̂a
.
= a†a, n̂b

.
= b†b. Using Eq. (29) and formula (15), bearing in mind that

|p+|2 = |p−|2, the expectation values of n̂a′ and n̂2
a′ for the configuration in Fig. 6 are,

explicitly,

〈n̂a′〉 = 〈ω|U †(α, τ)〈z|n̂a′|z〉U(α, τ)|ω〉 = |z|2 sin2ϕ

2

+
(
1− |p−|2

)−1 [|p−|2 +
(
1 + |p−|2

)
sin2ϑ

]
cos2ϕ

2

+
1

4

[
ze−

1
2
p0(1− p−) + c.c.

]
sin(2ϑ) sinϕ ,

〈n̂2
a′〉 = 〈ω|U †(α, τ)〈z|n̂2

a′|z〉U(α, τ)|ω〉 = sin4ϕ

2
|z|2

(
1 + |z|2

)
+ cos4ϕ

2

(
1− |p−|2

)−2 [(
1 + 8|p−|2 + 3|p−|4

)
sin2ϑ+ |p−|2

(
2 + |p−|2

)]
+ sin2ϕ

(
1− |p−|2

)−1 [|p−|2 +
(
1 + |p−|2

)
sin2ϑ

](1

4
+ |z|2

)
+

1

4
sin2ϕ

[
|z|2 −

(
z2 e−p0p− + c.c.

) (
1 + 2 sin2ϑ

)]
+

1

4
sin(2ϑ) sinϕ

{(
1 + 2|z|2

) [
z e−

1
2
p0(1− p−) + c.c.

]
sin2ϕ

2

+
[
z e−

1
2
p0
(
1− |p−|2

)−1 [
1 + 5|p−|2 − 3p−(1 + |p−|2)

]
+ c.c.

]
cos2ϕ

2

}
.

Selecting port b′ would lead to different expectation values, which are readily computable

noticing that, with n̂b′
.
= b′†b′, operators n̂b′ and n̂2

b′ are obtained from n̂a′ and n̂2
a′ ,

respectively, replacing ϕ with ϕ± π throughout.

In our example we fix z = 1, ϕ = π
2

(selecting other values for z and ϕ would simply

lead to other sub-Poissonian regions in the parameter space) and calculate the Mandel

parameter (28) for various values of both τ and the additional degrees of freedom α and
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ϑ. Each curve in Figs. 7-10 corresponds to a different value of ϑ while τ is different in

every figure. One can see that nonclassical domains, characterized by negative values

of Q, emerge even for ϑ = 0 (|ω〉 ≡ |0〉) in some intervals of the axis α. Conversely,

nonclassical behaviour arises for α = 0, where U(0, τ) ≡ S(τ), depending on the value

of ϑ. The numerical results show that higher values of τ counteract this phenomenon,

namely, the nonclassical regions are removed or shifted toward higher values of α,

depending on the interplay among the parameters. The tiny breaks of smoothness

in Figs. 7-10 happen in the region |τ |2 < α2/4 for α2/4 − |τ |2 = (kπ)2, k 6= 0 integer,

where sin β = 0 or, equivalently, |p−| = 0.

Figure 7. Mandel’s parameter as a function of α for τ = 0.1. The blue, yellow, green

and red curves are labelled ϑ = 0, π
8 , π

4 and π
2 .

Figure 8. Mandel’s parameter as a function of α for τ = 0.2. The blue, yellow, green

and red curves are labelled ϑ = 0, π
8 , π

4 and π
2 .

Figs. 11-12 show Q as a function of τ considering separately the additional degrees

of freedom α and ϑ: in Fig. 11 ϑ = 0 and the curves are labelled by α whereas in

Fig. 12 α = 0 and the curves are parametrized by ϑ. The emergence of sub-Poissonian

regimes is visually noticeable with respect to the usual setting, which corresponds to

both α = 0 and ϑ = 0. Finally, the 3D plots in Figs. 13-16 give the joint dependence

of the Mandel parameter on the control degrees of freedom α and ϑ. In each figure

the surface Q(α, ϑ) is associated to a specific value of τ and the blue plane denotes
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Figure 9. Mandel’s parameter as a function of α for τ = 0.5. The blue, yellow, green

and red curves are labelled ϑ = 0, π
8 , π

4 and π
2 .

Figure 10. Mandel’s parameter as a function of α for τ = 1. The blue, yellow, green

and red curves are labelled ϑ = 0, π
8 , π

4 and π
2 .

Q = 0. Increasing τ reduces the extension of the sub-Poissonian domains; this effect

is emphasized in Fig. 16 where τ attains the maximum value we assumed for this

example. As a general consideration, these results show that a rich variety of regions of

non classical behaviour appears: this paves the way to possible interesting applications

of these states to interferometry.

6. Discussion and final remarks

In this paper a twofold generalization of the usual approach to quantum squeezed states

was presented, which resorts to a new set of squeezed states based. The latter are based

on the rigorous mathematical definition of coherent states for the two boson Schwinger

realization of the algebra su(1,1). Such formulation leads to generalized expressions of

quadratures squeezing and photon probability distribution, which include the standard

results as special cases. Furthermore, new nonclassical regions are predicted in the

application to a Mach-Zehnder interferometer. Specifically:

• State |α, τ, ϑ〉, Eq. (11), is the coherent state for su(1,1) and provides a generalized

squeezed vacuum state, which includes the conventional squeezed vacuum state |τ〉0.
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Figure 11. Mandel’s parameter as a function of τ for ϑ = 0. The blu, yellow, green

and red curves are labelled α = 0, 5, 10 and 20.

Figure 12. Mandel’s parameter as a function of τ for α = 0. The blu, yellow, green

and red curves are labelled ϑ = 0, π
8 , π

4 and π
2 .

Figure 13. Mach-Zehnder example: Q(α, ϑ) for τ = 0.1.

Compared to |τ〉0, |α, τ, ϑ〉 exhibits two features: it lives in the full Fock space and

not in the even sector only and gives to the experimenter two additional degrees of

freedom, α and ϑ, which could be used as control parameters of an actual quantum

optical system to explore quantumness in a larger parameter space.
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Figure 14. Mach-Zehnder example: Q(α, ϑ) for τ = 0.5.

Figure 15. Mach-Zehnder example: Q(α, ϑ) for τ = 1.

Figure 16. Mach-Zehnder example: Q(α, ϑ) for τ = 3.

• The generalized formulation leads to the identification of which is the squeezed

quadrature, cf. Fig. 1. The regions accessible to the system can be selected
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by tuning a suitable parameter x, which depends on coefficients α and τ . By

comparison, the conventional case corresponds to the single point (−1, 0) in Fig. 1.

• The influence of the control parameter α on photon statistics is significant. This is

shown in Figs. 2, 3 and 4, 5 for the special cases ϑ = 0 and ϑ = π/2, i.e., |ω〉 = |0〉
and |ω〉 = |1〉, respectively.

• In the Mach-Zehnder example, with ϕ = π
2
, z = 1, Mandel’s parameter exhibits

a marked dependence on the control parameters α, ϑ. Indeed, acting on α and ϑ

gives rise to nonclassical regions in which the statistics is sub-Poissonian. This is

illustrated in Figs. 7-10. The curves in Figs. 11 and 12, which provide Q as a

function of α for ϑ = 0 and of ϑ for α = 0, allow for a straightforward comparison

with the standard case (α = 0, ϑ = 0). In all cases considered parameter τ ,

which is assumed to be real in the numerical calculations, plays an important role

as well: the higher its value, the less pronounced the nonclassical effects induced

by the control parameters. This is confirmed by the three-dimensional plots in

Figs. 13-16, which summarize the previous considerations and show the influence

of the interplay between the control parameters α, ϑ and τ on the extension of the

nonclassical regions of the system. The presence of several sub-Poissonian domains

motivates the potential experimental interest of the quantum squeezing formulation

proposed in this work.
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