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Abstract A tutorial and a user-friendly program for evaluating risks of false decisions in 

conformity assessment of a multicomponent material or object due to measurement uncertainty, 

based on a Bayesian approach, are presented. The developed program consists of two separate 

MS-Excel spreadsheets. It allows calculation of the consumer’s and producer’s risks concerning 

each component of the material whose concentration was tested (‘particular risks’) as well as 

concerning the material as a whole (‘total risks’). According to the Bayesian framework, 

probability density functions of the actual/‘true’ component concentrations (prior pdfs) and 

likelihood functions (likelihoods) of the corresponding test results are used to model the 

knowledge about the material or object. Both cases of independent and correlated variables (the 

actual concentrations and the test results) are treated in the present work. Spreadsheets provide 

an estimate of the joint posterior pdf for the actual component concentrations as the normalized 

product of the multivariate prior pdf and the likelihood, starting from normal or log-normal 

prior pdfs and normal likelihoods, using Markov Chain Monte Carlo (MCMC) simulations by 

the Metropolis-Hastings algorithm. The principles of Bayesian inference and MCMC are 

described for users with basic knowledge in statistics, necessary for correct formulation of a 

task and interpretation of the calculation results. The spreadsheet program was validated by 

comparison of the obtained results with analytical results calculated in the R programming 

environment. The developed program allows estimation of risks greater than 0.003 % with 

standard deviations of such estimates spreading from 0.001 % to 1.5 %, depending on the risk 

value. Such estimation characteristics are satisfactory, taking into account known variability in 

measurement uncertainty associated with the test results of multicomponent materials. 

 

Keywords   Conformity assessment ⋅ Risk of false decision ⋅ Measurement uncertainty ⋅ 

Multicomponent material ⋅ Markov Chain Monte Carlo simulations ⋅ Spreadsheet  
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1. Introduction 

Properties of multicomponent materials, such as medications, alloys, food and clinical 

samples, and objects (e.g. ambient air), depend on actual/‘true’ concentration ci of the i-th 

component, i = 1, 2, …, n, which is measured during conformity assessment. Note, the term 

concentration is used here as a general concept, since concentration is the most frequent type 

of measured quantity in chemistry. However, the discussion in this paper is also applicable to 

other quantities, such as pH, Brix, total organic carbon, etc.  

The material or object is considered ‘conforming’ when ci values are in the specification, 

regulation or legal tolerance limits/intervals [TLi, TUi], where TLi and TUi are lower and upper 

limits of the interval, respectively. Comparing chemical analytical measurement/test result cim 

of the concentration of i-th component with the upper limit TUi, for example, one can decide 

whether the material or object conforms or not. Since any measurement result cim has an 

associated measurement uncertainty [1, 2], two kinds of risk of a false decision on conformity 

may arise. The probability of the false decision that the component concentration does not 

exceed the upper limit, based on the measurement result cim ≤ TUi, when the material actually 

does not conform, i.e. the actual concentration exceeds the upper limit (ci > TUi), is 

‘consumer’s risk’. On the other hand, the probability of falsely rejecting the decision on 

conformity (i.e. cim > TUi when in fact ci ≤ TUi) is the ‘producer’s risk’. 

For a specified material batch, lot, or an environmental compartment, e.g. ambient air in a 

certain location at a certain time, such risks are referred to as the ‘specific consumer’s risk, 

���(�)∗ , and the ‘specific producer’s risk’, ���(�)∗ , respectively, for the i-th component. The 

risks of incorrect conformity assessment of a batch randomly drawn from a statistical 

population of such batches are the ‘global consumer’s risk’, ���(�), and the ‘global producer’s 

risk’, ���(�), respectively, as they characterize the material quality globally. Evaluation of the 

both specific and global risks for a particular (single) component i is described in the JCGM 

guidelines [3] based on a Bayesian framework for assessing conformity.  

Besides the specification limits for actual concentration values ci, acceptance limits for 

measurement results cim can be applied taking into account the measurement uncertainty. In 

such a case, the decision rules are formulated based on comparison of the measurement/test 

results with the acceptance limits, thereby reducing the consumer’s or producer’s risk [3, 4]. 

When concentrations of two or more components are controlled, component-by-

component evaluation of the risks is not complete in general, as it does not give an answer to 

the question of the probability of a false decision on conformity of the overall material or 
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object. If conformity assessment for each i-th component concentration of a specified batch 

of a material is successful (i.e. the particular specific risks, ���∗ , are small enough), the total 

probability of a false decision concerning conformity of the material as a whole (i.e. the total 

specific risk �	
	��∗ ) might still be significant. The evaluation of total risks is the task of the 

IUPAC project [5]. In the framework of this project, it was shown, based on the law of total 

probability, that the total risk can be evaluated as a combination of the particular risks, 

whenever the variables (ci and cim) are independent. A model of the total consumer’s risk was 

formulated and applied for customs control of completely denatured alcohols, where 

conformity assessment was performed by comparison of chemical analytical test results with 

the lower regulatory limits for concentrations of three denaturants. The model was based on 

assumptions of the normal prior probability density functions (pdfs) of actual denaturant 

concentrations and the normal likelihood functions (likelihoods) of the test results [6]. 

A similar model for the total producer’s risk was developed and used for a case of total 

suspended particulate matter (TSPM) concentration in ambient air near three independent stone 

quarries located in Israel, as the sources of air pollution. The conformity decisions were based 

here on comparison of TSPM test results with the national upper regulation limit. In this case, 

the actual TSPM concentrations were described by prior lognormal pdfs, whereas the 

likelihoods of the test results were assumed to be normal. Total probabilities of underestimation 

of TSPM concentration (total consumer’s risk of the inhabitants) and overestimation (total risk 

of the stone producers) were evaluated as a combination of the particular risks of air conformity 

assessment concerning TSPM concentrations for each quarry [7]. 

In the paper [8], the probability of a false decision on conformity of a medication due to 

measurement uncertainty was discussed when test results of four active components of the 

medication are correlated. Specification limits of the components’ contents of such a medication 

generate a multivariate specification interval/domain [9]. Actual values of components’ content 

and corresponding test results were modelled by multivariate normal prior pdf and likelihood 

function. It was shown that the influence of the correlation on the risk values is not easily 

predictable.  

The total risks of false decisions on conformity of a platinum-rhodium alloy batch due to 

measurement uncertainty were also quantified for four components, when a strong correlation 

of test results was observed [10]. As in the previous work [8], actual values of components’ 

content and corresponding test results were modelled by multivariate normal prior pdf and 

likelihood function. It was found that simplification of the testing by reducing the number of 
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components under control (taking one component of two for which the test results are strongly 

correlated) leads to a significant underestimation of the probability of a false decision on 

conformity of the alloy. 

Calculation of the specific risks in these studies [6-8, 10] was based on the analytical 

expressions (or corresponding numerical approximations) of the posterior pdf for the actual 

component concentrations as the normalized product of the multivariate prior pdf and the 

likelihood, performed within the R programming environment [11]. In parallel with the R codes, 

a user-friendly MS-Excel program was developed based on the same Bayesian approach, but 

implemented through the Markov Chain Monte Carlo (MCMC) method. 

The present paper is a tutorial for quantification of specific risks in conformity assessment 

of multicomponent materials due to measurement uncertainty, making more accessible the 

developed concepts and necessary computational tools. Principles of the Bayesian approach 

and MCMC method are explained for correct formulation of the risk estimation task and 

interpretation of the results. The validated spreadsheets for calculation of specific risks are 

available as supplementary electronic material. Similar spreadsheeds for evaluation of global 

risks will be worked out in the continuation of the IUPAC project [5]. 

 

2. Theory 

Bayesian inference provides a probability distribution of a component concentration as a 

posterior pdf, starting from prior knowledge about the component in the material or object 

before the measurement (the prior pdf or simply ‘prior’), updated by new information coming 

from measurement results modelled by the likelihood function (‘likelihood’) [12].  

     The prior is obtained from available information on component concentrations in similar 

batches of the material or objects. The batch-to-batch distribution of measurement results, 

accumulated during testing a large enough number of batches, lots or environmental 

compartments, can be used as prior, when the measurement uncertainty is negligible in 

comparison to the batch-to-batch variation. The assumption is that the actual concentration 

values are approximated by the measurement/test results adequately (ci ≈ cim). If there is no 

detailed prior knowledge about the component concentration in the tested material or object, the 

prior pdf is vague. In such cases, a uniform pdf may be used, limited by the lowest and the 

highest possible values for the component concentration. 

     The likelihood is a function describing the plausibility of the actual values of a component 

concentration at a given measurement result. In practice, a distribution (���|��) of 
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measurement results at a given actual component concentration value ci, i.e. related to one and 

the same sample, is usually available from the analytical method validation data. This 

distribution of the measurement results, regarded as a function of ci, is nothing else than the 

likelihood function itself.       

     The posterior distribution of ci (the posterior pdf) is the normalized product of the prior and 

the likelihood.  

Two spreadsheets have been developed for calculating the posterior pdf for a particular 

component, as well as the joint posterior pdf for up to four components of a material or object. 

The spreadsheets allow evaluation of the specific risks of false decisions about conformity of a 

component concentration separately (i.e. the particular specific risks ���∗ ), and considering the 

material or object as a whole (i.e. the total specific risk �	
	��∗ ). One spreadsheet is designed for 

uncorrelated test results (UnCorrel4Risk.xlsm) and the other for correlated test results 

(Correl4Risk.xlsm). Both the spreadsheets process multivariate normal prior pdfs and 

likelihoods, but the file ‘UnCorrel4Risk.xlsm’can also process prior log-normal pdfs. The 

spreadsheets’ files and videos explaining the use of these files are available as Electronic 

Supplementary Material. 

The concentrations measured in the studied objects can be correlated due to intrinsic 

correlations of the actual concentrations �� of the material or object, or due to the correlation of 

the measurement results ���. Intrinsic correlations are derived from stoichiometric or mass 

balance limitations, or are due to technological reasons. When composition of a material or 

object is expressed as sum of mass fractions or mole fractions equal to 100 %, correlation 

among them may be spurious [13, 14]. The ‘metrological’ correlation occurs because of 

interaction of the components at different steps of the measurement process (chemical analysis) 

or because of interferences of the analytical signals, e.g. in a spectral analysis [8]. In this 

tutorial, the origin of the correlation between results is not distinguished, hence the same 

correlation matrix being used for both ci and cim. 

 

2.1. Bayesian estimate of a concentration 

For an easier understanding of Bayes theorem, its application is firstly illustrated using a 

specific example involving Boolean variables and then described for continuous variables such 

as component concentrations in a material or object. 
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2.1.1. Bayes theorem for Boolean variables 

The probability �(A|E) of an event A (e.g. the pregnancy of a 28-year-old woman) when 

some discrete evidence E is observed (e.g. a colour change of a test kit exposed to the urine of 

the woman), i.e. the probability of A given E, is: 

 

�(A|E) = �(�)�(�|�)
�(�) , (1) 

 

where �(A) is the prior probability of the event A, �(E|A) the probability of observing E given 

the event A, and �(E) is the probability of the evidence E being observed [12]. In other words, 

in this example �(A) is the probability of a 28-year-old woman being actually pregnant, �(E|A) 
is the probability of the test kit producing a colour change when testing the urine of a pregnant 

woman, and �(E) is the probability of the test producing a colour change regardless of the 

pregnancy status of the woman. Probability �(E) by the law of total probability is	�(E) =
�(A)�(E|A) + �(¬A)�(E|¬A), where �(¬A) = 1 − �(A)	is the probability of the woman 

being not pregnant, and �(E|¬A) is the probability of observing a colour change of the test kit 

when the woman is not pregnant – false positive probability. Equation (1) shows that the prior 

probability �(A)	of the woman pregnancy is modified after observation E of the colour change 

of the test kit into the posterior probability �(A|E). 
If a test result of a 44-year-old woman is positive for pregnancy, the corresponding 

probability of actual pregnancy �(A|E) will be smaller than that of a 28-year-old woman 

showing the same positive test result. In fact, considering �(E|A) fixed as a property of the test 

kit, according to equation (1), �(A|E) decreases if �(A) decreases, as happens for women older 

than 28-years-old. 

Moreover, in order to be more confident about the probability of actual pregnancy for a 44-

year-old woman showing a positive test E, a second test kit could be used for the same woman. 

Let us suppose the results of the two test kits are conditionally independent, that is, �(E, F|A) =
�(E|A)	�(F|A). Hence, the probability �(A|E, F) of the women being pregnant, where F is the 

evidence of pregnancy by the second test kit, is: 

 

�(A|E, F) = �(A)�(E|A)�(F|A)�(A)�(E|A)�(F|A) + �(¬A)�(E|¬A)�(F|¬A)	, (2) 
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where �(F|A) and �(F|¬A) are the probabilities of the second test kit indicating pregnancy 

when the woman is actually pregnant or not, respectively. 

After the second evidence, the posterior probability increases from �(A|E) to �(A|E, F) 
suggesting that the woman is more likely pregnant when she has a positive evidence from both 

the tests. �(A|E, F)	is greater than �(A|E), in fact, because the true positive rate of the second 

test �(F|A) is greater than the false positive rate �(F|¬A). For example, assuming probability 

of a 44-year-old woman being pregnant �(A) = 0.019, probability of test kits correctly detecting 

a pregnancy – true positive �(E|A)	=	�(F|A)	= 0.985, and probability of test kits incorrectly 

declaring a pregnancy – false positive		�(E|¬A) = �(F|¬A)	= 0.008, hence �(A|E) = 0.019 ·
0.985/(0.019 · 0.985 + (1 − 0.019) 	 · 0.008)	 = 	0.704 and �(A|E, F) = 0.985* ·
0.019/(0.019 · 0.985* + (1 − 0.019) · 0.008*) = 0.997. The results from the second test kit 

updates the posterior information from the first kit.	The posterior probability is the same when 

the second kit is used first, as can be observed from formula (2): �(A|E, F) = 	�(A|F, E). 
The Bayesian approach has the advantage of accurately reproducing the decision process 

based on cumulative evidence of an event, in particular, when independent evidences of the 

event are collected. Naturally, this approach depends on the adequacy of the prior information.  

The example above describes the application of the Bayes theorem to Boolean variables (e.g. 

colour change: ‘yes’ or ’no’). However, this theorem is also applicable to continuous variables 

such as concentrations. 

 

2.1.2. Bayes theorem for continuous variables 

The description of the occurrence of concentration ci is modelled by a pdf, describing how 

the probability density p(ci) varies with the concentration value. The probability of ci being in 

the range [a1, a2] is: 

 

�(+, ≤ �� ≤ +*) = . (��)/0/1 2�� . (3) 

 

Regardless of the type of the distribution of ci values, the lowest and highest limits of a 95 % 

coverage interval of the values, for example, are percentiles b1 and b2  such that �(�� ≤ 3,) =
2.5	% and �(�� ≤ 3*) = 97.5	%, that is: 

 

�(3, ≤ �� ≤ 3*) = . (��)6061 2�� = 95	% . (4) 
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Application of Bayes theorem provides estimate of an actual concentration ci given a 

measurement result cim. Since both the concentration value and the measurement result are 

continuous variables, the (mass) probabilities discussed in Section 2.1.1 are substituted here for 

corresponding (continuous) pdfs [12]: 

 

(��|���) = (���|��)(��)(���) 	, (5) 

 

where denominator (���) = .(���|��)(��)2�� is the normalizing constant factor. 

The posterior probability �(7, ≤ �� ≤ 7*|8, ≤ ��� ≤ 8*) of �� being between 7, and 7* 

given  ��� varying between 8, and 8* is proportional to the following double integral:  

 

�(7, ≤ �� ≤ 7*|8, ≤ ��� ≤ 8*) ∝ . . (���|��):0:1 (��)2���2��;0;1 , (6) 

 

where symbol ∝ indicates proportionality. The probability of the concentration �� being 

between 7, and 7* is: 

 

�(7, ≤ �� ≤ 7*|���) ∝ . (���|��);0;1 (��)2�� . (7) 

 

The Markov Chain Monte Carlo (MCMC) method is helpful for numerical estimation of 

(��|���) by formula (5), since it allows us to skip the normalizing constant factor (���) [12, 

15]. 

 

2.2. Markov Chain Monte Carlo Method 

The MCMC method is initiated by setting a starting point, α, close to the expected mode of 

the distribution of the posterior concentration, which is usually positioned between the modes of 

the prior pdf and likelihood function. In many cases, < can be chosen as the mode of the prior or 

the likelihood. As a first step, the prior and the likelihood at <, i.e. (�� = <) and (���|�� = <) 
respectively shown in Fig. 1, are calculated according to the relevant analytical expressions.  

For instance, if (��) is a lognormal pdf, as in Fig. 1a, probability density (<) at the starting 

point is calculated by the following formula: 

 

Fig. 1 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
10 

 

 

(<) = 1
<=>�√2@ expD−

Eln(<) − H>�I*2=>�* J	, (8) 

 

where H>� and =>� are the geometric mean and geometric standard deviation of the prior 

distribution of �� values, respectively, hence satisfying H>�= exp(H�K(�L)) and =>�= exp(=�K(�L)), 
where H�K(�L) and =�K(�L) are the mean and standard deviation of the (normal) distribution of 

ln(��) values. The pdf (8) is calculated in MS-Excel using function 

LOGNORM.DIST(<,	H>�,	=>�, FALSE). 

If the prior is a normal pdf, corresponding probability density values (<) are generated by 

using MS-Excel function NORM.DIST(<,	H�,	=�, FALSE). 

When (���|��) is a normal pdf (shown in Fig 1b as the likelihood function of �� at a given 

���), the probability density at the starting point is: 

   

(���|�� = <) = 1
M�√2@ exp N−

12 O��� − <M� P*Q	, (9) 

 

where M� is the standard uncertainty associated with ���. This probability is calculated in MS-

Excel using function NORM.DIST(<,	���,	M�, FALSE). 

The posterior pdf is given by multiplying (<) by (���|<).  
Then, a new value of ��, denoted as β, is generated by randomly drawing a value from a 

normal transition distribution [12] with mean < and standard deviation t, where t is designated 

the Markov Chain increment. The MS-Excel NORM.INV(RAND(),	<, t) is used to produce β. 

The increment is defined from a normal transition distribution, regardless of the prior 

distribution and the likelihood function. 

The posterior pdf at �� = β is given by (R)(���|R). If the prior and the likelihood are log-

normal and normal, respectively, (R) and (���|R) are calculated according to Eqs (8) and 

(9), respectively, after substituting < for β. 

To decide if β is to be retained for the next iteration, the ratio r(β, <) is calculated according 

to: 

 

8(R, <) = (R)(���|R)(<)(���|<)	. (10) 
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If r(β,	<) is greater than one or than a value randomly generated from an uniform distribution 

on (0, 1) with MS-Excel function RAND(), β is retained for the following iteration, otherwise < 

is considered for a new iteration. The new iteration is generated using NORM.INV(RAND(), β, 

t) or NORM.INV(RAND(), <, t), respectively. At each iteration, a ratio equivalent to that in 

equation (10) is estimated and a new value from uniform distribution on (0,1) is drawn to decide 

which value to retain for the next iteration. This sampling method of the posterior distribution is 

known as the ‘Metropolis–Hastings algorithm’ [12, 15]. 

The process is repeated many times with the new or the previous value of the iteration being 

retained. As the iteration progresses, the simulated value approaches the mode of the posterior 

pdf and the simulation starts sampling values above and below the mode proportionally to their 

density. The a-posteriori retained concentration values estimate the probability density 

(��|���). 
A graphical representation of the retained �� during the iterations progress allows to assess if 

the mode of (��|���) has been reached and if the posterior pdf was sampled correctly. Fig. 2 

illustrates the impact of the increment size t on sampling the posterior pdf.  

As shown in Fig. 2a, a small value of t may not allow the process to reach the mode of 

(��|���) even if < is close to it. A large value of t, as in Fig. 2b, makes it likely that an 

iteration will produce the new �� value with corresponding	(��|���) smaller than that in the 

previous iteration, hence causing rejection of the new value. This process reduces the number of 

iterations used to describe (��|���) thus wasting computational time. Fig. 2c, when an 

adequate t is used, �� values are presented as a noisy line. 

If the starting point of the Markov Chain process is far away from the mode of the posterior 

distribution, it is convenient to reject the first iterations since they are not representative. The 

so-called “burn-in period” set for the Markov Chain defines the number of initial rejected 

iterations for the characterisation of the posterior distribution [12, 15]. 

It is also advisable to take only each third or fifth iteration to avoid creating an artificial 

correlation between simulated values. The “thinning interval” set for the Markov Chain defines 

this additional filtration of data [12, 15]. 

The posterior distribution of simulated �� values can be characterised by percentiles that 

define the lower and higher limits of specific coverage intervals or, if the posterior distribution 

is normal, by the mean and the standard deviation of the generated �� values. 

The MCMC method can be applied also for simulation of concentrations of two and more 

independent components of a material or object simultaneously, for example concentrations �, 

Fig. 2 
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and �* of a pair of a material components. A point here is a vector c12 consisting of �,	and �* 

(posterior concentrations of the first and the second components). Sizes of independent 

increments t1 and t2 of �, and �* values, respectively, form vector t12. The newly generated 

vector (c12 + t12) is only retained if the ratio between the joint pdf of (c1 + t1) and c1 and the ratio 

between the joint pdf of (c2 + t2) and c2 are greater than 1 or than two randomly generated 

values from an uniform distribution on (0, 1). 

Selection of the starting point and the vector of the increment sizes should allow a 

representative sampling of the posterior bivariate distribution. Fig. 3 demonstrates some cases 

of posterior pdf sampling at different vectors t of the increments’ sizes. 

 

2.3. Posterior distribution of correlated variables 

If concentrations of different components of a material or object are correlated (both the 

actual values and the corresponding test results), it is necessary to take the correlation into 

account when estimating the parameters of the posterior multivariate (joint) pdf for the tested 

concentrations of the components. 

In general, a multivariate normal pdf of n component concentrations ci, i = 1, 2, …, n, is 

characterised by a vector S of means of the component concentrations (H,, H*, …, HT) and a 

covariance matrix U expressing the variances of the concentrations and the covariance between 

them [8, 16]. 

If the prior is a multivariate normal pdf, the prior probability density (V) of a vector c of the 

concentrations (�,, �*, …, �T) is [20]: 

 

(V) = exp	N−12 (V − S)WUX,(V − S)Q
Y(2@)T|U| 	, (11) 

 

where (V − S)W is the transpose vector of the (V − S) and |U| is the determinant of the 

covariance matrix. A multivariate normal likelihood (VZ|V) is similar to (11), with (VZ|V), 
VZ, V and UZ substituting for (V), V, S and U, respectively, where VZ is the vector of the 

measured components concentrations, and UZ is the covariance matrix, built using 

measurement standard uncertainties associated with ��� and estimated correlations between 

them. 

Fig. 3 
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     Formula (11) can be implemented in MS-Excel using functions for operations with matrices 

(e.g. MMULT(array1, array2) for multiplication of two matrices), or by performing matrix 

calculations reproducing respective algebraic relations.  

 

2.4. Calculation of risks 

When one component i of an object is studied, the probability that the object does not 

conform, Pnc, can be estimated as the relative frequency of simulated posterior concentrations, 

ci, falling outside the tolerance limits [TLi, TUi]. When cim is within the tolerance limits, Pnc is the 

specific particular consumer’s risk, ���(�)∗ , while if cim is outside the limits, (1– Pnc) is the 

specific particular producer’s risk, ���(�)∗ . 

When two or more components of the object are studied, the relative frequency of the 

simulated posterior concentration vectors, where at least one ci is outside its limits, is calculated. 

This relative frequency is an estimate of the probability that the object does not conform, Pnc. 

When all cim are within their specification limits, Pnc is an estimate of the specific total 

consumer’s risk, �	
	��(�)∗ , while when at least one cim is outside the limits, (1– Pnc) estimates the 

specific total producer’s risk �	
	��(�)∗ . 

 

3. Spreadsheets 

Two spreadsheets have been developed to estimate the specific risks (both particular and 

total) of false decisions on conformity of a material or object to the tolerance limits TLi and TUi, 

when up to four component concentrations are measured/tested. 

The first spreadsheet (UnCorrel4Risk.xlsm) is applicable to materials or objects when 

correlation of test results for different components is negligible, each prior pdf is normal or 

lognormal and each likelihood is normal. 

The second spreadsheet (Correl4Risk.xlsm) is applicable when correlation of test results is 

statistically significant, while both the joint prior pdf and the joint likelihood are normal. 

These spreadsheets are used by selecting the number n of studied components(variables) in 

cell E7, entering the name of the components, the distributional family, the parameters of the 

prior pdf and the likelihood (mean and standard deviation for a normal pdf, geometric mean and 

standard deviation for a lognormal pdf), the tolerance limits TLi and TUi, and the configuration 

parameters of the Markov Chain. For the spreadsheet processing correlated test results 

(Correl4Risk.xlsm), the types of the distributions are not to be selected since it is applicable to 
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normal distributions only. Pearson correlation coefficients for all pairs of the components 

should be entered in this spreadsheet for specification of the covariance matrix.  

The parameters of the Markov chain are the starting point of the chain, typically the available 

measurement/test result ���, the increments, the burn-in period and the thinning interval. The 

optimisation of the increment is performed by checking how different values of increments 

affect the Markov chain as discussed in section 2.2. Half of the standard measurement 

uncertainty M� 	of ��� is usually a good initial value for increment optimisation. 

The burn-in period is between 100 and 1000, if the starting point of the Markov chain is not 

far from the mode of the posterior pdf. A thinning interval of 3 or 5 is enough to avoid 

correlation of generated results. 

Since the initial stage of the MS-Excel files perform just 50 to 100 simulations, before 

optimising the Markov chain, for estimating (��|���) and the specific risks it is necessary to 

increase the number of simulations. This is possible by pressing “Crtl+q” for 15000 and 

“Ctrl+i” for 150000 simulations, or by using corresponding buttons of the spreadsheet. The 

recalculate button or “F9” can be used to obtain a new set of simulations. “Ctrl+h” can reduce 

simulations back to 50 or 100 to allow saving input data in a small file. 

A file with 150000 lines needs only a few seconds to perform a new set of 150000 iterations. 

However, the increase of lines to 150000 takes about 3 min to compute.  

The mean of specific risks estimated from 30 or 40 sets of simulations can be calculated by 

pressing “Crtl+j” or “Run Replications” (at the bottom of the spreadsheet). 

The MS-Excel files create graphs of the univariate and bivariate Markov chain, with and 

without limits TLi and TUi being presented, and the prior, likelihood and posterior pdfs of each 

component concentration. The graph of the bivariate Markov chain shows, in yellow points, the 

�� values or vectors that have, at least, one component concentration outside the limits.  

The spreadsheets present the number of simulations performed and the number of 

simulations used to describe the posterior pdf to allow checking the efficiency of the Markov 

chain process. The burn-in period, the thinning interval and the rejection of each new iteration 

of the Markov chain reduces the efficiency of the process. 

Several tools are available for performing MCMC simulations, such as commercial add-ins 

of the MS-Excel [21] or free software such as WinBUGS [22] and packages for R programming 

[23]. However, use of these tools for the risk evaluation in conformity assessment requires some 

programming skills. 
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3.1. Validation of spreadsheet calculations 

The validation of the spreadsheet calculations was based on the comparison of specific risk 

estimates with corresponding analytical results, obtained in the R programming environment. 

The studied scenarios are those covered in IUPAC Project [5] and briefly described above in 

Introduction. 

Omitting the chemical details already available in the references, Tables 1 to 3 present the 

studied scenarios and the specific (particular and total) risk estimates performed by means of the 

different tools. The calculation by the R-software is faster and more accurate than that obtained 

by the MS-Excel program, but MS-Excel is a more accessible tool and language for most 

analysts and the program is user friendly, simply requiring the user to set some parameters and 

choose among a couple of distributional families. 

One can find in the tables the means and the standard deviations of 50 MS-Excel estimates of 

specific risks based on 15000 or 150000 iterations, respectively, allowing understanding the 

performance of the MCMC. This does not vary significantly, leading to small changes in the 

parameters of the Markov Chain. 

In the studied scenarios, the computational efficiency of the Markov chains, i.e. the 

percentage of simulations used to describe the posterior distribution, is about 20 % and, 

therefore, approximately 3000 or 30000 iterations are actually used to reconstruct the posterior 

pdf when a total number of 15000 or 150000 iterations are performed, respectively. In theory, 

these numbers of simulations can identify a minimum probability value of 0.03 % or 0.003 % 

(i.e. frequency 1/3000 or 1/30000, respectively) of false or correct compliance decisions, 

depending on the kind of discussed specific risk. 

The specific risks, estimated for uncorrelated cases by the spreadsheet 

“UnCorrel4Risk.xlsm” and by the analytical means, are shown in Tables 1 and 2. Table 1 

presents results where the prior and the likelihood were both normal [6], Table 2 - where the 

prior was lognormal, while the likelihood was normal [7].  

Performance of the MS-Excel file “Correl4Risk.xlsm” used for estimation of the specific 

risks in the case of correlated test results for four material components [8] is shown in Table 3. 

The MS-Excel files provide also confidence intervals (�∗ ± \=]∗) for the specific risk, 

where �∗ and =]∗ are the mean and the standard deviation of the risk estimates and k is the 

quantile of a Student’s distribution with 49 degrees of freedom, for 95 % or 99 % level of 

confidence. In the performed validation, 46 specific risk estimates agree at a 95 % level of 

confidence with the analytical corresponding values (in the sense that the latter is encompassed 

in the interval), whereas only 4 cases agree at a 99 % level of confidence. Similar results were 

Table 1 
1 

Table 2 
1 

Table 3 
1 
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obtained in the case described in ref. [10]. It can be concluded that the risk estimates from the 

MS-Excel files are in good agreement with the analytical results. The standard deviations of the 

risk estimates ranged from 0.001 % to 1.5 %, depending of the specific risk value. Since 95 % 

level of confidence is applied in the majority of measurements in chemistry, it can be concluded 

that the performance of the developed MS-Excel files is adequate to distinguish cases where the 

specific risk is too large or acceptably low. If more accurate risk estimates are required, the 

analytical tools and R programming should be used [5-8, 10]. 

 

4. Conclusions 

The principles of Bayesian inference are discussed in a simple but comprehensive way 

allowing correct formulation of a scenario involved in determination of specific risks (particular 

and total) of false decisions in conformity assessment of a multicomponent material or  object. 

A tutorial and two user-friendly MS-Excel spreadsheets are presented based on the Markov 

Chain Monte Carlo Method using the Metropolis–Hastings algorithm (MCMC-MH). The 

spreadsheets provide easy, fast and adequately accurate estimates of the risks. The principles of 

the MCMC-MH are also explained shortly, as necessary for a suitable choice of Markov Chain 

parameters. 

There is a good agreement between the results estimated by means of the developed 

spreadsheets and the results obtained analytically in R programming environment. 

The MS-Excel platform has the advantage easy linking the developed files with other 

spreadsheets, where complex measurement uncertainty models and/or concentration constraints 

may be implemented as the input information of Bayesian inference. 

The developed tutorial and the spreadsheets can be helpful in different conformity 

assessment tasks related to multicomponent materials or objects. 

 

Electronic supplementary material 

- File to process values with negligible correlation: UnCorrel4Risk.xlsm 

- Video explaining the use of the file UnCorrel4Risk.xlsm: Demo_UnCorrel4Risk.mp4 

- File to process correlated values: Correl4Risk.xlsm 

- Video explaining the use of the file Correl4Risk.xlsm: Demo_Correl4Risk.mp4 
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Figure captions  

 

Fig. 1. Starting point for MCMC calculation . a) Lognormal prior pdf and a starting point 

�� = < with probability density p(<); and b) Gaussian (normal) likelihood and a starting point 

�� = < with probability density p(��� |	<). 

 

Fig. 2. Dependence of the sampled V^ value on the number of iterations in MCMC 

simulations with Metropolis–Hastings algorithm at different increment sizes t. a) A small t 

does not allow to reach the mode of (��|���); b) a large t reduces the number of iterations of 

sampling (��|���), but produces a weaker description of the distribution; and c) adequate t 

value leads to a noisy line of �� values vs. the number of iterations. The blue circle indicates the 

starting point <.  

 

Fig. 3. Variations of the sampled vector c12 with the number of iterations in MCMC 

simulations using Metropolis–Hastings algorithm at different vectors t of the increment 

sizes. a) Small modulus vector t12 and a starting point (blue circle) away from the mode of the 

bivariate distribution; b) a large modulus vector t12; and c) an adequate vector t12, where the 

burn-in period should be increased to remove the tail of points between the starting point and 

the bivariate distribution.  
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Table 1. Comparison of the specific total consumer’s risk _`a`bc(d)∗  (%) in the conformity assessment of denatured alcohols, when from one to three 
denaturant concentrations are tested  
 

# Prior Likelihood ef�           Analytical              MS-Excel (UnCorrel4Risk.xlsm) 

1 Normal 

µ = 3.15; σ = 0.1575 

Normal 

cm (see corresponding 

column on the 

right); u = 0.05 

 

ef = 3 

cm ��,(�)∗  �g�,(�)∗  (I=15000)§ �g�,(�)∗  (I=150000)§ 

3 38.66 37.8; 1.5 38.04; 0.46 

3.08 3.490 3.20; 0.37 3.21; 0.11 

3.15 0.0823 0.062; 0.056 0.068; 0.018 

3.22 0.000370 0.0003; 0.0028 0.0003; 0.0011 

3.3 1×10-7 < 0.03 † < 0.003 † 

2 Normal 

µ1 = 3.15; σ1 = 0.1575 

µ2 = 3.15; σ2 = 0.1575 

Normal 

c1m = 3.10; u1 = 0.05 

c2m = 3.10; u2 = 0.07 

 

ef, = 3 

ef* = 3 

 5.9 5.41; 0.62 5.40; 0.20 

3 Normal 

µ1 = 3.15; σ1 = 0.1575 

µ2 = 3.15; σ2 = 0.1575 

µ3 = 1.10; σ3 = 0.11 

Normal 

c1m = 3.10; u1 = 0.05 

c2m = 3.10; u2 = 0.07 

c3m = 1.05; u3 = 0.07 

 

ef, = 3 

ef* = 3 

efh = 1 

 18.8 18.3; 1.2 18.3; 0.37 

            Notes. Estimates from the analytical solution [6] and the numerical MCMC implemented in the developed MS-Excel file ‘UnCorrel4Risk.xlsm’. 
            In the presented examples both the prior pdf and the likelihood are normal, and the test results are not correlated.  ef� – lower legal limit; I – number of iterations; § – mean value; standard deviation; † – the reverse of the number of simulation used to describe 

the posterior pdf, i.e. about 20 % of all performed simulations. 
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Table 2. Comparison of the specific total consumer’s risk _`a`bc(d)∗  (%) in the conformity assessment of total suspended particulate matter 
concentration in air near one to three stone quarries  
 

# Prior  Likelihood  ei�          Analytical              MS-Excel (UnCorrel4Risk.xlsm) 

1 Lognormal 

µ = -2.326; σ = 0.434 

Normal 

cm (see corresponding 

column on the 

right); u = 0.07cm 

 

ei = 0.2 

cm ��,(�)∗  �g�,(�)∗  (I=15000)§ �g�,(�)∗  (I=150000)§ 

0.161 0.00817 0.010; 0.017 0.0075; 0.0049 

0.167 0.0840 0.088; 0.057 0.079; 0.019 

0.175 0.884 0.86; 0.19 0.839; 0.061 

0.187 8.96 8.68; 0.70 8.75; 0.22 

0.200 35.5 36.2; 1.2 36.21; 0.38 

2 Lognormal 

µ1 = -2.031; σ1 = 0.280 

µ2 = -2.338; σ2 = 0.403 

Normal 

c1m = 0.2; c2m = 0.2 

ui = 0.07cim 

ei�= 0.2 

 

 54.86 56.4; 1.2 56.29; 0.62 

3 Lognormal 

µ1 = -2.326; σ1 = 0.434 

µ2 = -2.031; σ2 = 0.280 

µ3 = -2.338; σ3 = 0.403 

Normal 

c1m = 0.194; c2m = 0.192 

c3m = 0.114 

ui = 0.07cim 

ei�= 0.2  32.81 34.5; 1.4 34.6; 0.73 

            Notes. Estimates from the analytical solution [7] and the numerical MCMC implemented in the developed MS-Excel file ‘UnCorrel4Risk.xlsm’. 
In the presented examples, the prior pdf and the likelihood are lognormal and normal, respectively; the test results are not correlated. 
 ei� – upper legal limit; I – number of iterations; § – mean value; standard deviation. 
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Table 3. Comparison of the specific total consumer’s risk _`a`bc(d)∗  (%) in conformity assessment of a medicine with four active components  
 

# Prior  Likelihood  [ef�, ei�]  Analytical  MS-Excel (Correl4Risk.xlsm) 

1 Normal 

µ1 = 99.18; σ1 = 1.37 

µ2 = 97.7; σ2 = 1.02 

µ3 = 99.33; σ3 = 1.05 

µ4 = 98.94; σ4 = 1.22 

Correlation coefficients 

r12=0.107; r13=0.125; 

r14=0.177; r23=0.311; 

r24=0.404; r34=0.539 

Normal 

c1m (see relevant column); 

u1 = 0.028 c1m; 

c2m = 97.7; u2 = 2.74; 

c3m = 99.33; u3 = 2.78; 

c4m = 98.94; u4 = 2.77 

Correlation coefficients 

(see Prior) 

 

 

 

[95, 105] 

c1m �	
	��(�)∗  �g	
	��(�)∗  (I=15000)§ �g	
	��(�)∗  (I=150000)§ 

95 0.600 0.58; 0.24 0.569; 0.071 

97.5 0.344 0.33; 0.16 0.329; 0.053 

100 0.274 0.27; 0.14 0.261; 0.046 

102.5 0.257 0.26; 0.15 0.246; 0.041 

105 0.255 0.24; 0.11 0.238; 0.045 

2 Normal 

As in case 1 

Correlation coefficients 

Negligible  

Normal 

As in case 1 

Correlation coefficients 

Negligible  

 

[95, 105] 

c1m �	
	��(�)∗  �g	
	��(�)∗  (I=15000)§ �g	
	��(�)∗  (I=150000)§ 

95 0.591 0.56; 0.21 0.563; 0.066 

97.5 0.342 0.32; 0.16 0.326; 0.049 

100 0.279 0.28; 0.12 0.257; 0.037 

102.5 0.264 0.24; 0.12 0.246; 0.037 

105 0.265 0.28; 0.15 0.246; 0.041 

           Notes. Estimates from the analytical solution [8] and the numerical MCMC implemented in the developed MS-Excel file ‘Correl4Risk.xlsm’. In  
the presented examples the prior pdf and the likelihood are normal; the test results of the component concentrations are correlated. ef� and ei� –  
lower and upper specification limits; I – number of iterations; § – mean value; standard deviation. 

occo 
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HIGHLIGHTS 

 

• A tutorial and MS-Excel spreadsheets for evaluating risks of false decisions in conformity 

assessment of a multicomponent material are presented.  

• The developed program is based on Bayesian approach and Markov Chain Monte Carlo 

(MCMC) simulations by the Metropolis-Hastings algorithm. 

• The principles of Bayesian inference and MCMC are described for analytical chemists with 

basic knowledge in statistics.  

• The program was validated by comparison of the obtained results with the results calculated 

in R programming environment.  

• The spreadsheets and audio-video instructions explaining the program use are provided as 

electronic supplements.   

 


