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Abstract A tutorial and a user-friendly program for evalagtirisks of false decisions in
conformity assessment of a multicomponent materialbject due to measurement uncertainty,
based on a Bayesian approach, are presented. Vhbpled program consists of two separate
MS-Excel spreadsheets. It allows calculation ofdbesumer’s and producer’s risks concerning
each component of the material whose concentratias tested (‘particular risks’) as well as
concerning the material as a whole (‘total risk#\ccording to the Bayesian framework,
probability density functions of the actual/‘truebmponent concentrations (prior pdfs) and
likelihood functions (likelihoods) of the corresmbng test results are used to model the
knowledge about the material or object. Both casesdependent and correlated variables (the
actual concentrations and the test results) aateiiein the present work. Spreadsheets provide
an estimate of the joint posterior pdf for the atitomponent concentrations as the normalized
product of the multivariate prior pdf and the likelod, starting from normal or log-normal
prior pdfs and normal likelihoods, using Markov @h#onte Carlo (MCMC) simulations by
the Metropolis-Hastings algorithm. The principles Bayesian inference and MCMC are
described for users with basic knowledge in siafisinecessary for correct formulation of a
task and interpretation of the calculation resulise spreadsheet program was validated by
comparison of the obtained results with analytiegults calculated in the R programming
environment. The developed program allows estimatid risks greater than 0.003 % with
standard deviations of such estimates spreadimg @®01 % to 1.5 %, depending on the risk
value. Such estimation characteristics are satmfactaking into account known variability in

measurement uncertainty associated with the testtseof multicomponent materials.

Keywords Conformity assessmerifRisk of false decisioilMeasurement uncertainty

Multicomponent materidlMarkov Chain Monte Carlo simulatiohSpreadsheet



1. Introduction

Properties of multicomponent materials, such asicaédns, alloys, food and clinical
samples, and objects (e.g. ambient air), dependctunal/‘true’ concentratiow; of thei-th
componentj =1, 2, ...,n, which is measured during conformity assessmeote Nhe term
concentration is used here as a general concapg soncentration is the most frequent type
of measured quantity in chemistry. However, theussion in this paper is also applicable to
other quantities, such as pH, Brix, total orgamiboon, etc.

The material or object is considered ‘conformindiesc; values are in the specification,
regulation or legal tolerance limits/intervalg | Tu], whereT.; andTy; are lower and upper
limits of the interval, respectively. Comparing ofieal analytical measurement/test resit
of the concentration afth component with the upper limiy;;, for example, one can decide
whether the material or object conforms or not.c8iany measurement resuglt, has an
associated measurement uncertainty [1, 2], twoskofdisk of a false decision on conformity
may arise. The probability of the false decisioattthe component concentration does not
exceed the upper limit, based on the measuremsuit og, < Tyi, when the material actually
does not conform, i.e. the actual concentrationeess the upper limitc(>Ty), is
‘consumer’s risk’. On the other hand, the probapibf falsely rejecting the decision on
conformity (i.e.cim> Ty; when in fact; < Ty;) is the ‘producer’s risk’.

For a specified material batch, lot, or an envirental compartment, e.g. ambient air in a
certain location at a certain time, such risksraferred to as the ‘specific consumer’s risk,

Rz, and the ‘specific producer’s riskR respectively, for the-th component. The

ci(p)"
risks of incorrect conformity assessment of a bateshdomly drawn from a statistical

population of such batches are the ‘global consismisk’, R.;(, and the ‘global producer’s
risk’, Rei(p), respectively, as they characterize the matetality globally.Evaluation of the

both specific and global risks for a particulan¢ge) componenit is described in the JCGM
guidelines [3] based on a Bayesian framework feessing conformity.

Besides the specification limits for actual concatidn valuesc,, acceptance limits for
measurement results, can be applied taking into account the measuremnecgrtainty. In
such a case, the decision rules are formulateddb@aseomparison of the measurement/test
results with the acceptance limits, thereby redyth® consumer’s or producer’s risk [3, 4].

When concentrations of two or more components avatralled, component-by-
component evaluation of the risks is not completganeral, as it does not give an answer to

the question of the probability of a false decis@n conformity of the overall material or



object. If conformity assessment for eadin component concentration of a specified batch
of a material is successful (i.e. the particulagcsiic risks,R;;, are small enough), the total
probability of a false decision concerning confdsnaf the material as a whole (i.e. ttotal
specific riskR;,.,) might still be significant. The evaluation of abtisks is the task of the
IUPAC project [5]. In the framework of this projedt was shown, based on the law of total
probability, that the total risk can be evaluatexdaacombination of the particular risks,
whenever the variables; @ndc,) are independent. A model of the total consumaslswas
formulated and applied for customs control of ccetgdy denatured alcohols, where
conformity assessment was performed by comparifchemical analytical test results with
the lower regulatory limits for concentrations bfde denaturants. The model was based on
assumptions of the normal prior probability dendiipctions (pdfs) of actual denaturant
concentrations and the normal likelihood functi@ielinoods) of the test results [6].

A similar model for the total producer’s risk wasveloped and used for a case of total
suspended particulate matter (TSPM) concentratiaambient air near three independent stone
guarries located in Israel, as the sources of@lufon. The conformity decisions were based
here on comparison of TSPM test results with th@nal upper regulation limit. In this case,
the actual TSPM concentrations were described bgr gognormal pdfs, whereas the
likelihoods of the test results were assumed todyenal. Total probabilities of underestimation
of TSPM concentration (total consumer’s risk of thieabitants) and overestimation (total risk
of the stone producers) were evaluated as a cotrdmnaf the particular risks of air conformity
assessment concerning TSPM concentrations forcpeantny [7].

In the paper [8], the probability of a false demision conformity of a medication due to
measurement uncertainty was discussed when tagdtsred four active components of the
medication are correlated. Specification limitgled components’ contents of such a medication
generate a multivariate specification interval/doni8]. Actual values of components’ content
and corresponding test results were modelled bytivadlate normal prior pdf and likelihood
function. It was shown that the influence of thereltion on the risk values is not easily
predictable.

The total risks of false decisions on conformityaoplatinum-rhodium alloy batch due to
measurement uncertainty were also quantified far tfmmponents, when a strong correlation
of test results was observed [10]. As in the previaork [8], actual values of components’
content and corresponding test results were matldédie multivariate normal prior pdf and
likelihood function. It was found that simplificati of the testing by reducing the number of



components under control (taking one componenivoffor which the test results are strongly
correlated) leads to a significant underestimatidrthe probability of a false decision on
conformity of the alloy.

Calculation of the specific risks in these studjés3, 10] was based on the analytical
expressions (or corresponding numerical approxonaji of the posterior pdf for the actual
component concentrations as the normalized prodtidghe multivariate prior pdf and the
likelihood, performed within the R programming eviment [11]. In parallel with the R codes,
a user-friendly MS-Excel program was developed thase the same Bayesian approach, but
implemented through the Markov Chain Monte CarlcCWIC) method.

The present paper is a tutorial for quantificatdrspecific risks in conformity assessment
of multicomponent materials due to measurement rteniogy, making more accessible the
developed concepts and necessary computational. t8ohciples of the Bayesian approach
and MCMC method are explained for correct formolatof the risk estimation task and
interpretation of the results. The validated spsbaédts for calculation of specific risks are
available as supplementary electronic material.il&imspreadsheeds for evaluation of global
risks will be worked out in the continuation of théPAC project [5].

2. Theory

Bayesian inference provides a probability distidmitof a component concentration as a
posterior pdf, starting from prior knowledge abdlu component in the material or object
before the measurement (the prior pdf or simpljoipy, updated by new information coming
from measurement results modelled by the likelihfuodttion (‘likelihood’) [12].

The prior is obtained from available inforno&tion component concentrations in similar
batches of the material or objects. The batch-tokbalistribution of measurement results,
accumulated during testing a large enough numberbathes, lots or environmental
compartments, can be used as prior, when the mexaeut uncertainty is negligible in
comparison to the batch-to-batch variation. Theumgdion is that the actual concentration
values are approximated by the measurement/tegiisemdequatelyc( =~ c¢i,). If there is no
detailed prior knowledge about the component caimagon in the tested material or object, the
prior pdf is vague. In such cases, a uniform pdf rba used, limited by the lowest and the
highest possible values for the component concigorra

The likelihood is a function describing theypsibility of the actual values of a component

concentration at a given measurement result. Inctipgg a distributionp(c;y,lc;) of



measurement results at a given actual componewceotmation value, i.e. related to one and
the same sample, is usually available from the yéical method validation data. This
distribution of the measurement results, regarded &unction ofc;, is nothing else than the
likelihood function itself.

The posterior distribution @f (the posterior pdf) is the normalized product @& grior and
the likelihood.

Two spreadsheets have been developed for calayl#ten posterior pdf for a particular
component, as well as the joint posterior pdf fprta four components of a material or object.
The spreadsheets allow evaluation of the specsicsrof false decisions about conformity of a
component concentration separately (i.e. the paaticspecific risksR’;), and considering the
material or object as a whole (i.e. the total dpecisk R;/,.,)- One spreadsheet is designed for
uncorrelated test results (UnCorrel4Risk.xIsm) ahe other for correlated test results
(Correl4Risk.xIsm). Both the spreadsheets procegsstivariate normal prior pdfs and
likelihoods, but the file ‘UnCorrel4Risk.xlsm’canisa process prior log-normal pdfs. The
spreadsheets’ files and videos explaining the Usthese files are available as Electronic
Supplementary Material.

The concentrations measured in the studied objeats be correlated due to intrinsic
correlations of the actual concentratian®f the material or object, or due to the correlatof
the measurement resultg,. Intrinsic correlations are derived from stoichetnc or mass
balance limitations, or are due to technologicasoms. When composition of a material or
object is expressed as sum of mass fractions oe rinattions equal to 100 %, correlation
among them may be spurious [13, 14]. The ‘metraiagicorrelation occurs because of
interaction of the components at different stepthefmeasurement process (chemical analysis)
or because of interferences of the analytical $ggnag. in a spectral analysis [8]. In this
tutorial, the origin of the correlation between uls is not distinguished, hence the same

correlation matrix being used for bathandciy,.

2.1. Bayesian estimate of a concentration
For an easier understanding of Bayes theorem pidication is firstly illustrated using a
specific example involving Boolean variables anehtlilescribed for continuous variables such

as component concentrations in a material or object



2.1.1. Bayes theorem for Boolean variables

The probabilityP(A|E) of an event A (e.g. the pregnancy of a 28-yearvatadnan) when
some discrete evidence E is observed (e.g. a colmmnge of a test kit exposed to the urine of
the woman), i.e. the probability of A given E, is:

P(A)P(E|A
P(A[E) = 2225, (2)

whereP(A) is the prior probability of the event R(E|A) the probability of observing E given
the event A, an®(E) is the probability of the evidence E being obsérf#?]. In other words,
in this exampleP (A) is the probability of a 28-year-old woman beinguady pregnantP (E|A)

is the probability of the test kit producing a asl@hange when testing the urine of a pregnant
woman, andP(E) is the probability of the test producing a colmimange regardless of the
pregnancy status of the woman. ProbabifE) by the law of total probability iB(E) =
P(A)P(E|A) + P(-A)P(E|-A), where P(-A) = 1 —P(A)is the probability of the woman
being not pregnant, an(E|-A) is the probability of observing a colour changdhaf test kit
when the woman is not pregnant — false positivédaidity. Equation (1) shows that the prior
probability P(A) of the woman pregnancy is modified after observaanf the colour change
of the test kit into the posterior probabilRyA|E).

If a test result of a 44-year-old woman is positifieg pregnancy, the corresponding
probability of actual pregnanci(A|E) will be smaller than that of a 28-year-old woman
showing the same positive test result. In factsaeringP(E|A) fixed as a property of the test
kit, according to equation (1,(A|E) decreases iP(A) decreases, as happens for women older
than 28-years-old.

Moreover, in order to be more confident about th@bgability of actual pregnancy for a 44-
year-old woman showing a positive test E, a se¢esdkit could be used for the same woman.
Let us suppose the results of the two test kitsanglitionally independent, that B(E, F|A) =
P(E|A) P(F|A). Hence, the probabilit®? (A|E, F) of the women being pregnant, where F is the

evidence of pregnancy by the second test kit, is:

P(A)P(E|A)P(F|A)

PAIED = b P EIRPEIA) + PCAPE-DPEI-A)’

(2)




where P(F|A) and P(F|-A) are the probabilities of the second test kit iatlig pregnancy
when the woman is actually pregnant or not, respsigt

After the second evidence, the posterior probabiticreases fronP(A|E) to P(A|E, F)
suggesting that the woman is more likely pregnamemwshe has a positive evidence from both
the testsP(A|E, F) is greater tha®(A|E), in fact, because the true positive rate of treoseé
testP(F|A) is greater than the false positive r&t@|—-A). For example, assuming probability
of a 44-year-old woman being pregn&t) = 0.019, probability of test kits correctly defagt
a pregnancy — true positiv®E|A) = P(F|A) = 0.985, and probability of test kits incorrectly
declaring a pregnancy — false positif€E|-A) = P(F|-A) = 0.008, hencé®(A|E) = 0.019 -
0.985/(0.019 - 0.985 + (1 — 0.019) - 0.008) = 0.704 and P(A|E,F) = 0.9852 -
0.019/(0.019 - 0.985% + (1 — 0.019) - 0.0082%) = 0.997. The results from the second test kit
updates the posterior information from the firdt Khe posterior probability is the same when
the second kit is used first, as can be obsenad formula (2):P(A|E,F) = P(A|F,E).

The Bayesian approach has the advantage of adgureproducing the decision process
based on cumulative evidence of an event, in pdatic when independent evidences of the
event are collected. Naturally, this approach ddpeam the adequacy of the prior information.

The example above describes the application oBtyes theorem to Boolean variables (e.qg.
colour change: ‘yes’ or 'no’). However, this thearés also applicable to continuous variables
such as concentrations.

2.1.2. Bayes theorem for continuous variables

The description of the occurrence of concentratiols modelled by a pdf, describing how
the probability density(c;) varies with the concentration value. The probgbof ¢ being in
the rangedy, a;] is:

P(a; < ¢ < ap) = [7 ple) de; . (3)

Regardless of the type of the distributiorcovalues, the lowest and highest limits of a 95 %
coverage interval of the values, for example, anegntilesb; andb, such thatP(c; < b,) =
2.5% andP(c; < b,) = 97.5 %, that is:

P(by < ¢ < b) = J,*p(c:) de; = 95 % . ©)



Application of Bayes theorem provides estimate of actual concentratiom; given a
measurement resuti,. Since both the concentration value and the measemt result are
continuous variables, the (mass) probabilitiesudised in Section 2.1.1 are substituted here for
corresponding (continuous) pdfs [12]:

p(Cimlc)p(ci)

p (Cim) , (5)

p(ci | Cim) =

where denominatqs(c;,) = [ p(cimlci)p(c;)dc; is the normalizing constant factor.
The posterior probability?(q; < ¢; < q;|ry < ¢;y < 1) Of ¢; being betweery; and q,

given c;,, varying betweem; andr; is proportional to the following double integral:
P(g1 < ¢ < ol S e = 13) & qulz frr: p(cimlc) p(c)dcimdc, (6)

where symbolo indicates proportionality. The probability of thencentrationc; being

betweeng; andgq, is:
P(a1 < ¢ < Galcim) < [ p(Cimled) p(ede; - ()

The Markov Chain Monte Carlo (MCMC) method is helpfor numerical estimation of
p(cilcim) by formula (5), since it allows us to skip the matizing constant factas(c;,,) [12,
15].

2.2. Markov Chain Monte Carlo Method

The MCMC method is initiated by setting a startpaint, a, close to the expected mode of
the distribution of the posterior concentrationjethis usually positioned between the modes of
the prior pdf and likelihood function. In many case can be chosen as the mode of the prior or
the likelihood. As a first step, the prior and tikelihood ata, i.e.p(c; = @) andp(c;p,lc; = @)
respectively shown in Fig. 1, are calculated adogrtb the relevant analytical expressions.
- For instance, ip(c;) is a lognormal pdf, as in Fig. 1a, probability giénp(a) at the starting

point is calculated by the following formula:
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_ 1 _ (ln(a) - .ugi)z 8
@) = mexp( — ) ®

gi
where ug; and sy are the geometric mean and geometric standardhtit@viof the prior
distribution ofc; values, respectively, hence satisfymg= exp(tin(;)) andsg;= exp(Sin(c,)),
where i,y andsiy,) are the mean and standard deviation of the (ngrdisiribution of
In(c;) values. The pdf (8) is calculated in MS-Excel ngsi function
LOGNORM.DIST@, i, S4i» FALSE).

If the prior is a normal pdf, corresponding prollidpidensity valuegp(a) are generated by
using MS-Excel function NORM.DIS®( y;, s;, FALSE).

Whenp(c;imlc;) is a normal pdf (shown in Fig 1b as the likelihdadction ofc; at a given

cim), the probability density at the starting point is

.1 1 /Cim — @\? 9
p(cim|ci—a>—uimexp(—5( » )) ©

whereuy; is the standard uncertainty associated wjith This probability is calculated in MS-
Excel using function NORM.DIS¥ ¢, u;, FALSE).

The posterior pdf is given by multiplying(a) by p(cjp,|a).

Then, a new value of;, denoted ag, is generated by randomly drawing a value from a
normal transition distribution [12] with meanand standard deviatidnwheret is designated
the Markov Chain increment. The MS-Excel NORM.INWRD(), «, t) is used to producg.
The increment is defined from a normal transitioistrbution, regardless of the prior
distribution and the likelihood function.

The posterior pdf at; = is given byp(B8)p(c;m|B). If the prior and the likelihood are log-
normal and normal, respectively(B) andp(c;,|B) are calculated according to Eqgs (8) and
(9), respectively, after substitutimgfor /.

To decide iff is to be retained for the next iteration, theaaff, a) is calculated according

to:

_r(BpleamlB)

T = @)

(10)
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If r(5, @) is greater than one or than a value randomly igéee from an uniform distribution
on (0, 1) with MS-Excel function RAND(} is retained for the following iteration, otherwige
is considered for a new iteration. The new iterai®dgenerated using NORM.INV(RAND(j,

t) or NORM.INV(RAND(), «, t), respectively. At each iteration, a ratio equavdlto that in
equation (10) is estimated and a new value frorfotmidistribution on (0,1) is drawn to decide
which value to retain for the next iteration. Th@mpling method of the posterior distribution is
known as the ‘Metropolis—Hastings algorithm’ [13].1

The process is repeated many times with the neteoprevious value of the iteration being
retained. As the iteration progresses, the simdilatédue approaches the mode of the posterior
pdf and the simulation starts sampling values alamgebelow the mode proportionally to their
density. The a-posteriori retained concentration values estimate the prébaldensity
p(cilcim).

A graphical representation of the retaingdiuring the iterations progress allows to assess if
the mode ob(c;|c;m) has been reached and if the posterior pdf was Isedngprrectly. Fig. 2
illustrates the impact of the increment sizs sampling the posterior pdf.

As shown in Fig. 2a, a small value bfmay not allow the process to reach the mode of
p(cilcim) even ifa is close to it. A large value df as in Fig. 2b, makes it likely that an
iteration will produce the new; value with corresponding(c;|c;,) smaller than that in the
previous iteration, hence causing rejection ofrtee value. This process reduces the number of
iterations used to describe(c;|c;;n) thus wasting computational time. Fig. 2c, when an
adequaté is usedc; values are presented as a noisy line.

If the starting point of the Markov Chain procesdar away from the mode of the posterior
distribution, it is convenient to reject the fittrations since they are not representative. The
so-called “burn-in period” set for the Markov Chailefines the number of initial rejected
iterations for the characterisation of the postedistribution [12, 15].

It is also advisable to take only each third othfiiteration to avoid creating an artificial
correlation between simulated values. The “thinnirtgrval” set for the Markov Chain defines
this additional filtration of data [12, 15].

The posterior distribution of simulateq values can be characterised by percentiles that
define the lower and higher limits of specific coage intervals or, if the posterior distribution
is normal, by the mean and the standard deviafitineogenerated; values.

The MCMC method can be applied also for simulabbrtoncentrations of two and more

independent components of a material or object lsameiously, for example concentratians
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andc, of a pair of a material components. A point hara ivectorc;, consisting ofc; andc,
(posterior concentrations of the first and the sdc@omponents)Sizes of independent
incrementst; andt, of ¢c; andc, values, respectively, form vectbr. The newly generated
vector €12+ t12) is only retained if the ratio between the joidf pf (c; + t;) andc; and the ratio
between the joint pdf ofc{ + t;) andc, are greater than 1 or than two randomly generated
values from an uniform distribution on (0, 1).

Selection of the starting point and the vector loé tincrement sizes should allow a
representative sampling of the posterior bivardigtribution. Fig. 3 demonstrates some cases

of posterior pdsampling at different vectotsof the increments’ sizes.

2.3. Posterior distribution of correlated variables

If concentrations of different components of a mateor object are correlated (both the
actual values and the corresponding test result$3, necessary to take the correlation into
account when estimating the parameters of the postaultivariate (joint) pdf for the tested
concentrations of the components.

In general, a multivariate normal pdf nfcomponent concentratioreg | = 1, 2, ...,n, is
characterised by a vectgr of means of the component concentratigns f,, ..., 4,) and a
covariance matriX expressing the variances of the concentrationgtadovariance between
them [8, 16].

If the prior is a multivariate normal pdf, the prigrobability density(c) of a vectorc of the

concentrationsc, c, ..., c,) is [20]:

exp (—%(e ~WE e - u))
JenE] '

(11)

p(c) =

where (¢ — u)T is the transpose vector of tife —p) and |Z| is the determinant of the
covariance matrix. A multivariate normal likelihopdc,,|c) is similar to (11), withp(c,,|c),
cn, € and X, substituting forp(c), ¢, u and X, respectively, where,, is the vector of the
measured components concentrations, &g is the covariance matrix, built using
measurement standard uncertainties associated cyyjttand estimated correlations between

them.
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Formula (11) can be implemented in MS-Excéhgisunctions for operations with matrices
(e.g. MMULT (arrayl, array2) for multiplication ofwvb matrices), or by performing matrix

calculations reproducing respective algebraic iaiat

2.4, Calculation of risks

When one component of an object is studied, the probability that thigiect does not
conform, P, can be estimated as the relative frequency ofilsited posterior concentrations,
¢, falling outside the tolerance limit$,f, Tui]. Whencin, is within the tolerance limit$, is the

specific particular consumer’s riskz;,, while if cin is outside the limits, (1-Pxc) is the

*

specific particular producer’s risRy; .
When two or more components of the object are stydihe relative frequency of the
simulated posterior concentration vectors, wheteast one; is outside its limits, is calculated.
This relative frequency is an estimate of the pbdhg that the object does not conforiy.
When all ¢, are within their specification limitsP,; is an estimate of the specific total
consumer’s riskRyqa1), While when at least orgy is outside the limits, (1Pq) estimates the

specific total producer’s risRy,a(c)-

3. Spreadsheets

Two spreadsheets have been developed to estimatsptrific risks (both particular and
total) of false decisions on conformity of a madeor object to the tolerance limitg; andTy;,
when up to four component concentrations are med#éested.

The first spreadsheet (UnCorrel4Risk.xlsm) is aggtlle to materials or objects when
correlation of test results for different comporsers negligible, each prior pdf is normal or
lognormal and each likelihood is normal.

The second spreadsheet (Correl4Risk.xlsm) is eagdpbBcwhen correlation of test results is
statistically significant, while both the joint pripdf and the joint likelihood are normal.

These spreadsheets are used by selecting the nunobestudied components(variables) in
cell E7, entering the name of the components, tbigiltutional family, the parameters of the
prior pdf and the likelihood (mean and standardaten for a normal pdf, geometric mean and
standard deviation for a lognormal pdf), the tabelimitsT,; and Ty, and the configuration
parameters of the Markov Chain. For the spreadspeatessing correlated test results

(Correl4Risk.xIsm), the types of the distributicare not to be selected since it is applicable to
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normal distributions only. Pearson correlation @omts for all pairs of the components
should be entered in this spreadsheet for spetiditaf the covariance matrix.

The parameters of the Markov chain are the stapgoigt of the chain, typically the available
measurement/test resutlt,,, the increments, the burn-in period and the timgrinterval. The
optimisation of the increment is performed by chegkhow different values of increments
affect the Markov chain as discussed in section Balf of the standard measurement
uncertaintyu; of c;,, is usually a good initial value for increment opsation.

The burn-in period is between 100 and 1000, ifdfagting point of the Markov chain is not
far from the mode of the posterior pdf. A thinningerval of 3 or 5 is enough to avoid
correlation of generated results.

Since the initial stage of the MS-Excel files penfojust 50 to 100 simulations, before
optimising the Markov chain, for estimatipdgc;|c;,») and the specific risks it is necessary to
increase the number of simulations. This is possiy pressing “Crtl+q” for 15000 and
“Ctrl+i” for 150000 simulations, or by using corpanding buttons of the spreadsheet. The
recalculate button or “F9” can be used to obtamew set of simulations. “Ctrl+h” can reduce
simulations back to 50 or 100 to allow saving ingata in a small file.

A file with 150000 lines needs only a few secormpérform a new set of 150000 iterations.
However, the increase of lines to 150000 takes &@Bouin to compute.

The mean of specific risks estimated from 30 oisd® of simulations can be calculated by
pressing “Crtl+j” or “Run Replications” (at the Ibotn of the spreadsheet).

The MS-Excel files create graphs of the univariatel bivariate Markov chain, with and
without limits T.; andTy; being presented, and the prior, likelihood andgra® pdfs of each
component concentration. The graph of the bivaléaekov chain shows, in yellow points, the
c; values or vectors that have, at least, one compauacentration outside the limits.

The spreadsheets present the number of simulagmrmed and the number of
simulations used to describe the posterior pdfifmvachecking the efficiency of the Markov
chain process. The burn-in period, the thinningrvdl and the rejection of each new iteration
of the Markov chain reduces the efficiency of thegess.

Several tools are available for performing MCMC glations, such as commercial add-ins
of the MS-Excel [21] or free software such as WirB®J[22] and packages for R programming
[23]. However, use of these tools for the risk ea#ibn in conformity assessment requires some

programming skills.
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3.1. Validation of spreadsheet calculations

The validation of the spreadsheet calculations mased on the comparison of specific risk
estimates with corresponding analytical resultsaioled in the R programming environment.

The studied scenarios are those covered in IUPAe&tr[5] and briefly described above in
Introduction.

Omitting the chemical details already availableha references, Tables 1 to 3 present the
studied scenarios and the specific (particulartatal) risk estimates performed by means of the
different tools. The calculation by the R-softwé&daster and more accurate than that obtained
by the MS-Excel program, but MS-Excel is a moreeasible tool and language for most
analysts and the program is user friendly, simphuiring the user to set some parameters and
choose among a couple of distributional families.

One can find in the tables the means and the sténigaiations of 50 MS-Excel estimates of
specific risks based on 15000 or 150000 iteratioespectively, allowing understanding the
performance of the MCMC. This does not vary siguaifitly, leading to small changes in the
parameters of the Markov Chain.

In the studied scenarios, the computational efficye of the Markov chains, i.e. the
percentage of simulations used to describe theepostdistribution, is about 20 % and,
therefore, approximately 3000 or 30000 iteratiores actually used to reconstruct the posterior
pdf when a total number of 15000 or 150000 iteretiare performed, respectively. In theory,
these numbers of simulations can identify a minimunebability value of 0.03 % or 0.003 %
(i.e. frequency 1/3000 or 1/30000, respectively)faise or correct compliance decisions,
depending on the kind of discussed specific risk.

The specific risks, estimated for uncorrelated sasdéy the spreadsheet
“UnCorrel4Risk.xIsm” and by the analytical meansg @hown in Tables 1 and 2. Table 1
presents results where the prior and the likelihaede both normal [6], Table 2 - where the
prior was lognormal, while the likelihood was notrfi§.

Performance of the MS-Excel file “Correl4Risk.xIsra%ed for estimation of the specific
risks in the case of correlated test results far foaterial components [8] is shown in Table 3.

The MS-Excel files provide also confidence intesvéR™ + ksy+) for the specific risk,
whereR* andsk- are the mean and the standard deviation of tlkeestimates andt is the
quantile of a Student’s distribution with 49 degredf freedom, for 95 % or 99 % level of
confidence. In the performed validation, 46 specifsk estimates agree at a 95 % level of
confidence with the analytical corresponding val(iegshe sense that the latter is encompassed

in the interval), whereas only 4 cases agree & % 9evel of confidence. Similar results were
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obtained in the case described in ref. [10]. It barconcluded that the risk estimates from the
MS-Excel files are in good agreement with the atiedy results. The standard deviations of the
risk estimates ranged from 0.001 % to 1.5 %, deijpgnof the specific risk value. Since 95 %
level of confidence is applied in the majority oéasurements in chemistry, it can be concluded
that the performance of the developed MS-Exce$ fikeadequate to distinguish cases where the
specific risk is too large or acceptably low. If maaccurate risk estimates are required, the

analytical tools and R programming should be u8e8, [10].

4. Conclusions

The principles of Bayesian inference are discussed simple but comprehensive way
allowing correct formulation of a scenario involvieddetermination of specific risks (particular
and total) of false decisions in conformity assessnof a multicomponent material or object.

A tutorial and two user-friendly MS-Excel spreadsiseare presented based on the Markov
Chain Monte Carlo Method using the Metropolis—Hagdi algorithm (MCMC-MH). The
spreadsheets provide easy, fast and adequatelyate@stimates of the risks. The principles of
the MCMC-MH are also explained shortly, as necgskara suitable choice of Markov Chain
parameters.

There is a good agreement between the results atstimby means of the developed
spreadsheets and the results obtained analyticaRyprogramming environment.

The MS-Excel platform has the advantage easy lmkime developed files with other
spreadsheets, where complex measurement uncemagagls and/or concentration constraints
may be implemented as the input information of Beye inference.

The developed tutorial and the spreadsheets carhdieful in different conformity

assessment tasks related to multicomponent matenalbjects.

Electronic supplementary material

- File to process values with negligible correlatidbmCorrel4Risk.xlsm

- Video explaining the use of the file UnCorrel4Ridkm: Demo_UnCorrel4Risk.mp4
- File to process correlated values: Correl4Risk.xIsm

- Video explaining the use of the file Correl4Riskml Demo_Correl4Risk.mp4
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Figure captions

Fig. 1. Starting point for MCMC calculation. a) Lognormal prior pdf and a starting point
¢; = a with probability densityp(a); and b) Gaussian (normal) likelihood and a stgrgoint

¢; = a with probability densityp(c;,, | a).

Fig. 2. Dependence of the sampled; value on the number of iterations in MCMC
simulations with Metropolis—Hastings algorithm at dfferent increment sizest. a) A smallt
does not allow to reach the modepdt;|c;,,); b) a larget reduces the number of iterations of
samplingp(c;|c;,), but produces a weaker description of the distidiog and c) adequate
value leads to a noisy line of values vs. the number of iterations. The blueeimdicates the

starting pointx.

Fig. 3. Variations of the sampled vectorc;, with the number of iterations in MCMC
simulations using Metropolis—Hastings algorithm atdifferent vectors t of the increment
sizes.a) Small modulus vectds, and a starting point (blue circle) away from thed® of the
bivariate distribution; b) a large modulus vectgr and c) an adequate vectgs, where the
burn-in period should be increased to remove theotgoints between the starting point and

the bivariate distribution.
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Table 1. Comparison of the specific total consumes’risk Ry (%) in the conformity assessment of denatured al¢wls, when from one to three
denaturant concentrations are tested

# Prior Likelihood Ty Analytical MS-Excel (UnCelRisk.xIsm)
1 Normal Normal Cm Ri1(o) Ri1() (1I=15000)8 Ry (1=150000)8
M =3.15;0 = 0.1575 Cm (See corresponding T, =3 3 3866 378 15 38.04: 0.46
column on the 3.08 3.490 3.20; 0.37 3.21;0.11
right); u=0.05 3.15 0.0823 0.062; 0.056 0.068; 0.018
3.22 0.000370 0.0003; 0.0028 0.0003; 0.0011
3.3 1x10" <0.03' <0.003"
2 Normal Normal 5.9 5.41; 0.62 5.40; 0.20
th = 3.15;01 = 0.1575 Cim = 3.10;u; = 0.05 T11 =3
(b =3.150,=0.1575  Com=3.10;u2 = 0.07 T, =3
3 Normal Normal 18.8 18.3;1.2 18.3; 0.37
(4 = 3.15;6, = 0.1575 Cum = 3.10;u; = 0.05 Ty, =3
b= 3.15;0, = 0.1575 Com = 3.10;u2 = 0.07 Ty, =3
15=1.10;05=0.11 Cam = 1.05;u3 = 0.07 Ti3=1

Notes. Estimates from the analytical solution [8dl &he numerical MCMC implemented in the developkiExcel file ‘UnCorrel4Risk.xlsm’.
In the presented examples both the prior pdf hadikelihood are normal, and the test resultshatecorrelated.
T.; — lower legal limit;] — number of iterations; § — mean value; standaxdation;” — the reverse of the number of simulation usedeszribe

the posterior pdf, i.e. about 20 % of all perforns@dulations.
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Table 2. Comparison of the specific total consumes’ risk Rygeai) (%) in the conformity assessment of total suspendeparticulate matter
concentration in air near one to three stone quares

# Prior Likelihood Tyi Analytical MS-Excel (UnCotRisk.xIsm)
1 Lognormal Normal Cm Ri1(o) Ri1() (1I=15000)8 Ry (1=150000)8
U= -2.3260 = 0.434 Cm (see corresponding Ty=02 0161 0.00817 0.010; 0.017 0.0075; 0.0049
column on the 0.167 0.0840 0.088; 0.057 0.079; 0.019
right); u = 0.0 0.175 0.884 0.86; 0.19 0.839; 0.061
0.187 8.96 8.68; 0.70 8.75; 0.22
0.200 35.5 36.2; 1.2 36.21; 0.38
2 Lognormal Normal Ty;=0.2 54.86 56.4;,1.2 56.29; 0.62

th=-2.031;p,,=0.280 Cim=0.2;ccm=0.2
[b=-2.338,0,=0.403 U =0.0€in
3 Lognormal Normal Ty;= 0.2 32.81 345;1.4 34.6; 0.73

Ly =-2.326;01 = 0.434 Cim=0.194,c,,,=0.192
b =-2.031;0, = 0.280 Cam=0.114
Mz =-2.338,03 = 0.403 U = 0.0&im

Notes. Estimates from the analytical solution [7dl ahe numerical MCMC implemented in the developtRiExcel file ‘UnCorrel4Risk.xlsm’.
In the presented examples, the prior pdf and Keditiood are lognormal and normal, respectivelg; tdst results are not correlated.
Ty; — upper legal limjtl — number of iterations; 8 — mean value; standaxdadion.
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Table 3. Comparison of the specific total consumes’risk Ryqa(c) (%) in conformity assessment of a medicine with far active components

# Prior Likelihood [TLi, Tuil Analytical MS-Excel (Correl4Risk.xlsm)

1 Normal Normal Cim Riotaicy  Riotaiiey 1515000)8 R{,a1y 1I=150000)8
th =99.18;01 = 1.37 Cim (see relevant column);  [95, 105] g5 0.600 0.58: 0.24 0.569: 0.071
to=97.7,0, = 1.02 Uy = 0.028C1m, 97.5 0.344 0.33;0.16 0.329; 0.053
4= 99.33;03 = 1.05 Com = 97. 75U = 2.74; 100 0.274 0.27; 0.14 0.261; 0.046
[ =98.94;5,=1.22 Cam = 99.33u3 = 2.78; 102.5 0.257 0.26; 0.15 0.246: 0.041
Correlation coefficients C4m = 98.94Us = 2.77 105 0.255 0.24;0.11 0.238; 0.045
r1,=0.107:r15=0.125: Correlation coefficients
r1=0.177;r,5=0.311; (SeePrior)

r,4=0.404;r3,=0.539

2 Normal Normal Cim Rigtaicy  Riotaiey 1I515000)8  R{ypay(c) (1=150000)8
Asincasel Asincasel [95,105] o5 0.591 0.56; 0.21 0.563; 0.066
Correlation coefficients Correlation coefficients 975 0.342 0.32: 0.16 0.326: 0.049
Negligible Negligible 100 0.279 0.28; 0.12 0.257; 0.037

102.5 0.264 0.24; 0.12 0.246; 0.037
105 0.265 0.28; 0.15 0.246; 0.041

Notes. Estimates from the analytical solution [8f &he numerical MCMC implemented in the developkRiExcel file ‘Correl4Risk.xIsm’. In

the presented examples the prior pdf and the likelil are normal; the test results of the compoo@mtentrations are correlatdy; andTy; —
lower and upper specification limits:- number of iterations; 8 — mean value; standaxdation.
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HIGHLIGHTS

A tutorial and MS-Excel spreadsheets for evaluating risks of false decisions in conformity
assessment of a multicomponent material are presented.

The developed program is based on Bayesian approach and Markov Chain Monte Carlo
(MCMC) simulations by the Metropolis-Hastings algorithm.

The principles of Bayesian inference and MCMC are described for analytical chemists with
basic knowledge in statistics.

The program was validated by comparison of the obtained results with the results cal culated
in R programming environment.

The spreadsheets and audio-video instructions explaining the program use are provided as

electronic supplements.



